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ABSTRACT

Stability analysis continues to be a major chakeng
the haptic field. This paper addresses the issue of
stability for haptic interfaces in contact with &twal
wall. The feedback contact force is calculated fithie
impedance-based virtual environment model including
linear stiffness and a damping. A mechanical model
includes two vibration modes used to characteitiee t
overall device dynamics. Their effects on the ditgbi
and those of the time delay are examined. Thelgyabi
boundary is derived from a sampled data model ef th
haptic interface by the gain margin method.

Keywords: Haptic device, Stability region, Time agl
Vibration mode

1. INTRODUCTION

Haptic system includes the human operator and the
haptic interface, c.f. Fig.1. Haptic interface iket
robotic system that allows human operator to
manipulate objects in a Virtual Environment (VE) &y
haptic device with the sense of touch and the kimetie
perception.

Hapticsystem

Haptic interface

Human operator

Virtualenvironment

Hapticdevice

Figure 1: Parts of a haptic system

However, unlike robot manipulators, the haptic
interfaces should have both high force renderindg an
maximum dynamic transparency (low inertia, low
friction, etc.). Therefore, the stability of a hiapt
interface is a key issue. Any unstable behaviosiragi
during the dynamic interaction can damage the bapti
device or injure the human operator.

Nowadays, there are two main approaches to study
the stability of a haptic system. In the first apgch
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(Gil and al. 2004; Diolaiti and al. 2006; Hulin aadl
2006; Hulin and al. 2008), the haptic system is
described by a sampled-data model; the VE is seen a
virtual impedance characterized by a linear spand a
damper. The stability region is represented by the
stability boundaries in the stiffness-damping piéithe
virtual impedance. The influence of parameters agh
physical damping and time delay on the stability
boundaries is evaluated through the transfer fancti
The human hand impedance can be included in the
model to study the human dynamic effects. In the
second approach, the two-port network theory idiegp

to separate the virtual environment and the human
operator into two independent parts (Colgate araMBr
1994; Colgate and Schenkel 1997; Adams and
Hannaford 1998; Adams and al. 1998; Adams and
Hannaford 1999; Adams and Hannaford 2002). Then,
the virtual coupling is used and the stability rsered
through the passivity or unconditional stabilityteria.

There are a lot of works concerning the interaction
of the human operator, the haptic device and theali
environment. However, there still remain many
challenges such as expanding the boundary of #abil
region, modeling the human operator, designing the
control law, etc. In previous studies, the hap@wide
was modeled as a mechanical system including a mass
and a physical damper. The existence of vibration
modes in the haptic device has been studied recentl
(Diaz and Gil 2008; Diaz and Gil 2008), but these
works have not fully explained the influence of the
vibration mode parameters.

The contribution of this paper consists in analgzin
the mechanical frequency effects of the haptic acEsi
vibration modes and the time delay influence on the
interface stability based on the first approache Th
results are carried out on the physical parametietise
PHANTOM® haptic device.

2. HAPTIC DEVICE MODELING

In previous studies, a rigid model of haptic devise
used to analyze the stability. In this paper, tleste
deformations are considered in the mechanical
transmission between motor and human hand.
Consequently, the resulting vibration modes canifpod



the stability boundaries. That's why a more conwlet
model of haptic device with two most significant
vibration modes is shown in fig.2. These vibration
modes result from 1) the elastic joint betweenrttogor
(position X;) and the link shaft (positionXand 2) the
flexible link between the shaft and the tip (pasitiXs).
The motor applies a force and the human hand laid
on the link tip applies a force,FWith the mechanical
parameters pointed out on fig.2, the linear model loe
derived in Laplace domain as:

(Ms* +Bs+K X (s) =F (s) (1)

with the position and force vector and the mass,
damping and stiffness matrices, respectively:

X(8) =[Xy(8) X,(8) Xo(s]' (2)
F(s) =[R(S)F, (s]' (3)
M(s) = diag(m,m,,m, ) (4)
bcl + b1 _bcl 0
B(S) = _bcl bcl + bcz + b2 _bcz (5)
0 _bcz bcz + b3
kcl _kcl 0
K(s) =] Ky kytk, —K, (6)
0 _kcz kcz

The relationship between output positions and
input forces is presented on the form of a transfer
function matrix:

X(s) =G(g)F(s) (7
with:
Gu(s) Gy (9)
G(9=[Gu(s) G, (5)=(M+Bs+K )" (®)
Gu(s) Gy (s
Consequently, haptic device’s dynamic

characteristic is described by six transfer furmio

Gii(s), Gin(s). Gau(s), Guls), Guls), G(s)- These

functions have the same denominator. The transfer
function G4(s) can be rewritten as following:

G1(8) =G, (9).G;1(5)G; ,(5)

-1
Gr(S)_m52+bs
W (S*+c s+ W) 9)
G (S): rl
W L(s+C st W)
sz(s):wrzz-(sz"'c S+W2)

W:Z'(S2 +Cr2'S+Wr2)
wherem andc are the total mass and the total viscous
friction parameters of the devicay, and ¢, (i = 1,2)

235

are the parameters of tH& riesonant modew, and c,
are the parameters of tHedntiresonant mode.

U Human hand

Flexible link _ X, Flexible joint

by b, b,
Figure 2: Haptic device model with two vibration
modes

The resonant and anti-resonant frequencies are
indexed byr anda, respectively. @&s), Gi(s) and G&(s)
are the transfer functions of the rigid mode, thet f
vibration mode and the second vibration mode of the
haptic device, respectively. The physical paransetér
the PHANTOM haptic device are given in Table 1.

Table 1 (Gil and al. 2010): Physical parameters of the

PHANTOM
Parameter | Variable ‘ Value
First vibration mode
Inertia m 1.168 grh
Physical damping b 0.0054 Nms/rad

Anti-resonant frequency M 417.612 rad/s

Damping coefficient & 80 Nms/rad

Resonant frequency AV 479.166 rad/s

Damping coefficient € 83 Nms/rad

Second vibration mode

Anti-resonant frequency W 546.626 rad/s

Damping coefficient & 90 Nms/rad

Resonant frequency W 1159.31 rad/s

Damping coefficient 6 352 Nms/rad

3. METHODOLOGY

In order to study the stability of haptic interface
dynamic model including different parts is estaigid.
The more critical case for haptic interface stapili
occurs when the manipulated object is in contath &i
virtual wall. Impedance-based virtual environmeot f
constrained motion is a coupling system including
linear spring with virtual stiffness (K) and a wal
damping coefficient (B). The actuator position
measured by an encoder. The resulting forgeisF
calculated from this impedance model. It is assumed
that some nonlinear phenomena (like sensor reealuti
actuator saturations, etc.) are negligible. In ipaldr,
dry friction and sensor quantization can be igndiai



and al. 2007). The sampling and the time delay tdue
the computer part (controller, virtual environment
computation, and communication) are included in the
haptic interface model. With the sampling procesd a
the zero-order holder (ZOH), the overall model is a
hybrid one with both continuous and discrete foaif,
Fig.3.

Fo X,
G

Fl Xl

{-1

ZOH ‘
[ Time delay Virtualenvironment

i
Tz

Figure 3: Dynamic model of haptic interface

H(s)=

1_g T
s

From (2), the output positioiX; can be written:

X(8) = Gyy(8)-Fy(8) + G4, (5)-F;, (8) (10)

Combining to the dynamic model in Fig.3, the
discrete form of the sampled positiofy (z) becomes:

Z[G,,(9).F, (9)]

X/ (2) = 1+D(2)G; (2)Z[G,, (5)H ()]

11)

where Z[.] denotes the Z-transform operation of a
transfer function within brackets, and * designed a
discrete-time signal. The virtual interface:(@, the
ZOH H(s) and the time delay D(z) are formulated as:

1_e-T.S

G (2) = k+B. 22 ,H(s) = , D(2) =7 (12)
T.z

Notice thatT is the sampling period andl is the
time delay ratio ¢=Ty/T, with Ty the total time delay).
The haptic interface stability depends on the foilig
characteristic equation:

1+D(2)G (2)Z[G,,(5)H (5) = 0 (13)
Equation (13) can be rewritten as following:
D(2).z H
1+K. Z(_Zl) [CueHE] (14)
1+B. e D(z)Z[G, (6)H 6)
Therefore, the stability boundary obtained by

calculating the gain margin ., of the transfer
function is defined by (Gil and al. 2007):

D(2).Z[G,(s)H (s)]

z—

& (15)
TP 2)Z[G,, 5)H 6))

=Gm

critical

1+B.
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where Gm{.} represents the gain margin of the tfans
function within brackets. Matldbis used to compute
the gain margin. This method is very useful to
reconstruct the stability boundaries of haptic rifstees
even if their transfer functions are very complex.

In the following parts, the gain margin method is
used to find the stability boundaries for differeatues
of the time delay and the anti-resonant frequefitye
presented results are based on the physical paemet
of the PHANTOM (cf. Table 1).

4. TIME DELAY INFLUENCE

Stability boundaries of the haptic interface mothelt
includes two vibration modes can be found for défe
time-delay values by calculating (15) over a raofe
virtual damping values. The results for some tiratag
ratio values ¢=0, 1, 2, 4, 8) are shown in fig.4, with a
sampling period equalsto T =1 ms.
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Figure 4: Sability boundaries of haptic interface model
with two vibration modes for different time delay values

Let us denot&,,(B,d) the stability boundary that
is the maximal value df for which the system is stable
for a given virtual damping coefficie® and a given
time delayd. As it can be intuitively guessed, the

maximal value K™ (d) = mBameax(B,d) is a decrea-

sing function of the time-delay value. This fachdae
explained by the reduction of the phase crossover
frequency (frequency at which the phase is
-180°) in the Bode diagram of Z[&s).H(s)].D(z), cf.
Fig.5. However, the stability region doesn’t always
decrease for rising time delay value. It is inténgsto

find that the stability region with a time delay4émMms is
larger along theB axis than the stability regions with
2ms and 8ms. This behavior is explained by intraayc
the notion ofcritical frequency, denoted g, which is
defined as the maximal value of the phase crossover
frequency. Obviously, the higher the critical freqay

is, the larger the stability region is, cf. Fig.4 Fg.6.
These results are completely consistent with the
experimental results shown by Gil and al. 2010, rehe



the critical frequency values of the PHANTOM were
experimentally obtained by using the relay method.

Magnitude (dB)

Phase (deg)

aacaa
ISV
/

Frequency (rad/sec)
Figure 5: Bode diagram of Z[ G11(s).H(s)] .D(2) for
different time delay values
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Figure 6: Phase crossover frequencies for different time
delay values

5. ANTI-RESONANT FREQUENCY EFFECT

The linear model parameters of the PHANTOM haptic
device including the two most significant vibration
modes were given in the Table 1. The theoreticaleBo
diagram of this device is shown in fig.7.

wr2=1159.31rad/s

wrl=479.166rad/s

Magnitude (d8)
8

wal=417.6: I/
wal=417.612rad/s Wa2=546.626rad/s
I

Phase (deg)

Frequency (rad/sec)

Figure 7: Theoretical Bode diagram of the PHANTOM
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In the next sections, the anti-resonant frequency
effects of each vibration mode are examined. Olshou
the other physical parameters are considered to be
constant.

5.1. Effect of the first vibration mode

In this part, the anti-resonant frequency effecttlod
first vibration mode on the haptic interface stigpils
examined. This frequency has to satisfy the cooliti
(16), which allows assuring the distinction of two
vibration modes as seen in fig.7. The others patense
are given in Table 1.

0<w, <w,=479.166 rad, (16)

The figure 8 shows the stability boundaries of the
haptic interface with the time delay ratd = 1
(T=T=1ms) for some of different anti-resonant
frequency values of the first vibration mode. The
stability region shape changes when the anti-regona
frequency rises in the range of the condition (F8pm
the Bode diagram of the transfer function
Z[G14(s).H(s)].Z", as seen in fig.9, it is obvious that the
phase crossover frequency changes from the riget si
to the left side of the first vibration mode.
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Figure 8: Sability boundaries for different values of wy,
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Figure 9: Bode diagram of Z[ Gy(s).H(s)] .z* for
different values of wy,



These studies shown out the existence of a
transition frequency at which there is a quali@tiv
modification of the phase crossover frequency ie th
Bode diagram, and so that, it changes the stability
region shape. As seen in Figs. 10 and 11, thisitian
frequency, denoted A is in the range of
264rad/s<w<265rad/s. For w<264rad/s, the stability
region increases when the anti-resonant frequeiseg r
in this range; the phase crossover frequency iatéac
on the right side of the first vibration mode arepednds
very slightly on w, For 265radfsw,<479.166rad/s,
the phase crossover frequency jumps to the leé sfd
the first vibration mode; the stability region has
reverse V-shape including two parts: the part 1
corresponding with small values @, the stability
region decreases along th&-axe, the part 2
corresponding with higher values &, the stability
region increases along tlBeaxe when the anti-resonant
frequency rises in its range.
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Figure 10: Sability boundaries for different values of
W, around the transition frequency Wiy.
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Figure 11: Bode diagram of Z] G,4(s).H(s)] .z* for
different values of w,; around the transition frequency
Woat1.

5.2.Second vibration mode effect

The anti-resonant frequency effect of the second
vibration mode on the haptic interface stability is
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studied with the condition (17) in order to assthe
distinction of two vibration modes as seen in FigThe
others parameters can be found in Table 1.

w,=479.166rad/s <y <y =1159.31ra a7)

As shown in Figs. 12-13, although the phase
crossover frequencies in the Bode diagram of the
transfer function Z[G(s).H(s)].z* are always located
on the left side of two vibration modes, the siapil
regions of the haptic interface with the time delfato
d=1 (T=T=1ms) for some of anti-resonant frequency
values of the second vibration mode are very difier
shapes.
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Figure 12: Bode diagram of Z[G(s).H(s)].Z*
different values of w,,
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Figure 13: Stability boundaries for different values of
Wa2

0.8

Obviously, for small values oB, the stability
region is most linear and decreases gradually albeg
K-axe with the increasing values ofcf. Fig. 14). It
is noteworthy that this linear region can be expdi by
the Bode diagram of the transfer function
Z[G11(s).H(s)].Z. The larger linear stability region
corresponds with the bigger value of the phase
crossover frequency (cf. Fig. 15).
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Figure 14: Partial view of the stability regions for
different values of w,,

6. CONCLUSIONS

This paper has introduced an overview on the stabil
analysis with respect to the time delay and the fivgd
vibration modes of the haptic interface model. The
impedance model has been used to compute the force
feedback including a virtual stiffness and a vittua
damping. The stability boundaries of both virtual
parameters have been derived from a sampled-data
model with the gain margin method. The stability
analysis is based on the linear model with two atiion

o0Ft—-——-——-—-—-T-—-—————Y———-"L - —————

wa2=700rad/s
wa2=750rad/s -
wa2=900rad/s
wa2=950rad/s -
wa2=1000rad/s
8| wa2=1159rad/s N

Magnitude (dB)

Phase (deg)

Frequency (rad/sec)
Figure 15: Partial view of the Bode diagram of
Z[Gu(s).H(s)].Zz* for different values of w,, (the left
side of two vibration modes)

modes of a haptic device and the effects on stabi

each mode have been detailed. The presented results

allow us to conclude that the haptic device’s iiora
modes have an intricate effect on the interfachiléta
The analysis of the anti-resonant frequency efieads
to explanations about qualitative modification of
stability boundaries. These results may provide esom
basic engineering guidelines in choosing design
specifications of a haptic system.

Haptic devices have stability limitations that can
be overcome by incorporing feedback controllers or
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signals shapers (Kuchenbecker 2006). While the
uncertainties on model parameters is a key issue fo
flexible mechanism (Dieulot and Colas 2009), robust
control design can play an important role in haptic
interface design.
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