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ABSTRACT 
This paper discusses the use of linear programming for 
the optimal control of a cart pendulum system. The 
objective function and the constraints are designed to 
minimize the control effort and the time duration of the 
operation. Simulations and experimental tests were 
performed. Restrictions of null angle and angular 
velocity at the extremes were incorporated in the design 
specification as well as other physical constraints. In 
order to compensate for the modeling errors and 
disturbances, the optimal trajectory was kept within a 
prescribed precision by means of a closed loop system. 
The obtained results illustrate that the technique is 
simple, powerful and always conclusive. 

 
Keywords: Linear Programming, Optimal Control, 
Anti-oscillatory Control. 

 
1. INTRODUCTION 
The problem of optimal control of cranes has been 
receiving attention from the scientific community 
because of undeniable practical relevance. As pointed 
out by Sorensen, Singhose, and Dickerson (2007), the 
control schemes developed in the literature may be 
grouped into three categories: time-optimal control, 
command shaping, and feedback control. Their paper 
addresses the perturbations by feedback control and, 
since the trajectories are not known a priory, they used a 
feed-forward control in the form of an input shaping in 
order to reduce the motion-induced oscillation.  
 Several studies (Cheng and Chen, 1996; Auernig 
and Troger, 1987; Cruz, Leonardi, and Moraes, 2008; 
Chen, Hein, and Wörn, 2007; Nassif, Domingos, and 
Gomes, 2010; Garrido et al. 2008; Lee, 2004)  address 
the problem of minimum time and differ, for example, 
with respect to the model utilized, the constraints 
imposed and the performance index optimized. 

In load transfer operations by a crane, a major 
problem is optimizing the movement from origin to 
destination, satisfying constraints related to the 
equipment and to the kinematics of the movement. The 
carrier may be considered primarily as a cart-pendulum 
system, where the length of the pendulum is usually 
variable, representing the lifting. 

One difficulty in solving optimal control problems 
such as the optimal load transfer by a crane is the 
necessity of solving a two-point boundary value 

problem, i.e., with constraints on the initial and final 
states. For instance, a linear quadratic regulator 
generates an optimal control law but the final state 
cannot be pre-determined. This limitation is discussed 
e.g. by Bemporad, Borelli, and Morari (2002) and by 
Blanchini (1994). 

This work addresses the problem for known 
trajectory boundaries, which is typical for ship 
unloading operations. For this kind of problem it is 
highly desirable to have a motion planning scheme that 
ensures swing reduction and minimum time operation. 
Feedback control is used to reduce external 
perturbations and the optimal control trajectory is 
obtained by solving a simple Linear Programming 
problem. Thus, the physical constraints can be included 
explicitly in the design. In a manner similar to the 
proposed by Sorensen, Singhose, and Dickerson (2007), 
the cart kinematics is determined by means of an 
independent feedback control. 

This paper discusses the use of Linear 
Programming as an alternative for solving this type of 
optimal control problem, assuming that the system 
dynamics are linear in the state space in the discrete 
time domain. In this scenario the discrete values of the 
control vector are the free design variables and the state 
vector at any sampling time may be written as a linear 
combination of the control vector and the initial 
condition. This results in the standard structure of a 
Linear Programming (LP) problem. 

A cart-pendulum lab system was considered to 
illustrate the proposed approach. The movement cycle 
begins and ends at given positions and the load is at rest 
in both, the beginning and end of cycle. Moreover, in 
the application considered here, the lifting takes place at 
the beginning and end of the cycle with the cart 
stationary, i.e., there is no lift during cart movement.  

A more efficient strategy is obviously to perform 
lifting and cart translation simultaneously, but this work 
intended to show the potential of the methodology, 
applying it to a lab-scale system that has no motorized 
lifting. 

 
2. METHOD 
The optimal control problem of a dynamical linear 
system in the discrete time state space can be written in 
the form of a standard LP problem. 
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2.1. Linear Dynamics as LP Constraints 
Consider the dynamical system in discrete time with a 
constant sampling time T and described in the state 
space 
 

( 1) ( ) ( )= ++x A x Buk k k  (1) 
 
 For any sampling time nT we can write 
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 Note that it is possible to represent the dynamic 
model as constraints in the form of AX = B, which may 
include the initial conditions x(0) and  the final 
conditions x(n) at the nT instant 
 

( ) ( )0= −

=
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(3) 

 
where G=A  , X U=   and ( ) (0)x F xn= −B . 
 
 Note that the system dynamics was represented by 
linear constraints on the control vector. For state 
constraints in the form of inequalities of type ( ) η≥x m , 

we can write ( ) 1 (0) 1 1x F x G Um = + . Thus, 
 

1 (0) 1 1

1 1 1 (0)

1 1 1

F x G U

G U F x

A X B

η

η

+ ≥

≥ −

≥

 

(4) 
 
 To completely define the LP problem it remains to 
define a cost function which is linear on states and 
controls. The choice of cost function depends on the 
optimization problem to be solved. For example, one 
can maximize the average speed or minimize the fuel 
consumption to travel a given distance. 

The objective function can be adapted to the 
particular optimization problem to be solved. A possible 
objective in optimal control problems is minimizing the 
sum of the absolute control values at each sampling 
time. Another possibility is maximizing the average 

speed to indirectly solve the minimum time problem. 
These and other objective functions are easily written in 
the standard form of a Linear Programming problem, 
i.e., as a linear combination of the control vector. 
 
2.2. Mechanical Model 
A scheme of the cart-pendulum system used is shown in 
Fig. (1), where mT is the cart mass, mL  the load 
mass, xT the cart position and φ the load angle. 
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Figure 1: Cart-pendulum scheme 
 

 The equations of motion describing the dynamics 
of the cart-pendulum model were derived using the 
Newton-Euler formalism as described in Schiehlen 
(1997) yielding 
 

cos ,φφ φ φ− + = − −
cx l gsenT mL

 (5) 

 
where g is the gravity acceleration and c a damping 
constant. In handling anti-oscillatory problems, it is 
expected that the maximum oscillation angle be small 
(<10º). This condition leads to the approximations 

φ φ≈sen  and cos 1φ ≈ . These approximations simplify 
the equations of motion to 
 

.φφ φ− + = − −
cx l gT mL

 (6) 

 
2.3. Optimal Control 
The objective function chosen here is the control effort 
in the form of the sum of the absolute control values 

1 2+ + +u u un .  
 The standard LP formulation admits a single 
objective function but we propose an approach to 
minimize both the control effort and the time of 
operation. The minimum time is obtained by solving a 
series of minimal-effort LP problems with decreasing 
final time until constraints can no longer be satisfied. 
From (6) and defining 1x φ= , 2x φ= ,  3x xT= , 

4x xT= , =
cc

mL
 and =u xT  as the control variable, 

we get 
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with the initial condition ( ) [ ]0 0 0 00
Tx t =  and 

final condition ( ) [ ]0 0 0.25 0 Tx t f = . Based on 
the limitations of the real plant we have limited 

20.9 /maxu m s= .   
 Defining the minimum time t = tf  and assuming 
that tf  is given, consider a problem of minimizing the 
following functional subject to the two boundaries 
constraints and denote by ( )S t f this minimum-effort 
optimal control problem. 
 
min 1 2+ +u u un

u
 (8) 

 
 The following algorithm solves a series of ( )S t   
problems with a tolerance 0>ε , were x is an arbitrary 
real value, such that x t f> . 

 
01.  t1 = 0 
02.  t2 = x  
03.  while |t2-t1| > ε   
04.     t = (t1+t2)/2 
05.     if S(t) exists 
06.         t2 = t 
07.     else 
08.         t1 = t 
09.     end         
10.  end 
11.  tf = t2 
12.  u* = S(tf) 

 
 Thus u* solves ( )S t f  with a minimum time t f . 
In other words, it is a solution for simultaneous 
minimum time and minimum effort problem. 
 
2.4. Testing Apparatus 
In order to validate the numerical results and implement 
the proposed control law, it was used a Bytronic lab 
equipment that allows inverted pendulum or simple 
pendulum experiments. The schematic diagram of the 
equipment is shown in Fig. 2. 
 The pendulum consists of a 0.215 kg mass 
connected to the cart by a rod. The mass can be fixed on 
the rod at different distances from the cart. The cart 
driver has a position control system with speed 
compensation. In this loop there is access to the 
reference signal and the cart position and speed signals. 
 There is also access to the pendulum angular 
position signal (not shown in the figure). Since the 

implementation details of this internal control system 
are not well documented we chose to consider this as 
part of the cart sub-system and its transfer function was 
experimentally identified via step excitation.  A second 
order transfer function was selected as 
 

( )
2

2 22

Kn nP s
s sn n

ω

ζω ω
=

+ +
 (9) 

 
and the parameters 0.025Kn = , 31 /rd snω = , 

0.35ζ = were determined. The gain values for the 
speed and cart position sensors are 

0.25 / /Ktaco V m s=  and 0.06 /Kpot V degrees= , 
respectively. 
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Figure 2: Schematic diagram of the equipment 
 

3. RESULTS 
 

3.1. Simulation 
The state equation was discretized with a sampling time 

15T ms=  and the optimal control vector was obtained 
for N sampling periods and including the two boundary 
constraints. The rod length was set to l = 0.124m and 
after simple binary search, we found N=74 as the 
minimum number of sampling periods that still leads to 
a feasible solution. The results are presented in Fig. 3. 
 
3.2. Experimental Results 
The optimal control problem was formulated 
considering the cart acceleration as the manipulated 
variable. So  a way to impose the cart kinematics in the 
presence of modeling errors and disturbances is 
necessary. This was achieved through a state feedback 
control system with a feed-forward action for the 
acceleration as illustrated in the block diagram of Fig. 4. 
Note that, although there is a control loop, the optimal 
control itself is open loop, since there is no feedback for 
the angle trajectory. 
 The control system shown in Fig. 4 has three 
references that are consistent with each other - position, 
velocity and acceleration of the cart. The position and 
velocity are states and, therefore, their references apply 
to the loop, while the desired acceleration enters as a 
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feed-forward action through a block that contains the 
inverse plant model. The gains 1K  and 2K  are the 
gains from state feedback and were tuned interactively 
in order to obtain good tracking of the reference signals 
and for disturbances rejection.  
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Figure 3: Simulation with 74 sampling periods 

   
 Because this control loop cannot be perfect, the 
optimal control problem will contain errors because the 
cart acceleration will never be imposed with an infinite 
precision. The control system along with the trajectory 
generation and data acquisition, were implemented in 
Simulink in real time through a data acquisition board 
and Matlab Windows Target. 
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Figure 4: Cart control system 
 

 Fig. 5, 6 and 7, show a comparison between the 
computed and measured position, speed and pendulum 
angle, respectively. Thin lines were used for generated 
signals and thick lines for the real signals. Since the 
experimental apparatus does not have an acceleration 
sensor for the cart, the real acceleration is not compared 
with the optimum computed acceleration in none of the 
following cases. 
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Figure 5: Reference signal and actual cart position 
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Figure 6: Reference signal and actual cart speed 
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Figure 7: Reference signal and actual pendulum angle 

 
3.3. Sensitivity 
A change imposed on the plant model, such as a new 
mass position, modifies its response. Using the same 
optimal control vector obtained for l=0.24m we 
evaluate the sensitivity of the system response to 
variations in rod length l. Starting from l = 0.24 m 
changes of length of 15mm±  and 30 mm±  in the mass 
position were performed and the results compared to the 
optimal trajectory, while keeping the optimal control 
vector calculated for 0.24l m= . Figs. 8 to 11 show 
the effect of changing the rod length on pendulum angle 
trajectory. 
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Figure 8: Optimal response for   0.24l m=  and 

measured response   0.21l m=  
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Figure 9: Optimal response for   0.24l m=  and 

measured response   0.225l m=  
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Figure 10: Optimal response for   0.24l m=  and 

measured response   0.255l m=  
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 The results suggest that this optimal control 
problem is sensitive to modeling errors. That is, if the 
plant model is not well known the optimal trajectory 
will not be assured. This was expected as the optimal 
control is running with no feedback. 
  
3.4. Closed Loop Control 
To make the system less sensitive to the modeling 
errors and disturbances, a closed loop optimal control 
strategy was used. To do so, the angular optimal 
trajectory is used as a reference for a feedback control 
system applied to the pendulum angle. Thus, the 
optimal control signal acts as a feed-forward action and 
this control loop does just the corrections of deviations 
from the optimal trajectory. Note that modeling errors 
such as those arising from considering sinφ φ≈  and 
cos 1φ ≈  are also reduced by the feedback control. 
 Since the positioning of the cart is made by means 
of three references, it is preferable to work directly with 
the manipulated variable. The diagram of Fig. 12 shows 
the complete control system, i.e., the state feedback 
loop for the cart positioning and the closed loop control 

for the pendulum angle. The transfer function used as 
the angle controller was ( ) 25 1G s sc = +  and its 
parameters were tuned interactively to produce the best 
insensitivity to the variations of length l. 
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Figure 12: Complete control system 
 

 For evaluation of differences between the two 
methods, data was collected in both closed loop 
pendulum angle and open loop. The responses are 
shown in the Fig. 13 and 14 against the optimal angular 
trajectory generated by the LP. Fig. 13 shows the effect 
of keeping l = 0.24 m. Fig. 14 shows the effect of 
changing from l = 0.24 m to l = 0.15 m. 
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Figure 13: Cart positions, cart speed and pendulum 

angle for l=0.24 m, closed loop and open loop 
 
 In the first case, since the actual length adjusted 
was exactly the same used for the design, the closed-
loop control does not have a noticeable influence. In the 
second case, shifting the mass position to approximately 
half of the rod course, it is noted that the angular control 
loop can practically restore the original behavior of the 
reference. This is accomplished with the expenditure of 

Figure 11: Optimal response for   0.24l m=  and 
measured response   0.27l m=  
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an additional control effort. That is, even though the 
trajectory is close to the original, there is no guarantee 
that minimum possible cost is achieved. 
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Figure 14: Cart positions, cart speed and pendulum 

angle for l=0.15 m, closed loop and open loop 
 
4. CONCLUSIONS 
This paper discusses the use of Linear Programming for 
the solution of a minimum time optimal control 
problem, including simultaneously the minimization of 
control effort.  
 The approach was applied to a cart-pendulum 
system and the minimal effort problem was solved 
explicitly by means of an objective function. Since the 
minimum time problem cannot be written in the form of 
a linear combination of the control variables, it was 
solved indirectly by means of a search over the 
sampling instants. To compensate for modeling errors 
and disturbances, the trajectory was maintained by 
means of a closed loop control system with a feed-
forward action. 
 It was found that, by operating in open loop, the 
trajectory is very sensitive to modeling errors. In these 
tests, the modeling errors were deliberate and achieved 
by changing the plant dynamics by shifting the mass 
position attached to the rod. 
 The results of this study suggest that the procedure 
used  is very suitable to cases where the real plant can 
be well approximated by a linear plant model. As a 
proposal for extending this work the following 
investigations are suggested. 
 
• Use different objective functions.  
 
• Since the problem is treated in discrete time, it 

seems to be reasonably simple to extend the results 
to time-varying systems.  

 
• Use a model matching control structure so that the 

optimal control is always applied to the same plant. 

Thus, if the transfer function of the plant can be 
maintained within a certain precision, the optimal 
trajectory will be kept within a pre-established 
precision as well. 
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