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ABSTRACT 

This paper makes a comparison of component fault 

detection and isolation between an algebraic approach 

and a bond graph one. The conditions of component 

fault detection and isolation are viewed in algebraic 

approach as an observation problem of the fault with 

respect to the input and the output. In Bond graph 

approach, these conditions are performed by analyzing 

the causal paths from faults to outputs using the notion 

of bicausality. It is shown that the use of bicausal bond 

graph helps to integrate many mathematical approaches 

particularly the algebraic one. The component fault 

detection and isolation performed from bond graph is 

much simpler as compared to the algebraic approaches 

in which an analytical model is needed and complex 

computations are performed to determine the 

diagnosability conditions. An illustrative example is 

given to show the efficiency and the simplicity of the 

bond graph approach compared to the algebraic one. 

 

Keywords: Fault detection and isolation, Bond graph, 

Algebraic approach.  

 

1. INTRODUCTION 

Fault Detection and Isolation (FDI) has become an 

important tool in the ingredients of a modern automatic 

system. Its significance is based on enhancement in 

terms of safety, reliability, dependability and operating 

costs of the plant. And for that, FDI has been a widely 

exploited research topic in the recent years, and several 

methods have been developed among them ones based 

on the model of the system such as: parity equations 

(Gertler, 1997), observer model-based (Patton and 

Chen, 1997), and analytical redundancy relations 

(Staroswiecki and Comet-Varga, 2001). 

Several FDI model-based approaches can be found 

in the literature. Among them, the algebraic approach 

(Fliess and Join, 2003; Fliess and Join, 2004; Cruz-

Victoria, Martinez-Guerra and Rincon-Pasaye, 2008) 

consists of the ability of the detection, the identification, 

and the estimation of the fault variable. It is viewed as 

an observation problem of the latter with respect to the 

input and the output variables. These approaches are 

applied to linear and a class of nonlinear systems to 

detect sensor and actuator faults.  

 Other approaches are based on structured and 

graphical models. They intend to create a graph that 

describes the mathematical model of the system. These 

approaches are based on a digraph G(S;A), where nodes 

S represent the state, the input, and the measurement 

output variables, and edges A are the interaction 

between these nodes. In (Commault, Dion, and Agha, 

2008), the authors study the sensors location problem 

for internal faults in term of separator in the associated 

graph of the structured system. This separator gives the 

necessary and sufficient sensors to be added. Fault 

detection and isolation based on digraph has limits that 

it concerns only actuator and sensor faults. 

The Bond Graph (BG) which is also a graph, can 

be an alternative for plant fault detection and isolation, 

since the nodes S represent not only state, input, and 

output variables but also the physical components of the 

system. It describes the power transfer between the 

passive and active components of multi-physical 

systems. It is the interface between the physical system 

and the mathematical model of the last. 

Several problems have been solved structurally 

using this graphical approach, such as: observability 

and controllability (Sueur and Dauphin-Tanguy, 1991), 

system inversion (Ngwompo and Gawthrop, 1999), and 

FDI (El-Osta, Ould Bouamama and Sueur, 2006; 

Samantary and Ghosal, 2008). FDI BG model-based 

uses the analytical redundancy relations (ARR) which 

are generated from the BG model of the system using 

its causal and structural proprieties. A fault signature 

matrix (FSM) is defined to study the fault 

monitorability and isolability. This matrix depends 

mainly on the number of sensors, and the unknown 

variables to be eliminated, which is complex and 

difficult to apply for a nonlinear system. 

This paper makes a comparison of component fault 

detection and isolation between an algebraic approach 

and a BG one, in which plant faults are modeled as 

additional modulated inputs to the system. The 

conditions of the detectability and isolability of plant 

faults are performed on the BG model using the notion 

of bicausality and disjoint causal path analysis. In this 

work, the detectability and the isolability of the fault are 

performed directly on the BG model without 

computations, which are usually complex. Since BG 

model is a graphical representation of the physical 
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system, the concept of fault is much more physical than 

mathematical, contrary to the algebraic approach.  

The paper is structured as follows: in Section 2 the 

problem statement. Conditions of detectability and 

isolability by algebraic approach are given in Section 3. 

And by BG approach in section 4. An illustrative 

example is introduced in Section 5. The paper ends with 

general synthesis and remarks. 

 

2. PROBLEM STATEMENT 

Let us consider a class of linear time invariant systems 

described by the following state space format as: 

 

( ) ( ) ( )

( ) ( )

x t Ax t B u

y t Cx t

 


                                

(1) 

 

where ( ) nx t R  is the state vector, ( ) mu t R is the 

input vector, ( ) py t R  is the output vector, and A, B, C 

are matrices of appropriate dimensions. 

 

The vector qF R  such that q p , represent 

internal components failure in the plant, are introduced 

in the state space format as: 

 

( ) ( ) ( ) ( )

( ) ( )

x t A F x t B u

y t Cx t

  


    

(2) 

 

 Note that faults on inputs are not considered in this 

paper and we assume that all sensors are fault free. 

The system of Eq.(2) can be rewritten as: 

 

( ) ( ) ( ) ( , )

( ) ( )

x t Ax t B u MF x t

y t Cx t

  


    

(3) 

 

where n qM R  is a known matrix, and F is an 

unknown vector that needs to be detected. 

 

In the next sections, the conditions of the 

detectability and isolability of the fault F are given. 

 

3. FAULT DETECTION AND ISOLATION 

BASED ON AN ALGEBRAIC APPROACH 

 

3.1. Basics in algebraic approach 

System pert is defined as a finitely generated free k[s]-

module, where k[s] is a commutative principal ideal 

domain of linear differential operators of the form

,v

v v

finite

c s c k ; s is the usual symbol of derivation, and 

k is the field of real or complex numbers. 

In pert  two finite subsets are distinguished, the 

fault variable F and the perturbation variable π, which 

do not ‘interact’, i.e.,          0k s k s
span F span   . 

The nominal system is defined by: 

                     /pert

k s
span    . 

Definition: An input output system is a linear system, 
pert  equipped with an input u and an output y, such 

that: 

 The input of the linear system pert is a finite 

sequence  , 1iu u i m    of elements of 

pert such that  
 

/pert

k s
u is torsion, the input 

u is assumed independent. 

 The output of the linear system pert is a finite 

sequence  , 1iy y i p    of elements of

pert . 

 

Assumptions: the following propreties are assumed to 

be satisfied: 

 
         0k s k s

span u span   , 

 
         0k s k s

span u span F  . 

This means that the control variable u does not interact 

with the perturbation and the fault variables. 

 

3.2. Fault detection and isolation 

The system described by Eq.(3) is an input output 

system pert . 

Theorem 1: The system of Eq.(3) is observable (in the 

sense that the state is observable with respect to u and 

y), then it is diagnosable if, and only if, F is observable 

with respect to u, y, and x (Diop and Martinez-Guerra, 

2001). 

 

Definition (Algebraic Detectability): a fault F is said to 

be detectable if, it is observable over u and y (Fliess and 

Join, 2003). 

 

Definition (Algebraic Isolability): any fault variable in 

F is said to be isolable if, and only if, there exists a 

system of parity equation (Fliess and Join, 2003) 

 

1 1 1

q m p

F u y
M Q S

F u y

    
     

    
        

(4)

 
 

where [ ] , [ ] , [ ] , det 0q q q m q pM k s Q k s S k s P      . 

 

In other words, it is required that: 

 The system must be observable: the states of 

the system can be expressed as a function of 

outputs and their derivatives, 

 Each fault variable has to be written under a 

polynomial equation format Fi and finitely 

many time derivatives of u and y with 

coefficients in k[s]. 

 

 ( , , ,..., , ,...) 0iF u u y y 
   

(5) 
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4. FAULT DETECTION AND ISOLATION 

BASED ON BICAUSAL BOND GRAPH 

 

4.1. Graph and Bond Graph 

A graph theory approach is used to study and analyze 

structured systems which are independent of the system 

parameter values. This approach requires a low 

computation which allows dealing with large scale 

systems. The existing contributions related to the graph 

analysis proved that observability, controllability, input-

output decoupling ... etc, can be simply deduced from 

the structural properties of the graph. There are different 

graphical methods used in the literature: Digraph (Dion, 

2003), signed digraph (Maurya, Rengaswamy, and 

Venkatasubramanian, 2004), bipartite graph (Blanke, 

Kinnaert, Lunze, and Staroswiecki, 2003), and BG 

(Samantary, and Ghoshal, 2008). 

 

Definition: The digraph, denoted by G(S;A), is deduced 

from state space equations. It is composed by a set of 

nodes (S), { }S U Y X   which corresponds to the 

system inputs, outputs, and states. The interactions 

between these nodes are represented by directed edges 

(A). 

Definition: A graph G(S;A) is bipartite, if its vertices 

can be partitioned into two disjoint subsets Z (set of 

variables that defines the dynamic behavior of the 

system), and C (set of equations that defines the 

relations among the variable set), { }S C Z   .The 

relations between these two subsets are represented by 

edges (A). 

Definition: The BG which is also a graph G(S;A), is a 

unified graphical language for multi-physical domains. 

Unlike the others graphs mentioned above, the nodes S 

represent physical components, subsystems, and other 

basic elements called junctions. While the edges A, 

called power bonds represent the power exchanged 

between nodes. 

In BG, the possible set of components

{ }S R C I TF GY Se Sf De Df J          . 

The R- element represents passive energy dissipation 

phenomena, while C, and I model the passive energy 

storage elements. (Se), and (Sf) are the sources of effort 

and flow, respectively. Sensors are represented by flow 

(Df), and effort (De) detectors. Finally, J (which can be 

a 0 or a 1 junction), is used to connect the elements 

having the same effort (1-junction), or flow (0-

junction). The conservation of energy laws are obtained 

from the latter. TF, and GY are used to represent 

transformers and gyrators, respectively. 

The difference between BG and the other graphical 

approaches is that the former is directly generated from 

the physical system, and not from state space equations. 

In addition, from the BG model state space equations 

can be generated manually using systematic way 

(Mukherjee, and Karmakar, 2000) or automatically 

from dedicated software such as Symbol2000 (Ould-

Bouamama, Medjaher,  Samantaray, and Dauphin-

Tanguy, 2005) or 20-sim (Twentesim, 1996). 

Furthermore, system components are clearly 

represented in the BG model because of its graphical 

architecture. 

 

4.2. Multiplicative fault modeling on BG 

The component fault is modeled using bond graph as an 

additional modulated input (MSe for 1- junction, MSf 

for 0-junction), placed at the same junction of the 

component element. Let consider as an illustrative 

example, a resistive (R) element in resistive causality 

with the following characteristic equation  

.e R f
       

(6) 

If the element R is faulty, then an additional value 
fR is 

added to the nominal value
nR , Fig.(1)-(a), so Eq.(6) 

can be rewritten as  

. .n f n de R f R f e e   
    

(7) 

where 
de  is the effort brought by the fault, which is 

unknown time function, can be considered as an 

additional modulated input added to the 1-junction as 

given in Fig.1-(b). 

 

 

Figure 1 : (a) The BG interpretation of Eq.(7);  

(b) Component fault modeling in BG. 

 

4.3. Bicausal Bond Graph 

The Bicausal BG is introduced to study control 

problems such as system inversion, state estimation, and 

unknown parameter estimation (Gawthrop, 2000). It 

overcomes the assignment statements that cannot be 

derived from the constraint equations of a so-called 

’unicausal’ bond graph model, Fig.2-(a), which implies 

two assignment statements : 

 

1 2 2 1: ; :e e f f 
    

(8) 

 

the effort 
2e and the flow 

1f  are used to determine the 

effort 
1e and the flow 

2f  respectively, and they have an 

opposite direction. Contrary to ’unicausal’ BG, bicausal 

one imposes the same direction to the effort and the 

flow, Fig.2-(b), which implies two assignment 

statements  

2 1 2 1: ; :e e f f 
    

(9) 

 Causal half strokes indicate the fixed or known 

variables of the bond, and determine the right hand side 

of the assignment statements form. 
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Figure 2 : (a) A bond with causality; (b) a bicausal 

bond. 

    

 Bicausal introduces also some additional BG 

elements (Ngwompo and Gawthrop, 1999), among 

which SS (Source-Sensor), AE (Amplifier of effort), 

and AF (Amplifier of flow). Table.1 gives causality 

assignment for Source-Sensor element. 

 

Table 1: Source / Sensor causality assignement 

 
 

 The concept of bicausality allows fixing or 

imposing at the same time a variable and its conjugate 

as a bicausal bond thus decoupling the effort and flow 

causalities.  

 

 In the context of fault detection and isolation, 

imposing the output variable without modifying the 

energy structure (or constraint equations) of the system 

can be effectuated with an SS element having a flow 

source/effort source causality (Table 1). Then the output 

to be imposed plays the role of input variable of that SS 

element while its conjugate is set to a null value leading 

to null power propagation on that bond. Similarly, the 

fault variable to be isolated will be observed on another 

SS element with flow sensor/effort sensor causality. 

 

4.4. Fault detection and isolation based on bicausal 

Bond Graph 

The bicausal BG used to study fault detection and 

isolation is obtained by applying Sequential Causality 

Assignment Procedure for Inversion (SCAPI) algorithm 

as for system inversion (Ngwompo, Scavarda and 

Thomasset, 1996) on BG model in integral causality by 

replacing the input variable by the fault one, and 

assigning a derivative causality instead of an integral 

one.  

 Consider n as the number of the storage elements in 

integral causality, and a as the number of storage 

elements on the shortest path between the input and the 

output, which will take the derivative causality when 

the causality assignment algorithm for FDI is applied. 

n a is the number of storage elements which are not 

on the shortest path, and which keep the same causality 

as they were in the BG in preferred integral causality. 

 

 

 

Proposition 1: (fault detectability) 

If all storage elements take the derivative causality even 

ones that are not on the shortest path ( 0n a  ), so the 

fault variables modeled by modulated inputs are 

observable (detectable) with respect to the input u and 

the output y variables. 

 

Proof: It was shown in (Sueur and Dauphin-Tanguy, 

1991) that a system modeled by BG is observable when 

all the storages elements are derivative causality, so the 

inputs (sources or faults), and the states variables can be 

expressed in term of the output variable and their 

derivative.  

 

 On the Bicausal Bond graph, the fault isolability is 

done by analyzing the causal path from the SS element 

associated to the output variable to the SS element 

associated to the fault variable through the storage 

elements. 

 

Definition: Two causal paths are said to be disjoint if, 

and only if, they do not share a common variable 

(Ngwompo and Gawthrop, 1999). 

 

Proposition 2: (fault isolability)  

q faults are structurally isolable if, and only if, there are 

q disjoint causal paths linking the sensor to the fault 

through all storage elements C, and I that exist in the 

path.  

 

Proof: Let consider p the number of sensors and q the 

number of component faults, such as q p . The i
th

 

causal path, where 1...i q , links the component fault 

(Fi) which is represented in BG model by SS element to 

the yi sensor, has d storage elements Cl,i and Il,i, where 

1...l d . The covering causal path from the sensor (SS 

element) to the fault input (SS element) leads to the 

following oriented graph where xl,i is the state variable, 

corresponds to the storage elements in BG model. From 

Fig.3, the algebraic equations Eq.(10) can be derived. 

 

 
Figure 3 : Digraph representation of disjoint causal 

paths. 

   

 

 

( )

( )

, , ,

, , ,

d

i i i i i

d

j j j j j

F h y y y

F h y y y


 

 
               

(10) 

 

The number of derivation d and d   corresponds to 

the number of the storage elements that belong to i
th

 and 

j
th

 causal path respectively. 
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 It is clear that Eq.(10) satisfies Eq.(4), so the q 

component faults are isolable. 

 

Remark: if one storage element remains in the integral 

causality when the assignment causality algorithm for 

FDI is applied on the BG model of the system, the q 

faults are not isolable even if there is a q disjoint causal 

paths. 

 

5. ILLUSTRATIVE EXAMPLE 

 

In this section, we will apply the presented 

methodology to detect and isolate component faults on 

the electromechanical system of the Fig.4. 

 
Figure 4: The electromechanical system 

 

 The electromechanical system is composed of three 

principal parts: A DC motor, a gear, and a wheel part. 

The DC motor is a combination of electrical and 

mechanical domains. The gear is concerned with 

connecting the mechanical par with the load one (wheel 

+ ground). 

 

5.1. Case 1 

In the first case, two faulty components R: Re and R: fe 

are considered. The faults are modeled by a modulated 

source of effort, Fig.5. The available sensors for the 

current, and the wheel velocity, represented on the BG 

model in integral causality by Df: y1 and Df: y2. 

 

 
Figure 5 : The BG model of the faulty system of case 1 

in integral causality. 

 

 

5.1.1. Algebraic isolability:  

The state space form of the system can be derived from 

the BG model of the system in integral causality, it is 

given by the Eq.(11) 

 

 The faults F1 and F2 are detectable and isolable if, 

and only if, they satisfy the parity equation Eq.(4). As 

presented in the Eq.(12), the latter is verified, so the 

faults F1 and F2 are detectable and isolable. 

 

5.1.2. Bicausal BG detectability:  

The system given in bicausal BG of the Fig.6 is 

diagnosable since all I and C elements are in derivative 

causality which means that the fault F can be expressed 

in terms of the input u and the output y. We can add that 

all states are observable with respect to u and y and their 

derivatives. 

 

1 1 2 1 1

2 1 2 3 2

3 2 4

4 3 4 2

1

1

4

2

 

 

 
1

e

e

e e

e

e s

s

s

s

kRe
x x x u F

L J
k f

x x x Kx F
L J

N
x x x

J J
f

x NKx x u
J

x
y

L
x

y
J


    


    



 

   





 


                        

(11) 

 

   

 

2 2

1 1 2

1 2

3 2

2 1

2

2

2

1

1

e

s s

e

e s

e s e e s

e s s s

e e

e e

k
F sL Re y s J sf N K y

NK
k

u s u
NK

J J
F k y s s f J f J

NK NK

f f J f
s NJ Nf y

NK N N

J f
s s u

NK NK N


    


 


      

             
    
  

    
          

(12) 

 

 

 

 
Figure 6 : The bicausal BG model of the faulty system 

of the case 1. 

 

 

5.1.3. Bicausal BG isolability:  

The Bicausal BG isolability is performed by analyzing 

the the causal paths from the outputs to the faults. For 

the faults to be isolable, it is necessary that there are 

disjoint causal paths equal to number of faults. In other 

words, q component faults are isolable if, and only if, 

there are q disjoint causal paths from the output to the 

fault passing through the storage elements (I, C) that 

exist in the causal path. 

 

 From the Fig.6, there are only two disjoint causal 

paths from the SS: y1 to SS: F1 and, SS: y2 to SS: F2 

 

218



1

2

: 1 : :
1

: 2 : : : :

 

s e

SS y I L SS F

SS y I J C I J SS F
K

 

   
          

(13) 

then, the two faults F1 and F2 are isolable. 

 

 From the bicausal bond graph, the order of 

derivation is also obtained, it is equal to the number of 

the storage elements in the path that links the output to 

the fault:  in the expression of the fault F1, the output y1 

is derived one time n = 1, while for the fault F2, the 

output y2 is derived three times n = 3. 

 

 By following the previous conditions, one is able to 

state the same conclusion as the algebraic approach (F1 

and F2 are isolable) without any calculations. 

 

 Now, we are going to show how from BG model, 

the same equations as Eq.(12) are obtained. 

 

5.1.4. Fault indicator determination:  

The fault indicator is derived by writing causal relations 

between BG variables (constraints and characteristic 

equations). For fault F1, it is given by:  

 

 From the first 1-junction, the following equation 

can be derived  

1 1 2 3 4Fe e e e e    
               

(14) 

 

The efforts e2, e3, and e4 are expressed in function of the 

input, and the output by following the causal path 

between the former and the latter. The effort e2 is linked 

to the output SS: y1 by the causal path of the Eq.(15), 

and it is given by 
2 1e ye R f  

 

3 2 2f f e 
                

(15) 

 

 The same reasoning for the effort e3, it is given by:  

3 1y

d
e L f

dt
 . 

 The effort e4 is linked to the output SS: y2 (There is 

no path between e4 and SS: y1) by 

 

2 12 12 11 10 9 8 7 5 4yf f e e e e f f f e        

                   
(16) 

 So, the effort e4 is given by: 

 
2

2

4 2 2 2 22

e

s y s y y

k d d d
e J f f f N K f u

NK dt dtdt

 
    

   

(17) 

 

 The fault indicator eF1 takes the following 

expression: 

 
2

2

1 1 1 2 2 22

1 2

e

F e y y s y s y y

e

kd d d
e R f L f J f f f N Kf

dt NK dtdt
k d

u u
NK dt

 
     

 

 

                   (18) 

 

 From the second 1- junction, the eF2 is given by: 

 

2 5 6 7 8Fe e e e e    
               

(19) 

 Same reasoning as for fault F1, the effort e5, e6, e7, 

and e8 are given by following the causal path between 

the former and a given output. They are given by: 

 

5 1
2

2

6 2 2 2 22

3 2 2
2

7 2 2 2 23 2 2

8 2 2 2

1
.

e y

y y y

e

y y y

s y s y

e k f

fe d d d
e Js f fs f N Kf u

KN dt dtdt

J d d d d
e Js f fs f N K f u

KN dtdt dt dt

d
e J f f f u

N dt



 
    

 
 

    
 
 

   
 

                   

(20) 

 

 Thus, the expression of the fault variable F2 is: 

 3 2

2 1

2

2

2

1

1
.

e s

F e y s e e s

e s s s

e e y

e e

J J
e k f s s f J f J

NK NK

f f J f
s NJ Nf f

NK N N

J f
s s MSe

NK NK N


    


   
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(21) 

 

 To get the same algebraic equations as Eq.(12), eF1, 

eF2, Se1, MSe2, fy1, and fy2 are substituted by F1, F2, u1, 

u2, y1, and y2 respectively. 

 

5.2. Case 2 

In this case, three faults are considered, these faults are 

on R: Re, R: fe, and R: fs. The available sensors are the 

current, the rotor velocity, and the wheel velocity. 

 

 
Figure 7 : The faulty system of the case 2. 

 

5.2.1. Algebraic detectability and isolability:  

The three faults cannot be expressed with respect to 

input and the output as shown in Eq(22). 

 

 The system is not diagnosable since the state x3 is 

not observable with respect to the input and the output, 

and the three faults are neither detectable nor isolable. 
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5.2.2. Bicausal BG detectability and isolability: 

The BG model of the system with the faulty elements is 

given in integral causality in Fig.7, and in bicausal one 

in Fig.8  

 

 
Figure 8 : The bicausal BG of the faulty system of case 

2. 

 

 From Fig.8, one storage element remains in integral 

causality when the causality assignment algorithm for 

FDI is applied on the system in integral causality of 

Fig.7, so the system is not diagnosable since proposition 

1 is not satisfied. 

The faults are not also isolable even if there are three 

disjoint causal paths, which link the outputs to the 

faults. 

 

CONCLUSIONS 

It is shown in this paper that the detection and isolation 

of plant faults based on bond graph model is simpler 

than an algebraic approach. The latter is due to the fact 

that it is based on structural and graphical analysis of 

the model. The two approaches have similar results 

expect that bond graph model needs no complex 

computation compared to an algebraic approach. 
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