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ABSTRACT 
This work proposes a new strategy for monitoring non-
linear processes based on Kernel Partial Least Squares 
(KPLS). When strongly non-linear process are 
considered, a PLS regression model could not be 
enough accurate. So, the first stage of the proposed 
method is to map the input data to a high-dimension 
space, where a linear regression model can be obtained. 
Then, an implicit linear regression model relating the 
high-dimension space with output space (output data) is 
obtained. This model implicitly induces a 
decomposition of the high-dimension space into the 
Model subspace and the complementary Residual 
subspace, being the vectors in the first subspace the 
effective domain of the linear regression model. Finally, 
once the space decomposition is understood, new 
statistics (metrics) for each subspace are proposed to 
monitor the process and detect possible abnormal 
behaviours. The effectiveness of the method is tested by 
means of a synthetic simulation example from the 
literature. 
 
Keywords: KPLS, space decomposition, multivariate 
process monitoring, fault detection indexes. 

 
1. INTRODUCTION 
 KPLS is a promising regression method for deal 
with nonlinear problems because it can efficiently 
compute regression coefficients in high-dimensional 
space by means of the nonlinear kernel function. It is 
also an efficient method for estimating and predicting 
quality variables in the strongly nonlinear process by 
mapping data from the original space into a high-
dimensional space. It only requires the use of linear 
algebra, making it as simple as linear multivariate 
projection methods, and it can handle a wide range of 
nonlinearities because of its ability to use different 
kernel functions. Its application results from a simple 
example show that the proposed method can effectively 
capture the nonlinear relationship among variables. 
 The need for associating input and output data sets 
obtained by online data login of complex process 
variables constitutes a problem that requires increasing 
attention. Lately, KPLS has become a powerful 
approach to find multivariable non-linear structures, 
mainly because large non-linear correlations implicit in 
the data can be adequately overcome. 

Fault detection makes use of the so-called fault 
detection indices based on model. A fault is detected 
when one of the fault detection indices is beyond its 

control limit. Once a fault is detected, it is necessary to 
diagnose its cause.  

In this work, the implicit space decomposition 
(made by KPLS) is obtained and their main geometric 
properties are used to design a non-linear monitoring 
strategy using new fault detection indices actuating on 
each subspace. This allows us to diagnose the fault type. 
The main contributions of this work are then the 
introduction of new fault detection indices derived from 
the KPLS decomposition, and a diagnosis tool based on 
the statistics that triggers the alarm condition.  

 
2. KERNEL PLS REGRESSION 

As usual in data driven method, we first should 
collect a set of N samples of the predictor vector, 
{ } 1

N
i i=

x , with m
i ∈ℜx  for , and N samples of the 

response vector, { }

, ,i N

1

N
i i=

y , with  for , 
which are called Identification Data Set (IDS). Once 
these data are collected, the Kernel Partial Least 
Squares (KPLS) method maps the predictor vectors, , 
from 

p
i ∈ℜy , ,i N

ix
mℜ  to a high-dimension space  (with ), 

where a linear PLS regression model can be created to 
relate vectors in 

cℜ c m

cℜ  with the response vectors, , in iy
pℜ . In this way, a latent model can be formulated in 
cℜ , in order to extend linear PLS to non-linear kernel 

PLS (Rosipal and Trejo, 2001). The non-linear 
transformation that maps vectors from  to mℜ cℜ  is not 
made by means of an explicit non-linear function φ , 
but by means of a kernel function k selected to compute 
the following inner products: 

 

( ) ( ) ( ), ,

1, , , 1, , .
i j i jk

for i N and j N

′=

= =

x x φ x φ x     (1)      

                
Notice that trough the introduction of the kernel trick 

(Rosipal and Trejo, 2001), , 
one can avoid both, performing explicit nonlinear 
mapping and computing dot products in the high-
dimensional space. Furthermore, as it is known and will 
be seen later, the PLS regression method need only dot 
products to perform the regression. Now, from Eq. (1) it 
is obtained the Gram Kernel matrix, 

( ) ( ) ( ),i j ik′ =φ x φ x x x j

N N×∈ℜK , defined 
as follows: 

,′=K ΦΦ  ( ) ( )1 .N
′⎡ ⎤= ⎣ ⎦Φ φ x φ x                     (2) 
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The entries of this last matrix are the cross inner 
products of all mapped predictor vectors, ( ){ }

1

N

i i=
φ x . 

As in the PLS method, it is assumed here a non-
linear KPLS model with zero mean. To center the 
mapped data in the high-dimensional space, , matrix 
K should be substituted by the centered matrix 

cℜ
K , 

given by:  
′= = − − +K ΦΦ K KE EK EKE ,                  (3) 

where E is a matrix with unitary entries, and K  and Φ  
are the centered versions of K and . Φ
  
 Now, from matrices K  and 

, the training KPLS algorithm is 
derived as a sequence of modified NIPALS steps, as 
follows (Rosipal and Trejo, 2001): 

[ ]1, , N p
N

×′ ∈ℜY= y y

First, set the index a=1, 1 =K K  and . Then: 1 =Y Y
1. Set the vector of Ya-scores N

a ∈ℜu  as the 
maximum-variance column of aY . 

2. Calculate the vector of aΦ -scores N
a ∈ℜt  as: 

,a a a a a a= ←t K u t t t   
3. Regress columns of Ya on ta: ,a a a′=c Y t where 

ca is a weight vector. 
4. Calculate the new score vector ua for Ya as: 

,a a a a a a= ←u Y c u u u  
5. Repeat steps 2-3 until convergence of ta. 
6. Deflate the matrices: 

( ) ( )1

1

,
,

a a a a a a  
a a a a a

+

+

′ ′← − −

′← −

K I t t K I t t
Y Y t t Y

7. Set a=a+1 and return to step 1. Stop when 
a>A, where A is the number of latent variables 
selected in the high-dimensional space, cℜ . 

 
 Notice that the selection of A is determined by 
supervising the deflation of Ya.  Again, as in linear PLS, 
the prediction on training data has the following from 
(Rosipal and Trejo, 2001): 

( )
( )

1

1

ˆ

,

PLS

−

−

′ ′ ′= =

′ ′ ′= =

Y ΦB ΦΦ U T KU T Y

KU T KU T Y TT Y TC′=
      (4) 

where the matrices ,  and 
 are orthogonal by columns. Notice that the 

regression coefficient matrix 

1[ ... ]A=T t t 1[ ... ]A=U u u

1[ ... ]A=C c c

PLSB  exists but is never 
computed by the KPLS algorithm, since the kernel 
substitution avoids the necessity of an explicit 
computation.  
 Equality (4) shows that the output response can be 
obtained from the inner products of the mapped 
predictor vectors. So, for a new observation x  of the 
predictor vector, the response vector will be given by: 

( ) ( ) 1
ˆ

,
PLS

−′′ ′ ′= =

′ ′ ′= =

y φ x B k U T KU T Y

k RC k M

where k  is the vector of centered kernel functions 
evaluated in the pairs (x, xj) with j=1,…,N. From Eq. 
(3), this vector is given by: 

 

( ) ( )1 ,Nk k ′⎡ ⎤= = − −⎣ ⎦k x x k Ke Ek EKe+

∈ℜ

        (6) 
 
where e is an unitary vector  and 

 is the kernel functions 
vector, where the element j is given by the kernel 
function evaluated at (x, xj), i.e. 

( ) ( )1
N N

Nk k ×′⎡ ⎤= ⎣ ⎦k x x

( ) ( ),j jk k=x x x . 

Each of the elements of vector k  is computed as 
follows: 

( ) ( ) ( ) ( )

( )
1

2
1 1

2, ,

1 ,

N

j j
j

N N

j n
j n

k k k k
N

k
N

=

= =

= = −

+

∑

∑∑

x x x x x x

x x

,j x
          (7) 

Now, we focus our attention on the latent vectors 
A∈ℜt . From Eq. (4), it follows that for a new 

observation , this vector will be given by: x

[ ]1 ,At t ′′ ′= =t k R                              (8) 

where at a′= k r  a=1,....A, with [ ]1 A=R r r .  
Therefore, for a new observation , the prediction can 
be computed from t , as (Eq. (5)): 

x

 
ˆ ′ ′ ′=y t C .                                    (9) 

 Now, given a new measurement predictor vector  
in original units, the response vector (also in original 
units) is predicted by:  

x

          ( )1ˆ ( )−′= − +y xy D M k D x x y ,               (10)               
where the sample standard deviations 

1
ˆ ˆ( ... )

mx xdiag σ σ=xD , 
1

ˆ ˆ( ... )
py ydiag σ σ=yD , and the 

means x , y , are determined in the training procedure. 
 
3. KPLS-BASED MODELING FOR PROCESS 

MONITORING 
The Kernel PLS algorithm induces an external model 
which decomposes Φ  and Y in score vectors ta, weight 
vectors (pa and ca), and residual error matrices (Φ  and 
Y ), as follows: 

 
          ,′= +Φ TP Φ                                   (11) 

,′= +Y TC Y                                   (12) 
 
In agreement with the standard linear PLS model 
(Godoy et al, 2011) it is assumed that the score 
variables ta are good predictor of Y. Furthermore, it is 
also assumed a linear inner relation between the scores 
of ta and ua, that is, 

 ′
              (5) ,= +U TB H                                   (13) 
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where B is the A×A diagonal matrix and H denotes the 
matrix of residuals. Equivalently, we have 

, where  with Q 
orthonormal by columns. Then, the following 
regression kernel-based model is obtained: 

1 1− −− =UB HB T ′ =C BQ

where ′ ′= =P ΦT ΦKR , with P and V orthogonal by 
columns. The oblique projections that appear in Eq. 
(16), decompose the high-dimensional space, cℜ , into 
two complementary subspaces MW  and RW , i.e. 

c
M RW W⊕ ≡ℜ  (Godoy et al, 2011). Matrix ′PV  is the 

projector onto the model subspace 
{ } c

MW Span≡ ⊆ℜP , along the residual subspace 

{ } c
RW Span ⊥
≡ ⊆ℜV  direction (Godoy et al, 2011), 

where ⊥  denotes the orthogonal complement of the 
subspace (notice that range of P is WM and the null-
space is WR). Hence, mapped predictor space is 
decomposed in an underlying form, by KPLS, into 
complementary oblique subspaces. 

′

 
1

2 1

1 2

,−′ ′= + + = + +

′= + +

Y KRC HB C Y Y Y Y

Y TC Y Y

2  (14) 

 
where 1= +Y Y Y2 . We call V the pseudo-inverse of 

 ( ); then, the prediction of T is 
directly obtained from Eq. (11), as:  
′P ′ ′= =V P P V I

 
=T ΦV ,                                  (15)  In addition, if we generalize the results of Godoy et 

al (2011) for the case KPLS, response space is also 
decomposed (by KPLS) in complementary oblique 
subspaces, which is related with the predictor modeled 
subspace according to: 

 
because the row space of Φ  belongs to the null-space 
of the linear transformation ′P , i.e. =ΦV 0  (Godoy et 
al, 2011). If  is the compact singular 
value decomposition (SVD) of , then 

A A A′ =P W Σ V′
′P

1( ) A A A
− −′ =V P V Σ W

 
*

2ˆ p= + ∈y y y , 
′ 1 where −  denote a generalized 

inverse (Meyer, 2000). Equivalently, from Eq. (14), D 
is the pseudo-inverse of  (′C ′ ′= =C D D C I ) and, since 

, then: . 2 0=Y D 1−+ =T HB YD

{ }*ˆ MYS Span′= ∈ ≡y CD y C ,              

                 ( ) {2 RYS Span }⊥′= − ∈ ≡y I CD y D        (17) 

                             *
1ˆ ˆ ,= +y y y  

An interesting point of the propose procedure is that the 
matrices V, P, B and Q will never be estimated 
(otherwise it would be impractical). They are only 
defined to develop the proof that follows, in order to 
find metrics based on kernel substitution trick. 

ˆ ( ) MYS′= ∈y CR k x , 
                 *

1 ˆ ˆ ( ) MYS′ ′= − = − ∈y y y CD y CR k x       (18) 
 

Figure 1 illustrates part of underlying space 
decomposition developed in this work. Each mapped 
measurement vector is decomposed and their 
projections are compared with their control limits. 

 
3.1. Underlying KPLS decomposition of the input 

mapped and output spaces 
  
4. PROCESS MONITORING BASED ON KPLS After synthesizing an in-control KPLS model, the 

measurement vectors ( ) c∈ ℜφ x  and  are 
(underlying) decomposed as described below. 

p∈ℜy 4.1. Fault detection indexes 
 
 The multivariate process monitoring strategy uses 
statistical indexes associated to different subspaces for 
fault detection purposes. Based on the in-control KPLS 
model it can be analyzed every future behavior of the 
process by mapping the new observations  to the 
modeled subspace and to the (complementary) residual 
subspace, 

x

( ) ( )ˆ +x φ x φ x . In each of these subspaces 
it is possible to measure distances, independently. 
However, since no explicit formulas are available for 
the projections of Eq. (16), it must be found new 
statistics using the kernel substitution to obtain 
(estimated) norms for the projected vectors.  

 
First the latent vector is computes as 

( )′′ =k R φ x V t′=  (see Eq. 15), where [ ]1 A=V v v  is 
the matrix of PLS components, given by 

( )
1

N

a j
j
α

=

=∑v φ x j  with jα ∈ℜ . Then, a new mapped 

vector ( )φ x  (associated to the measurements x) can be 
decomposed as: 

 
( ) ( ) ( )
( ) ( )
( ) ( ) ( )

ˆ

ˆ

c

c
M

c
R

W

W

= + ∈ ℜ

′= = ∈ ⊆

′= − ∈ ⊆ℜ

φ x φ x φ x

φ x PV φ x Pt

φ x I PV φ x

 
ℜ            (16) 
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Figure 1: KPLS intrinsic architecture showing the input underlying decomposition with their relations and control limits. 
 
 For instance, to detect a significant change in WM, 
the following Hotelling’s T2 statistic for t is defined: 

 
( )2 1 ( 1)tT N−′= = −x tΛ t k R′ ′R k ,              (19) 

 
where . 1 1( 1) ( 1)N N− −′= − = −Λ T T I

When a new special event (originally not 
considered by the in-control KPLS model) occurs, the 
new mapped observation ( )φ x  will move out from WM, 
into WR. The squared prediction error of ( )φ  (SPEX), 
or distance to the 

x
( )φ -model, is defined as: x

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

2 2

ˆ ˆ ˆ2

, 2

XSPE

k

′= = −

′ ′= − +

′ ′= − +

x φ x φ x PV φ x

φ x φ x φ x φ x φ x φ x

x x k KRt t t

′  

(20)  
 

where ( ) ( ) ( ) ( )ˆ′ ′ ′ ′ ′= = =φ x φ x φ x Pt φ x Φ KRt k KRt . 
Then, SPEX can be used for detecting a change in WR. 
When the process is in-control, the SPEX index 
represents the fluctuations that can not be explained by 
the KPLS model.  The distance from the 
regression model in SMY is defined as: 

 

[ ]
2

2
1 1 ( )YSPE

⎡ ⎤
′ ′= = − ⎢ ⎥

⎣ ⎦

y
y CD CR

k x
        (21) 

 
and the distance from the y-model in SRY is defined as: 

 

( ) 22
2 2YSPE ′= = −y I CD y   (22) 

 

Frequently, φ̂R  and  are singular. Then, the ŷR

generalized Mahalanobis’ distance for φ̂  and y  are: ˆ
 

ˆ ˆ
ˆD −′=φ φφ R φ̂

ˆ

,   (23) 

ˆ ˆˆD −′=y yy R y .   (24) 
 
where the correlation matrices are given by: 
 

( ) 1
ˆ

1 1

ˆ ˆ1

( 1) ( 1)

N

N N

−

− −

′= −

⎡ ⎤′ ′ ′= − = −⎣ ⎦

yR Y Y

C T T C CC
        (25) 

1
ˆ

1 1

ˆ ˆ( 1)

( 1) ( 1)

N

N N

−

− −

′= −

′ ′ ′= − = −
φR ΦΦ

PT TP PP
             (26) 

 
Since C is orthogonal by columns, the property of the 
generalized inverse of a SVD yields: 

( )1
ˆ ( 1) ( 1)N N

−
− −⎡ ⎤ ′ ′= − = −⎣ ⎦yR C I C CC . Then, replacing 

this and Eq. (9) into the Eq. (24), result the following 
equality: 
 

2
ˆ ˆˆ ˆ (( 1) ) ( 1) tD N N−′ ′ ′ ′ ′ T= = − = − =y yy R y t C CC Ct t t . (27) 

 
Similarly, ˆ ( 1)N− ′= −φR PP (see Eq. 26). Then, result: 
 

[ ] 2
ˆ ˆ

ˆ ˆ( 1) ( 1) tD N N T′ ′ ′= − = − = = yφ φ PP φ t t D .      (28) 
 
and consequently, the metrics on ˆ ( )φ x ,  or  are 
equivalents.  

t ŷ

 Hence, the process output (quality variables) can be 
monitored through a PLSR-based input statistic. Then,  
we propose monitoring using four non-overlapped 
metrics (SPEX, Tt

2, SPEY1, and SPEY2) which completely 

m∈ℜx
 

High-dimension Space 
( )c m  

( ) ( )ˆ , A
MW′= = ∈ ∈ ℜφ x PV φ x Pt t

 
Mapeo, ( ).φ  

Projection  
onto WM 

Linear 
Transformation 
C 

ℜm 
ℜc 

p
OW ⊆ℜ

c
MW ⊆ℜ

c
RW ⊆ℜ

 

 

Residual Subspace

( ) ( ) ( ) RW′= − ∈φ x I PV φ x  

Input Space 

Projection 
onto WR 

Model Subspace

Output Subspace,

( )ˆˆ OW′= = ∈y B φ x Ct( ) c∈ℜφ x  

Paired predictors { } 1

N
i i=

x  

( )ˆ i i=y f xNon-linear function approximation,  

In-control set { }N

1i i=
y  
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cover both measurement spaces, each one on a different 
subspace. 

 
4.2. Fault diagnosis by means of alarmed subspaces 

An anomaly is a change in the measurements 
following or not the correlation structure captured by 
the PLSR model. If the change produces an out-of-
control point, the anomaly source can be classified 
according to a) an excessively large operation change of 
the normal operation; b) a significant increase of 
variability; c) the alteration of cross-correlations, and d) 
sensor faults. Cases a) and b) involve changes in the 
measurement vector following the modeled correlation 
structure; while cases c) and d) involve changes in some 
variables altering the correlation pattern with the others. 
In fact, an abnormal process behavior involves a 
deviation of the modeled correlations, thus increasing 
the value of the proper metric being used. In order to 
classify the abnormalities, we analyze the effect on each 
subspace (see Table 1). Rows 1), 2), 3) and 6) feature 
complex process changes; while rows 4) and 5) 
represent localized sensor faults. By analyzing the 
contributions to an alarmed index (Alcala and Qin, 
2011), such as SPEX (or SPEY), it could be possible to 
discriminate changes in the X- / Y-outer part against 
sensor fault in x / y (see this ambiguity in Table 1).  

In summary, the proposed monitoring strategy is 
based on an input and output space PLS decomposition, 
which classifies the type of process fault or anomaly 
according to the statistic that triggers the alarm 
condition. 
 

Table 1. Fault diagnosis based on alarmed index. 
Fault/Anomaly in SPEX Tt

2 SPEY1 SPEY2 
1- Inner part, dB − − × − 
2- X outer part, dP × − o − 
3- Y outer part, dQ − − o × 
4- x sensor × − o − 
5- y sensor − − o × 
6- latent space upset − × − − 

×: high value. −: negligible value. o: high/low value.  
 
5. APPLICATION STUDY 
5.1. A Non-linear Numerical Simulation Example  

A simulated case study is used to evaluate the 
performance of the proposed monitoring technique for a 
variety of fault scenarios. To understand the implicit 
decompositions and statistics as monitoring tools, we 
simulated different faults in a synthetic system. We use 
the nonlinear multidimensional simulation example 
devised in Refs. Zhang et al (2008) and Zhao et al 
(2006). It is defined as follows: 

 

( )

( )

2
1 1

2 2

3
3 3

2
1 1 2 3

1 ,
sin ,

,

3cos

x t t
x t

x t t

y x x x x

ε

ε

ε

where t is uniformly distributed over [-1, 1] and εi, 
i=1,2,3,4 are noise components uniformly distributed 
over [-0.1, 0.1]. The generated data of 300 samples are 
segmented into training and testing data sets. They are 
illustrated in the Fig. 2. The first 200 samples are 
selected for training, and the subsequent 100 samples 
are used as testing data set. It is apparent that the input 
variables are driven by one latent variable t only in this 
case. From Fig. 2, we can easily see that the response 
variable is nonlinearly correlated with the input 
variables. In this work, we used the radial basis kernel, 

( ) ( )2
, expi j i jk = − −x x x x h , in our implementation. 

When using this kernel function the value of parameter 
h=2σ2=0.06 (σ=0.1732) has a significant influence on 
the KPLS prediction performance (Zhang et al, 2008).  
 The mean squared error (MSE) is used to evaluate 
the estimator. Figure 3a show the % 100RMSE MSE=  
(standard error) for each a component using training 
data or testing data (or external validation data). Notice 
that MSE(a) refers to MSE when the first a latent 
variables are used. The selection of an adequate number 
A of latent variables to be included in the KPLS model 
is crucial; if more than necessary variables are used, an 
undesirable over-fitting might reduce the predictive 
ability. We use the Wold's R0.9 rule, which can be 
written as R(a+1) = MSE(a+1))/MSE(a). For successive 
a values, the sequence is stopped when R(a+1)>0.9; and 
hence A=a. Conceptually, this criterion states that an 
additional latent variable will not be included in the 
KPLS model unless it provides a meaningful prediction 
improvement, and consequently it gives the maximum 
number on components to be included in the model. 
Figure 3b show the above indicator vs. the number of 
components for training data and testing data. The ratio 
for training data is larger than 0.9 in a+1=12, hence the 
most parsimonious model corresponds to A=11 (Zhang 
et al 2008). The same ratio with testing data is for 
monitor overtraining when is selecting a reliable A 
value. Figures 4 show the prediction results of the 
training and testing data using the Eq. 10. The upper 
part of Figure 4 shows the actual and predicted values, 
and the lower part shows the errors between both 
values.  
 Six faults were simulated, which are described in 
the Table 3. Table 1 shows the diagnosis expected in 
each simulated fault/anomaly. Figure 5 shows the time 
evolution of each statistic normalized by its control 
limit, which clearly exhibit the six simulated 
abnormalities, where it is possible to detect and classify 
each type of simulated fault, on the basis of the 
information given in Table 1. Since y ∈ ℜ1 (is not 
multivariable), then SPEY2 ≡ 0 and 2

1 ˆYSPE y y= − . 
Hence, the y-sensor fault will occur in SPEY1 (see Table 
1). The simulation results show that the developed 
strategy is able to identify abnormalities attributed to 
sensor faults, process changes, process upsets and 
disturbances. The model supporting this monitoring 
approach is based on normal operating data. Process 4ε

= − + +

= +

= + +

= + + +
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data recollection constitutes a critical step when 
developing empirical models for monitoring. 
 

 
Figure 2. Relationship between inputs and the response. 
 

 
Figure 3. KPLS Model order determination. a) Residual 
error variance vs. number of latent variables. b) Ratio of 
residual error variances successive. 
 

 
Figure 4. Prediction results via KPLS method. 
  

Table 3: Simulated fault scenarios. 
Type Samples Magnitude Diagnosis 

4 20..30 dx1 = -1.5 2/4 
4 50..60 dx2 = 1.5       2/4 
4 80..90 dx3 = 1.5  2/4 

2 110..120 
3

1 13 1x t t ε= − + +  2/4 

6 140..150 t = 1.01  (fixed)   6 
5 170..180 dy = 1.5 5 

 
Figure 5: Time evolution of the combined index and 
each normalized KPLS-statistic. 
 
6. CONCLUSIONS AND FUTURE WORKS 
Many multivariate process monitoring systems could be 
based on a non-linear KPLS model that represents ‘in-
control’ conditions. As in more traditional, a 
meaningful deviation of the variables from their 
expected trajectories serves for the detection and 
diagnosis of abnormal process behaviors. The results of 
a non-linear simulation example illustrates that the 
proposed strategy is efficient and accurate.  

However, these results are preliminary, more 
realistic applications are necessary for a reliable 
validating of the method and to learn more about the 
proposed non-linear strategy. 
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