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ABSTRACT
In this paper, a bond graph model based approach for 
robust diagnosis in presence of input and output 
uncertainties is presented. Based on the structural and 
causal proprieties of the bond graph tool, a procedure of 
input and output uncertainties modeling is proposed in 
order to generalize the threshold generation. The 
proposed procedure is applied to the graphical model in 
preferred derivative causality, used for analytical 
redundancy relations. Simulation results are presented 
in order to validate the proposed procedure of 
thresholds and residuals generation.

Keywords: Robust fault detection and isolation,
measurement uncertainty, Bond graph modeling.

1. INTRODUCTION
Robust fault diagnosis has been the subject of several 
researches in order to increase the sensibility of the 
diagnosis systems, to avoid false alarms and to insure 
the systems safety. Fault detection and isolation (FDI) is 
based essentially on the comparison between the real 
behavior of the system and a reference behavior 
describing the normal situation. The existing 
approaches to FDI in the literature can be classified on 
qualitative and quantitative approaches. Qualitative or 
non-model based methods, are principally based on the 
artificial intelligence and form recognition such as 
neuronal and Bayesian approaches (Hsing-Chia K. 
2004), (Rothstein A. P. 2005). Qualitative or model 
based approaches, such as observers and parity 
relations, are based on the generation of residuals 
(Frank P.1990), (Iserman R. 1994). The latter are used 
as indicators in order to detect and isolate faults.In 
normal operation the residuals are close to zero and 
different from zero in faulty situations.
      Several papers have been devoted to the FDI task in 
these last years. A survey of classical methods can be 
found in (Frank P. M. 1997). Many solutions to the 
robust diagnosis problem have been developed. For 
example, in (Casavola A. 2008), a solution to robust 
FDI problem is proposed using deconvolution filters 
( H and H ) with a quasi-convex linear time 

invariant formulation.

      In (Guo J. 2009), the author studied the robust fault 
detection filter design problem for linear time invariant 
(LTI) systems with unknown inputs and modeling 
uncertainties using the formulation of the robust fault 
detection filter design, as H  model-matching 

problem, where a solution of the optimal problem is 
presented using the Linear Matrix Inequality (LMI) 
technique. Another approach has been developed using 
the parity space methodology (Han Z. 2002). In the 
latter, a new scheme of sensor and actuator fault 
detection and isolation for multivariate dynamic system 
in presence of parameter and measurement uncertainties 
is proposed. The measurement and parameter 
uncertainties are considered bounded and represented 
by bounded variables in the discrete time state space
format.
      Most of consulted papers try to eliminate the effect 
of the parameter or measurement uncertainties on the 
residuals, such as the filtering approach, which can 
cause the non-detection of certain faults. However, the 
parameter uncertainties is not associated to physical 
parameters but to the state matrix A. The bond graph 
can be an alternative for uncertainties modeling using 
the graphical representation. Furthermore, it is well 
suited for FDI. Indeed, the bond graph tool is used not 
only for modeling but also for diagnosis, due to its 
structural and causal proprieties. It is a unified graphical 
language for multi-physics domains (Karnopp D. 2000), 
(Borutzky W. 1999). The basic idea of diagnosis using 
bond graph approach is to generate the residuals, which 
represent the equations of energy conservation (junction 
equations), using directly the graphical model (Sueur C. 
1991), (Low C. b. 2008). The causal proprieties of the 
bond graph are used to eliminate systematically the 
unknown variables, and the structural ones allow the 
generation of Analytical Redundancy Relations (ARR), 
using a covering causal paths methodology. The 
residuals are the evaluation of these ARRs and are used 
for real time diagnosis. More details about the structural 
proprieties of the bond graph model can be found in 
(Sueur C.1989).

2. BOND GRAPH THEORY
A bond graph () is a unified graphical language 
for multi-physic domains. Where the nodes represent 
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physical components, subsystems, and other basic 
elements called junctions. While the edges , called 
power bonds represent the power exchanged between 
nodes.
The set of components named bond graph element 
is:  S R C I TF GY Se Sf De Df J          .

      The R elementrepresents a passive energy 
dissipation phenomena, while C, and I model the 
passive energy storage elements. (Se), and (Sf) are the 
sources of effort and flow, respectively. Sensors are 
represented by flow (Df), and effort (De) detectors. 
Finally, (which can be a zero or a one junction), is 
used to connect the elements having the same effort (0  
junction), or flow (1  junction). The conservative energy 
laws are obtained from the latter. , and are used 
to represent transformers and gyrators, respectively.
The passive elements are described by generic 
constitutive equations: dissipative R-elements 
(electrical resistor, hydraulic friction) are described by 
algebraic relationship     0RF e, f  , potential storage 

energy C-element (capacitor, tank, spring) are modeled
by an integral equation linking effort and integral of 

flow   0c e, fdt  and kinetic storage energy I-

element (mechanical inertia, electric coil) is quantified 
by integral equation between integral of effort and 

flow   0I f , edt  .

Definition Dualization of detectors is the replacing of 
the detector De and Df (Figure 1-a) by a signal source 
SSe and SSf respectively (Figure 1-b).

Figure 1: Dualization of detectors

Definition In a bond graph model, a causal path is an 
alternating of bonds and elements (R, C, I…) called 
nodes such that all nodes have a complete and correct 
causality. Causal paths of two bonds which have the 
same node have opposite causal direction. Depending 
on the causality, the passed variable is the effort or the 
flow. To change this variable, the causal path must pass 
through a junction element GY, or a passive element (I,
C or R). Definition A system is under-constrained if its 
dynamic bond graph elements cannot accept the 
derivative causality when the detectors are dualized.

3. ROBUST FDI TO INPUT AND OUTPUT 
UNCERTAINTIES

3.1. Output uncertainty modeling
In this section, we describe a generalized method to 
model measurement uncertainties in order to generate 
uncertain ARRs, which can be used to obtain both 
residuals and thresholds. The dualized detectors on the 
bond graph model, used for diagnosis, in derivative 

causality impose the information signal to its associated 
junctions. Hence, the following equations can be 
obtained from Figure 2-(a) and (b), respectively:

Figure 2: Measurement uncertainties modeling.
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The modeling of measurement uncertainties can be 
done as shown in Fig. 2-(c, d), which are based on the 
following equation (2):
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                   (2)

Where SSf and SSe represent the measured signal 

SSe and SSf represent the measurement error 

respectively on SSf and SSe .

3.2. Input uncertainty modeling
The inputs in bond graph tool are represented by a 
source of effort Se, or by a source of flow Sf, depending 
on the physical nature of the input components. As a 
mathematical point of view, the error on the inputs can 
be expressed as follow:

r Se

r Sf

Se Se ;
Sf Sf .





  

  
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Where Se and Sf are the predicted input of the effort and 
flow source respectively, Ser and  Sfr  are the real effort 
and flow input. Se and Sf  represent the uncertainties 

on the effort and flow source respectively.
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Figure 3: Input uncertainties modeling.

This can be represented in a bond graph form as shown 
in Figure 3. For the ARR and threshold generation, the 
errors Se  and Sf are considered bounded (3):

Se Se Se

Sf Sf Sf

;
.





  
  

                         (3)

3.3. ARRs and thresholds generation
The thresholds generation can be done after the ARR 
generation using the following rules:

 Put the model in preferred derivative causality 
if possible.

 Model the measurement uncertainties directly 
on the bond graph model.

 Write the ARRs of the model using the 
equations of energy conservation, and use the 
causal path to eliminate the unknown 
variables.

 Write the ARRs of detectors redundancy.
  For all ARRs derived from the equations of 

energy conservation, the threshold is obtained 
by adding the maximal absolute values of the 
different parts of the ARRs containing the 
measurement errors.

 For the ARRs generated from the redundant 
detectors, the threshold is equal to the sum of 
the maximum measurement errors of the two 
redundant detectors.

Let us consider the linear system illustrated in Figure 4.
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1

Figure 4: Linear system.
Two ARRs can be generated from this model, one from 
the 0-junction and the other from the 1-junction. The 
two ARRs are used as residuals, and theoretically equal

to zero in normal situation, without considering the 
uncertainties and model errors. In presence of 
uncertainties on the sensors measurement, and if we 
know that the measurement error is an additive and 
bounded error, the residual can be bounded by a two 
thresholds, which can be calculated using the bond 
graph model directly. Applying the procedure of 
measurement uncertainties modeling, the model of the 
linear system become as shown in Figure 5. The model 
can be used to generate the uncertain part directly, by 
using the causal paths. For example in Figure 5: 

115 3 8SfMSf* : ARR .     These causal paths 

are used to generate the uncertain part of the ARR. We 
must start from virtual sources that represent the 
measurement errors to observed junctions (junctions 
which are connected to a detector). We remark that the 
virtual source of effort connected with the bond 13, and 
the virtual source of flow connected with the bond 7 
have no causal path to an observed junction. So the 
measurement uncertainty on these bonds can be 
removed.
      The measurement error on the bond 12 can be 
modeled directly on the observed junction like shown in 
Figure 6. This modeling procedure can be used with the 
R, C and I element connected to an observed junction. 
Using these rules the model of Figure 5 can be 
simplified to the model of Figure 7.
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Figure 5: The model of the linear system with 
measurement uncertainties.

The robust ARRs of this system (Figure7) can be 
written as follows:

 

 

1

1

1 1

2 1

0

0

SSf C SSe

SSe R SSf Se

dSSeARR : MSf C SSf ;
dt

ARR : SSe R SSf Se .

 

 

    

     

These two ARR can be decomposed to two residuals r1

and r2 (equation 4), and two thresholds a1 and a2
(equation 5).

1 1

1 1

dSSer MSf C SSf ;
dt

r SSe R SSf Se.

  

  

                        (4)
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Figure 6: Simplification.

Figure 7: Simplified model of the linear system with 
measurement uncertainties.
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In real applications, the differentiation is done in 
discrete time, by using some methods; the simplest is to 
use two values in different time as follows:
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d
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Where i
SSe is the measurement error in the time ti . The 

measurement error is i
SSe bounded by SSe , so the 
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So we can write:
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i i
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t t
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


 



4. ROBUST FAULT ISOLATION

The fault isolation can be done using the fault signature 
matrix (FSM), which can be directly deduced either 
from the analytical redundancy relations or from the 
bond graph model directly, noting that the ARRs can be 
deduced directly from the graphical model. In this 
section, we propose a
       Robust FSM (S) shown in Table I, where the 
columns are the residuals (ri, i = 1, 2,…,n), and the rows 
are the parameters that model the components (ci, i = 1, 
2, …m).
  
Table 1:ROBUST FAULT SIGNATURE MATRIX.

r1 r1 rn Ib Db
c1 s1,1 s1,2  s1,n g1 e1
c2 s2,1 s2,2 

s2,n g2 e2

      

cm sm,1 sm,2 
sm,n gm em

The Sm×n is a Boolean matrix, where:

1 if the  ARR contains c

0 otherwise.

th
ji .




G is defined as the isolability vector, where:

i,j=1 to n1 if s  is unique,

0 otherwise.




If the signature of the fault is unique, then the fault is 
isolable when its effect on the residuals is bigger than
all the thresholds associated with these residuals. 
 E is the detectability vector calculated as follows:

1 2 i i , i , i ,ne s s s .   

The fault is detectable when its effect on the residuals is 
bigger than one of the sensible residual,
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5. APPLICATION
In this section, the presented procedure of robust ARRs 
generation with respect to output and input uncertainties 
is applied to an electromechanical subsystem of a robot 
named Robotino. The latter is composed of three 
electromechanical subsystems (three omni-directional 
wheels with three DC motors). Each Subsystem 
contains two detectors that measure the current and the 
angular speed of the DC motor.

5.1. Modeling
The considered subsystem is modeled by bond graph 
tool as shown in Figure 8. To obtain the model, the 
different physical components and phenomenon are 
considered. The electrical part of the DC motor is 
modeled by Ra, La and U which represent the electrical 
resistance, inductance and the voltage, respectively. The 
energy transfer between the electrical part and the 
mechanical part (mechanical resistance Re and inertia 
Je) of the DC motor is represented by a gyrator (GY). 
The reducer is modeled by a transformer TF and the 
inertia of the wheel is represented by Js and the 
resistance with Rs.

Figure 8: Bond graph model of the 
electromechanical subsystem.

From the model of Figure 9, the following ARRs can be 
obtained:
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Where i  and 


m
 are the measurement errors on the 

current and velocity detectors respectively.  xF


 is the 

error on the input of the impact effort torch   xF , All 

the output and the input errors are considered bounded 
as follows:
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Figure 9: Bond graph model of the 
electromechanical subsystem with input

5.2. Simulation
In this subsection, simulations are performed in order to 
validate the developed diagnosis procedure in presence 
of input and output (measurement) uncertainties. The 
parameters (Table 2) of the model are obtained from a 
real system. The torque of the impact effort  xF is 

considered as a constant and a bounded variable. The 
used sampling interval time is 0.2s.
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Table 2: Parameters.

Fig. 10 shows the input voltage signal, the output 
current of the electrical part of the system, and the 
output signal of the velocity of the wheel. In Fig. 11, the 
residuals and thresholds are represented. In Fig. 12, the 
residuals in faulty case are presented, where the additive
fault on the input signal is around 12 %.

As the results show, the threshold depends on the 
precision of the detector and parameter values, and we 
remark that the derivative of the signal amplifies the 
noise. Consequently the thresholds also increase,
because the estimation of the derivative depends on the 
sampling time.

6.  CONCLUSION
In this paper, a procedure of robust fault detection and 
isolation using the bond graph tool is proposed, toward 
output (measurement) and input uncertainties, in order 
to avoid false alarms. This approach clearly shows that 
the performance of the diagnosis system depends on the 
sensors and actuators precision. In this graphical 
approach, the measurement and input uncertainties are 
associated, to the sensors (Df and De) and actuators (Se,
Sf) respectively. In addition, this approach can be 
generalized and automated for LTI systems and some 
nonlinear systems.
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Figure 10: Voltage, current and velocity signals.
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Figure 11: Residuals in normal situation.
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Figure 12: Residuals in faulty situation.
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