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ABSTRACT 
Stationary process gains are critical model parameters 
to determine targets in commercial MPC technologies. 
Consequently, important savings can be reached by 
acceding to an early prevention system capable of 
indicating when the actual process moves away from 
the modeled dynamics, particularly when the actual 
process gains are no more represented by those included 
in the model identified during commissioning stages. A 
subspace identification method is used here to 
determine the state-space model matrices that help to 
define a gain matrix estimator. The pursued goal is a 
monitoring method capable to identify those gains of a 
multivariable model that start a mismatching condition, 
or that show tendencies to change already known 
mismatches with the actual process. The anticipated 
knowledge of these events should prevent process 
engineers about the eventual reliability of targeting 
optimal process conditions with wrong gain estimations, 
and thus, help to localize the dynamic relationships for 
which an updating identification would be necessary.  
 
Keywords: Steady-State Gains, Multivariable 
Estimator, Subspace Identification, LP-MPC  

 
1. INTRODUCTION 
Model predictive control (MPC) has a wide application 
in the chemical process industry and other industrial 
sectors. Commercial MPC systems are typically 
implemented in conjunction with a steady-state linear 
(LP) or quadratic programming (QP) optimizers (Ying 
and Joseph 1999), whose main function is to track the 
economic optimum and provide feasible set-points or 
targets to the predictive controller. However, despite the 
widespread adoption of these two-level control systems, 
occurrences of poor performance have been reported. A 
frequent claim has been that model mismatches lead the 
operation away from the real optimum, and that large 
variations in the computed input and output targets have 
been observed (Nikandrov and Swartz, 2009). Since the 
stationary process gains are critical model parameters to 
determine the MPC targets, important savings can be 
obtained by acceding to an early prevention system 
capable to indicate when the actual process moves away 
from the modeled behavior, particularly by indicating 
when the actual process gains are no more represented 
by those included in the model identified during early 
commissioning stages.  

This work is the first stage of a research project 
attempting to contribute to the development of a method 
for the online estimation of multivariable process gains 
directly from row data, and creating the basis for a 
monitoring tool capable of detecting significant gain 
changes, particularly when working simultaneously 
with multivariable control applications like the 
combined LP (or QP) and MPC. The analysis presented 
here is still far from the final goal but highlights 
questions and dificulties that need to be answered and 
overcome to obtain the reliable estimations.  

This paper is organized as follows: after the short 
introduction exposing the motivations and goals of this 
project, the subspace identification method is described 
in Section 2. The gain matrix estimator is defined in 
Section 3 base on the state space model matrices and 
Section 4 comments about monitoring alternatives for 
multivariable cases; however, the simpler Shewhart 
chart strategy was adopted for a closer inspection of the 
individual estimations. In Section 5, some simulation 
results are presented and the conclusions are given in 
Section 6, together with comments about future work 
associated to this subject.  

 
2. SUBSPACE IDENTIFICATION (SID) 
Early in the nineties, a new identification method for 
dynamic systems received the attention of many 
scholars and practitioners. The subspace identification 
method (SID) has the appealing feature of allowing the 
direct use of row data with scarce preprocessing needs 
and the ability of being applicable to multivariable 
process systems. Several analysis and applications were 
reported since then, to name a few: Van Overschee and 
De Moor (1996); Favoreel et al. (2000) and Katayama 
(2005).  

Most subspace approaches fall into the unification 
theorem proposed by Van Overschee and De Moor 
(1996), being the followings the three better known: 
N4SID (Van Overschee and De Moor, 1994); CVA 
(Larimore, 1990) and MOESP (Verhaegen and 
Dewilde, 1992). These algorithms can be viewed as 
singular values decompositions of a weighted matrix. 
They provide reliable state-space models of multi- 
variable LTI systems directly from input-output data 
and, do not require iterative optimization procedures; 
this basically means that there are no problems of local 
minima, convergence, or initialization. 

A main advantage of the subspace approaches is 
that preliminary or previous parameterization - a 
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complex task when dealing with MIMO systems - is not 
necessary before the identification process. Another 
advantage is the computational efficiency and 
robustness given by linear algebra tools like QR and 
SVD decompositions. 

In this paper, our goal heads mainly to the online 
identification of steady-state gains of MIMO dynamic 
systems using a standard subspace approach (Overschee 
and De Moor, 1996) where specific matrices are 
obtained from projections of subspaces generated by the 
input and output data. These projections are useful to 
eliminate noisy components. 

 
2.1. State space model  
The method considers the following stochastic state-
space model in an innovation form: 

( 1) ( ) ( ) ( )x k Ax k Bu k Ke k      (1) 
( ) ( ) ( ) ( )y k Cx k Du k e k      (2) 

where ( ) nx k   stands for a n-dimensional state, 
( ) mu k   represents the m inputs to the system, 
( ) ly k  is the l-dimensional output, K is the steady 

state Kalman gain and, ( ) le k   is an unknown 
innovation with covariance matrix  ( ) ( )R E e k e k  . 

The problem solved by the SID method can be 
described as follows: given a large enought data set 
 ,k ky u  from an unknown system, find the model order 
n, the model matrices A, B, C and D for a state-space 
representation similar to (1) and (2), and estimate K. 

 
2.2. Estimation of model matrices 
An iterative substitution of Eqns. (1) yields the 
expresión 

d s
f i f i f i fY X H U H E       (3) 

where the subscripts f and p denote future and past 
horizons respectively. The matrices li j

fY  , 
mi j

fU   and li j
fE   are the output, input and 

noise block Hankel matrices respectively. d
iH  and 

s
iH are low triangular Toeplitz matrices composed from 

the impulse responses of deterministic and stochastic 
subsystems respectively. 

Notice that the system information is mainly in the 
first term, which includes the extended observability 
matrix and the state sequence fX . Assuming the noise 

fE  is independent from the past input pU , the past 
output pY  and the future input fU , then the following 
relationship can be obtained (see Appendix A for 
nomenclature usage) 

/ .
ff U p i fY W X      (4) 

According with Van Overschee and De Moor 
(1996), this result tells the space column of i  is the 
same as the space column of /

ff U pY W , which can be 
estimated from input-output data. Then, applying 

singular value decomposition the left side can be written 
as 

1/ 2 1/ 2/
f

T T
f U pY W U SV U S S V    (5) 

from where the extended observability matrix i can 
estimated by  

1/ 2ˆ
i U S       (6) 

Once this matrix is obtained, the model matrices in (1) 
and (2) can estimated in the following order: (C, A) and 
(B, D).  

The matrix C is obtained directly from the first row 
block of i , i.e., 

 0 : 1,0 : 1iC l n    .   (7) 
The matrix A is then obtained using the invariant 

displacement property of i , this is:  

i i A   ,     (8) 

where  1l i n
i

    and  1l i n
i

    are matrices 
obtained from the last l(i-1) and the first l(i-1) row 
blocks of i  respectively. Hence, matrix A can be 
estimated by the mean squared solution as follows: 

†
i iA         (9) 

where   1† ' '
i i i i


      is a pseudo inverse matrix. 

Now, left and right multiplying Eqn. (2) by i
  

and †
fU  respectively 

† †

† †

i f f i i f f

d s
i i f f i i f f

Y U X U

H U U H E U

 

 

    

 
            (10) 

Notice ( )li n li
i
     is a complete range matrix 

satisfying . 0i i
    and †

f fU U I . Hence, assuming 
negligible noise, the above expression simplifies to 


†

( )

Data Data

d
i f f i i

li n mi

Y U H 

 

  






               (11) 

This is an over determinate system of linear equations 
where matrices B and D are the unknowns and that we 
can rewrite as follows: 

   1 2 1 2

2 3

0 0
0
0i i

i i

D
CB D

M M M L L L CAB CB

CA B CA B D 

 
 
 
 
 
 
 
 




  
   


and rearranging 



1 2 1
1

2 3
2

3 4

( )

( )
( )

0
0

0 0
0

0 0 0

i i

i
l

i

i
i

li l n

i li n m
i li n li

L L L L
M

L L L
M I D

L L
B

M
L



 

 
 






 
   
                     
   

 









     


      (12) 

where ( )li n m
kM    and ( )li n l

kL   . This system can 
then be solved with a least squared approach. 
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 Once the model matrices A, B, C and D in 
equations (1) and (2) are estimated, the process model 
gain matrix can be computed by using the estimator 
                        1ˆ ˆ ˆ ˆ ˆ(1) [ ]G C I A B D   .             (13) 

 
3. MONITORING ALGORITHMS 
Modern data acquisition allowed process control 
systems to become multivariable and provided the 
technological base to develop monitoring applications 
capable of a simultaneous surveillance of several related 
characteristics. This motivated the challenge for 
extending several single variable statistical methods to 
applications in multivariable systems. Today there are at 
least three multivariable control statistics that rise as 
extensions of previous single-variable versions: the 
statistical distance or Hotelling’s T2 proposed by 
Hotelling (1947), multivariate acumulated sum or 
MCUSUM proposed by Woodall and Ncube (1985) and 
Crosier (1988), and the multivariate exponetially 
weighted moving average MEWMA proposed by 
Lowry et al. (1992). All of them have received attention 
from the industry and the academy; thus, many authors 
and references should be mentioned for barely covering 
the later contributions. In this context, it is worth to 
recall that a main difference between the T2 statistic and 
MCUSUM or MEWMA is that the first one defines a 
sequence of hypothesis tests based just on the last 
multivariate observation while the others use a 
collection of past data of the process employing a 
different forgetting mechanism.  

Despite the fact that important algorithms like 
those mentioned above are available, the application 
example exposed in the following section emphasizes 
the inspection of plain gain estimators of a known 
multivariable linear system, with the purpose of 
highlighting main difficulties appearing during the 
block estimation through the subspace approach 
method.  

In general, monitoring systems are based on 
statistics defined such to estimate main parameters of 
the model representing the system to be watched. If the 
distribution density function of this estimator is known, 
then, a Shewhart-type control chart can be easily set by 
defining an interval with a given confidence level. 
Appendix B presents a short review of concepts 
providing fundaments to the well known two-side 
control chart of the Shewhart type. In this framework 
and considering the final motivation of this work, the 
MPC model gains would be taken as plausible 
parameter values ( 0 ) to set the hypotesis tests implicit 
in plain Shewhart control charts for monitoring 
significant changes.  
 
4. SIMULATION RESULTS 
The gain estimation method proposed here is tested by 
numerical simulation where the process plant is 
represented by the 5x3 LTI system given in Table 1. 
This arbitrary example is defined with more outputs 

than inputs becouse this is a frequent characteristic of 
actual process systems where MPC is applied.  

 

2

0.8
15 3 1s s


 

 2

4.7
10 7.8 1s s 

 2.0
9.14 1s



 

2

1.4
8 5 1s s 

 2

0.8
10 3 1s s 

 0.0 

1.5
7.5 1s 

 2

0.3
10 4 1s s


 

 2

0.9
15 10 1s s 

 

4.0
7.8 1s 

 0.0 
2.5

5 1s 
 

2

1.9
6 4 1s s 

 2

5.0
16 5 1s s 

 2

2.8
9.8 10 1s s


 

 

Table 1: Multivariable linear system used for testing the 
proposed gain estimation method. 

Like most identification procedures, the experience 
here starts by introducing a PRBS signal in the 
manipulated input variables (Gaikwad and Rivera, 
1996) as shown if Figure 1. In order to approach the 
conditions of typical signals coming from actual process 
systems, Gaussian noise is added to the output variables 
with such intensity that the noise-to-signal ratio reaches 
0.1 approximately (Huang and Kadali, 2008). The 
exciting random signals are conditioned to comply with 
the persistent excitation requirements and starting with 
a different seed for each input to avoid simultaneous 
similar sequences, i.e. to avoid correlations between 
inputs. The adopted sampling time is 2 min., but the 
estimations are calculated every 400 min only, each one 
using the last 400 observations of the input and output 
vectors. Hence, these are “moving” estimations 
calculated with 200 “new” observations and 200 “old” 
observations. This procedure was adopted to have a 
gain-matrix estimation every 6.6 hours without 
resigning a conveniently large number of observations. 

 

 
Figure 1: PRBS signals used in the input variables. 
 

Two sequences of data were simulated. The first 
one assumes the system is stable and operating without 
receiving disturbances or gain changes; this set of data 
serves to desing the control limits for the individual 
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gains according with the analysis in Apendix B. Thus, 
for every gain ij Gij , i = 1 to l; j = 1 to m, the limits 
are defined by 

( / 2) ˆ ˆˆ ˆ3
ij ij ij

ij ijLS d   
        

(1 / 2) ˆ ˆˆ ˆ3
ij ij ij

ij ijLI d   
        

where subscripts i and j represent the output and input 
respectively, and the “3-sigma” convention is adopted 
for simplicity. The central line for these control charts 
are calculated using N = 49 estimations as follow: 

   1

ˆ ( )
N

ij
k

ij

k

N


 


, 

and the standard deviation of the estimator is calculated 
by  

   
 2

1
ˆ

ˆ ( )
ˆ

1ij

N

ij ij
k

k

N

 
 







. 

 
The second data set is used for verification and 

demonstration of the ability to detect slow gain changes. 
Figure 2 shows the gain matrix estimations along 49 
intervals of 200 mins; most of them show quite good 
accuracy though with different dispersion patterns. For 
instance, both gains G12 and G13 receive a 5% ramp 
change from time 3000 to 8000 min, i.e., from 7.5 to 20 
in terms of the estimation number used in the horizontal 
axis in Figs. 2 to 4. Besides, G31 have also a 5% ramp 
change from time 4000 to 5000 (or equivalently 10 to 
12.5 estimations time). 

 
Figure 2: Responses of the gain matrix estimator vs. 
estimation number (one every 200 min) showing the 
effect of ramp changes in G12 G13 and G31 . Red lines 
indicate true gain values.  

 

 
Figure 3: G12-estimator response to a ramp change 
augmenting 5% the gain from 7.5 to 20 estimations. 
Green dash lines indicate 3-sigma control limits.  
 

 
Figure 4: G13-estimator response to a ramp change 
augmenting 5% the gain from 7.5 to 20 estimations. 
Green dash lines indicate 3-sigma control limits. 
 
Though the specific changes are successfully detected – 
this is clearly observed in Figs. 3 to 5 – Figure 2 revels 
certain tendency for several individual estimators to 
present a bias. This exposes a problem to be analyzed in 
future works.   
 

 
Figure 5: G31-estimator response to a ramp change 
augmenting 5% the gain from 10 to 12.5 estimation 
time. Green dash lines indicate 3-sigma control limits. 
 
5. CONCLUSIONS AND FUTURE WORK 
The methodology presented here for online following of 
process gains shows promising results. However, 
several problems were highlighted by the presented 
analysis: i) slightly biased distribution functions with 
shapes doubtfully normal prevent from determining 
control limits associated to accurate detection rates or 
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false alarm frequencies; ii) several parameters used by 
the subspace identification method need to be optimized 
accordingly with the objectives; iii) the minimum 
necessary intensity of the persistent excitation when 
dealing with complex multivariable process systems is a 
pending duty to be face from a practical point of view; 
iv) the extension to closed loop identification appears as 
a mandatory alternative to be analyzed and developed. 
 
APPENDIX A: Notation 
The notation used in this paper follows that commonly 
used in the extensive literature available about subspace 
identification methods [Refs]. For instance, the block 
Hankel matrix of a single input signal is defined and 
written as 

 

0 1 2 1

1 2 3

1 1 2
0|2 1

1 2 1

1 2 3

2 1 2 2 1 2 2

0| 1 0|

|2 1 1|2 1

...

...
... ... ... ... ...

...

j

j

i i i i j
i

i i i i j

i i i i j

i i i i j

pi i

i i f i i

u u u u
u u u u

u u u u
U

u u u u
u u u u

u u u u

UU U
U U U



   


   

   

   



  

 
 
 
 
 
 
 
 
 
 
 
 
 

    
         
    



p

f

U
U





 
    
 

 

where the indexes i and j are such that i n  and 
j n , and n is the assumed order of the system. Note 

that indexes p and f stand for “past” and “future” 
respectively; this is becouse each column of matrix pU  
composes of i elements previous to the following i 
elements being part of fU . This matrix structure is also 
extended to the block Hankel matrix for a single output 
variable, in this case using the notation 0|2 1, , ,i p fY Y Y  

pY   and pY  . The above notation serves also to define 
the block Hankel matrix of past input and output data, 
i.e., 

 p
p

p

U
W

Y
 
 
 

 . 

In a similar way, the state sequence 
  1 2 1

n j
i i i i j i jX x x x x 

       , 

is partitioned by setting 0pX X  and f iX X .  
The subspace identification algorithm used in this 

paper needs of other two important matrices: the 
observability matrix li n

i
  ,  

 2

1

i

i

C
CA
CA

CA 

 
 
 
  
 
 
 
 


  

and two low-triangular block Toeplitz, d li mi
iH   and 

s li mi
iH  , which are written as follows: 

 

2 3 4

0 0 0
0 0

0
i

d

i i i

D
CB D

H CAB CB D

CA B CA B CA B D  

 
 
 
 
 
 
 
 





    


 

and 

2 3 4

0 0 0
0 0

0s
i

i i i

I
CK I

H CAK CK I

CA K CA K CA K I  

 
 
 
 
 
 
 
 





    


 

Assuming the pair ,A C is observable and i n , then 

i  is a full column range matrix, i.e.,  iRank n  . 
Finally, the notation /A B  stands for the 

orthogonal proyection of the row space of A into the 
row space of B, 

 
 †

/ B

T T

A B A

A B BB B





  

Besides, /CA B  denotes the oblique proyection of the 
row space of A on the direction of the row space of C 
into the row space of B,  
 †

/ / /BA C A B C B C         
 
APPENDIX B: Confidence interval for a single 
estimator. 

Assume   is a parameter to be estimated using the 
estimator ̂  whose random behavior is described by the 
probability density function ˆ( )f  . Then, the probability 

of ̂  for being lower or grater than a lower and upper 
limit (UL and LL) respectively, can be defined as 
follows: 

ˆ ˆ ˆ/ 2 ( ) ( )
LL

f d P LL   


    

ˆ ˆ ˆ1 / 2 ( ) ( )
UL

f d P UL   


     

This is equivalent to say that the probability for ̂  to 
fall inside the given interval is given by 

 ˆ 1P LL UL      

For convenience, the estimator is normalized to have 
cero mean and unit variance, then rewriting the above 
expression we can arrive to 

         
( / 2) (1 / 2)

ˆ

ˆ ˆ
1

E
P d d 



 


 

       
  

      (B1) 

where the quantities 
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   
/ 2 1 / 2

ˆ ˆ

ˆ ˆE LL UL E
d d 

 

 

 

 
   

are the “ / 2  percent points” of the normalized 
distribution. Note that these quantities are completely 
defined by   and the normalized distribution function 
(with 0 mean and unit deviation). Let us analyze now 
the general case in which we deal with a biased 
estimator, i.e., 

    ˆ , 0E b b    .             (B2) 

where b is the bias. Note that if for a given estimator ̂ , 
b = 0 can not be analytically demonstrated, the true 
population parameter   can never be accurately 
estimated becouse the true bias b remains also 
uncertain. Then, in this case, all what we can do is to 
work in terms of an assumed, or expected, value 0 , so 
we write 

     0 0 0
ˆ , 0E b b    .             (B3) 

where all the uncertainty has been sent into the bias b0. 
The above reasoning tells that through ̂  we can only 
monitor the parameters characterizing the population of 
̂  values, and detect operating conditions producing 
significant changes in the observed values. This is 
equivalent to following parameter changes by using the 
bias estimation 0 0

ˆ ˆb     referred to the specific value 

0 . In other words, two equivalent confidence intervals 
can be written, one directly in terms of the parameter 
estimator, and the other in terms of the bias estimator, 
as follows: 

 ˆ ˆ ˆ ˆ(1 / 2) / 2
ˆ ˆ ˆˆ ˆLL d E d UL    
               (B4) 

 ˆ ˆ ˆ ˆ0 (1 / 2) 0 0 / 2
ˆ ˆ ˆˆ ˆ

b b
LL b d E b b d UL  

       ,  (B5) 

both defined for a (1- )% confidence level. 
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