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Abstract - This paper deals with multi-robots grasping problem. We present an optimal force distribu-
tion strategy for holding and manipulating objects by multiples manipulators. The force distribution issue
is formulated in terms of a nonlinear programming problem under equality and inequality constraints. In
particular, the friction constrains are transformed from non linear inequalities into a combination of linear
equalities and linear inequalities. As a result, the original nonlinear constrained programming problem is
then transformed into a quadratic optimization problem. The dynamical model of multi-robot cooperation
has been used for determining force control distribution through proportional derivative (PD) controller.
Simulation has been performed and some results are presented and discussed.
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1 Introduction

Cooperative systems are generally understood as
several coordinated robots simultaneously perform-
ing a common given task such as changing the space
position of an object, grasping an object, gripping,
lifting, lowering, releasing, withdrawing. The pur-
pose of controlling a cooperative system consists of
controlling contact forces between the environment
and the object under consideration. Several ap-
proaches in the literature have been proposed to ad-
dress the robot coordination problem. A robust con-
trol method is developed in [1] for a planar dual-
arm manipulator system. In this approach, Contact
and friction constraints for grasp conditions are con-
sidered and an optimization algorithm is developed
which minimizes the total energy E consumed by
the actuators. In [2], a robust force-motion control

strategies are presented for mobile manipulators and
force control constraints are developed using the pas-
sivity of hybrid joint rather than force feedback con-
trol. A new approach for computing force-closure
grasps of two-dimensional and three-dimensional ob-
jects was proposed in [3],[4],[5], where a new nec-
essary and sufficient conditions for n-finger grasps
to achieve force-closure property are developed. In
[6] a detailed analysis of grasping of deformable ob-
jects by a three finger hand was carried out, and
it has been proved that the internal forces required
for grasping deformable objects vary with size of ob-
ject and finger contact angle. Xydas and al [7] have
studied soft finger contact mechanics using finite el-
ement analysis and experiments. In [8], Hirai and al
proposed a robust control law for grasping and ma-
nipulation of deformable objects. They developed a
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control law to grasp and manipulate a deformable
object using a real time vision system. Cutkosky [9]
showed that grasp stability is a function of the fin-
gertip contact models and small changes in the grasp
geometry. Mason and Salisbury [10] gave conditions
for complete restraint of an object in terms of inter-
nal forces. Kerr and Roth [11] proposed a method
to determine the optimal internal forces based on
approximated frictional constraint at the object and
fingertip. Meer and al [12],Patton and al [13] de-
signed a system, which focuses on force control ver-
sus deformation control. In these systems the robot
manipulator is designed to control the deformation
of the object. In [14] Howard and Bekey developed
a generalized learning algorithm for handling of 3-
D deformable objects in which prior knowledge of
object attributes is not required. They used neural
network with mass, spring and damping constant as
input and the force needed to grasp the object as
output of the network.

The object force control needs of real-time calcu-
lation of force distribution on the robot’s effectors.
Due to the existence of more than three actuated
joints in each robot, the manipulator system has
redundant actuation leading to more active joints
than the object degree-of-freedom (6 dof). Thus,
when formulating the force distribution problem, we
find fewer force moment balancing equations than
unknown variables. So, the solution of these equa-
tions is not unique. Moreover, some physical con-
straints, that concern the contact nature, friction,
...etc , must be taken into account in the calcula-
tion of force distribution. In addition, joints torque
saturation must also be considered. Thus the Force
Distribution Problem (FDP) can be formulated as
a nonlinear constrained programming problem un-
der nonlinear equality and inequality constraints. In
this context, several approaches have been proposed
for solving such a problem,using mainly the following
four principal methods :

1. Linear-Programming (LP) Method [15],[16]

2. Compact-Dual LP (CDLP) Method [17],[18]

3. Quadratic Programming (QP) Method [19], [20]

4. Analytical Method [21],[22],[23]

A comparative study for the four cited methods
can be found in [24]. Some researchers proposed the
optimal force distribution scheme of multiple coop-
erating robots by combining the Dual with the QP

Method [25].
In this paper we propose an approach to solve the
problem of real-time force distribution for multiple
manipulators system grasping an object based on the
approach proposed in [26],[27] for an hexapod robot.
This approach consists of the combination of the QP
method with the reduction technique of problem size.
The main idea concerns the transformation of the
original nonlinear constrained problem into a linear
one, by reducing the problem size and transforming
the nonlinear constraints into a linear ones, respect-
ing some physical considerations. The rest of the
paper is organized as follows: The direct and inverse
geometrical models of the robot manipulator are pre-
sented in section 2. Section 3 concerns the force dis-
tribution problem. Problem reduction and optimal
solution are presented in section 4. Before presenting
some remarks and perspectives, a Matlab simulation
results of two cooperating manipulators is presented
in section 5 to show the efficiency of this approach.

2 Geometrical Modeling

Before presenting the direct and inverse geometrical
model, let us consider the robot architecture. Since
the robots are similar , only one robot modeling is
considered. The dual-arm manipulator system hold-
ing a common object and its architecture is shown
in figure(1) and figure(2). Every ”j” robot j=1,...,n
is grasping the object, which is located at aj dis-
tance from the center of gravity of the object. The
angle φj represents the orientation of the coordinate
frame (x1,j , y1,j , z1,j) fixed at the base of the robot
and the world ground coordinate frame (X,Y, Z).
Multiple manipulators system is considerated as an
arborescent robot comporting some closed loops. So
to study this kind of robots we use the method de-
fined by Khalil and Kleinfinger [28].

The transformation matrix from ith joint’s at-
tached coordinate frame to the (i-1)th joint’s at-
tached coordinate frame is given by figure (3):

i−1T i = R(Z, γ)T (Z, b)R(X,α)T (X, d)R(Z, θ)T (Z, r)
(1)

The table (1) describes the transformation from
the world ground coordinate frame (X,Y, Z) to the
coordinate frame at the contact point ”6” of each
robot”j”, j=1,...,n

The transformation provides the exact position of
the contact point”6” of each robot in the absolute
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Figure 1: Geometrical parameters of multiple
manipulators system

Figure 2: Exemple of multiple manipulator sys-
tem
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Figure 3: Geometrical model

coordinate frame fixed at the ground which is given
by :

RT6 =R T0
0T

1
1T

2
2T

3
3T

4
4T

5
5T 6 (2)

When the position and the orientation of the last
coordinate frame fixed to the end of each robot”j”

frame α d θ r b γ

object α d θ r h β

robot(1) 0 OP1 θ1,1 0 0 0

robot”j” 0 OPj θ1,j 0 0 0

robot”n” 0 OPn θ1,n 0 0 0

Table 1: Geometrical parameters of the system

frame α d θ r b γ

joint”1” 0 aj θ1 0 0 φj

joint”2” 0 0 θ2 + π/2 0 0 0

joint”3” π/2 0 0 r3 0 0

joint”4” 0 0 θ4 r4 0 0

joint”5” −π/2 0 θ5 0 0 0

joint”6” π/2 0 θ6 0 0 0

Table 2: Geometrical parameters of the jth
robot

U0 are known

U0 =



sx nx ax Px
sy ny ay Py
sz nz az Pz
0 0 0 1


 (3)

The values of the joints coordinates θi,j where :
θi,j (i = 1, 2, 3, 4, 5, 6) (j = 1, .., n)
are given as follow:




θ1,j = arctan(Py/(−Px+ d1))
θ2,j = arctan(Pz − r1)/

(C1(Px− d1) + S1Py))
r3,j = C2(C1(Px− d1) + S1Py)+

S2(Pz − r1) −R4 − l2
θ4,j = arctan((S1ax− C1ay)/

(S2(C1ax+ S1ay) − C2az))
θ5,j = arctan((C4S2(C1ax− S1ay)−

C4C2az + S4(C1ay − C1sy))/
(C2(C1ax+ S1ay) + S2az))

θ6,j = arctan((−S4(−S2(C1ax− S1ay)+
C2sz + C4S1sx− C1sy))/
(C5(−C4S2C1sx− S2S1sy + C2sz)
+S4(S1sx− C1sy)−
S5(C1C2sx+ S1C2sy + S2sz))

(4)

Remark : S*=sin(*); C*=cos(*); (Px = Px,j , Py =
Py,j , Pz = Pz,j), are the coordinates of the point ”6”
of the jth robot expressed in (X,Y, Z). by using the
Roulis, Tangage and Lacet (RTL) angles ,the desired
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position can be found as follow:


 sx nx ax
sy ny ay
sz nz az


 =


 CφCθ CφSθSψ − SφCψ
SφCθ SφSθSψ + CφCψ
−Sθ CθSψ

CφSθCψ + SφCψ
SφSθCψ − CφSψ
CθCψ .(5)
The Jacobian matrix developed above is sometimes
called the geometric Jacobian to distinguish it from
the analytic Jacobian, denoted by Ja(q), which is
based on a minimum representation for the orienta-
tion of the effector’s coordinate frame X = [xp xr]

T .
A representation of the situation of coordinate frame
Rn in R0, where xp represents the three coordinates
operational position and xr is the coordinate op-
erational orientation, the operational velocities are
Ẋ = [ẋp ẋr]

T however we must find the relationship
between these velocities and velocity vectors 0Vn

0ωn

as follow :

[
ẋp

ẋr

]
=

[
Ωp 03

03 Ωp

] [
0Vn
0ωn

]
= Ω

[
0Vn
0ωn

]
(6)

[
ẋp

ẋr

]
= Ω0Jnq̇ = Jaq̇ (7)

In general, the sub matrix Ωp is equal to the uni-
tary matrix I3 because the operational coordinates
of position are simply the Cartesian coordinates of
the position of the tool. In contrast, the matrix Ωr

depends on the choice of the operational coordinates
of rotation, as it is defined, the orientation vector
we chose is xr = [φ θ ψ]T : representing the rotation
called : roll, pith, and yaw (PRY). in this case [KHA
99]:

Ωr =


 Cφtgθ Sφtgθ 1

−Sφ Cφ 0
Cφ/Cθ Cφ/Cθ 0




we can show that,we have singularity when θ =
+ − π/2 .

3 Force Distribution Problem

3.1 Problem Formulation

The force system acting on the object is shown in
figure (4). For simplicity, only the force components
on the contact point are presented.

Figure 4: Orientation of coordinate frame

In the general case, rotational torques at the con-
tact are neglected. Let (x0, y0, z0) be the coor-
dinate frame in which the object is located and
(x6,j , y6,j , z6,j) denote the coordinate frame fixed at
the contact point of the jth robot. The (x6,j , y6,j)
plane which is assumed to be parallel to the (x0, y0)
plane and its z axis is normal to the surface of the
object. F = [FXFY FZ ]T and M = [MXMYMZ ]T

denote respectively the object force vector and mo-
ment vector, which results from the gravity and the
external force acting on the object [29],[30],[31] and
[32]. Define fx,j , fy,j , and fz,j as the components of
the force acting on the supporting robot ”j” in the
directions of x0, y0 and z0, respectively. The number
of cooperative robots, can vary between 2 and 3 for
this studies. The object’s quasi-static force/moment
equation can be written as

{ ∑n
j=1 f j = F∑n
j=1 OP j ∧ f j = M

(8)

where OP j is the position vector joining contact
point of the robot ”j” and the gravity center of the
object. The general matrix form of this equation can
be written as:

AG =W (9)

with:



G = [f T
1 f T

2 · · · f T
n ]T ∈ ℜ3n

f T
j = [fx,j fy,j fz,j ]

T ∈ ℜ3

W = [FT M T ]T ∈ ℜ6

A =

(
I 3 . . . . . . I 3

B1 . . . . . . Bn

)
∈ ℜ6×3n

B j ≡ ÔP j ≡


 0 −Pz,j Py,j

Pz,j 0 −Px,j

−Py,j Px,j 0


 ∈ ℜ3×3

where I 3 is the identity matrix and G is the robots
force vector, corresponding to three (G ∈ ℜ9) .A
is a coefficient matrix which is a function of the

4

182



positions of the cooperative robots, and B j is a
skew symmetric matrix consisting of (Px,j , Py,j , Pz,j),
which is the position coordinate of contact point of
the multi-robot systems robot ”j” in (x0, y0, z0). W

is a total body force/moment vector. It is clear that
(9) is an undetermined system and its solution is
not unique. In other words, the robots forces have
many solutions according to the equilibrium equa-
tion. however, the robot forces must meet the needs
for the following physical constraints, otherwise they
become invalid :

1. Supported object should not slip when the
robots move. It results in the following con-
straint:

√
f2

x,j + f2
y,j ≤ µ fz,j (10)

where µ is the static coefficient of friction of the
surface of the object

2. Since the robots forces are generated from the
corresponding actuators of joints, the physical
limits of the joint torques must be taken into
account. It follows that :

−τjmax ≤ J T
j

jA0j


 fx,j

fy,j

fz,j


 ≤ τjmax (11)

for (j = 1, ..., n), where J j ∈ ℜ3×6 is the Ja-
cobian of the robot ”j”, τjmax ∈ ℜ6×1 is the
maximum joint torque vector of the robot ”j”,
and A0j ∈ ℜ3×3 is the orientation matrix of
(x6,j , y6,j , z6,j) with respect to (x0, y0, z0).

3. In order to have definite contact with the object,
there must exist a fz,j such that :

fz,j ≥ 0 (12)

In the following, we propose an approach for
problem size reduction, linearization and solv-
ing for the three manipulators case. Clearly, it
is difficult to solve such a nonlinear program-
ming problem for real-time multi-robots force
distribution with complex constraints.

3.2 Problem Size Reduction

The equation (10) is a formulation of the friction
cone figure(5). In order to overcome the non lin-

O

fx

fz

inscribed

pyramid

friction

cone

fy

Figure 5: conservative inscribed pyramid

earities induced by the following equations, most re-
searches substitute this friction cone by the inscribed
pyramid [16],[33],[19],[34]. Thus, the nonlinear fric-
tion constraints are approximately expressed by the
following linear inequalities :

fx,j ≥ µ́ fz,j , fy,j ≥ µ́ fz,j , j = 1, ..., n (13)

where µ́ =
√

2µ
2 is for the inscribed pyramid.

Thus, the initial non linear constrained program-
ming problem, substituting the non linear constraint
Eq(10) by the linear one of Eq(13), becomes a lin-
ear programming problem [16],[17], and [19]. The
possibility of slipping can be minimized, by optimiz-
ing the ratio of tangential to normal forces at the
robot. This leads Liu and Wen [22] to find the re-
lationship between the robot forces and transform
the initial friction constraints from the nonlinear in-
equalities into a set of linear equalities. Let us define
the global ratio by the ratio of the tangential to nor-
mal forces at the object. The advantage of the exist-
ing methods lies in the fact that part of component
of the robots forces satisfy the global ratio relation
ship and lets the other components satisfy the lin-
ear inequality constraints as Eq (13). For example,
defining fx,j (j = 1, ..., n) and fy,j (j = 1, ..., n),
for a robot j. Chen et al [1], show that :

fx,j = kxzfz,j , (i = 1, ..., n) (14)

fy,j ≤ µ⋆fz,j , (i = 1, ..., n) (15)

where kxz = FX

FZ
is the global ratio of forces at the

object in direction of x0 and z0. µ
⋆ is the given coef-

ficient for friction constraints. According to Eq(10),
we have µ⋆ =

√
µ2 − k2

xz . Finally, the force dis-
tribution problem is transformed into a linear one by
replacing Eq (6) with Eqs (10) and (11).

5

183



3.3 Problem transformation and Contin-

uous solution

In modelling these systems, we consider that three
robots grasp the object at a time. so G and A

become a vector of 9 × 1 and a matrix of 6 × 9,
respectively. Expression (9) contains nine unknown
variables with six equations. By adding the Eq (14)
to the Eq (9) we obtain nine equations.

AG = W (16)

with :

A =




I 3 I 3 I 3

B1 B2 B3

1 0 −kxz 0 0 0 0 0 0
0 0 0 1 0 −kxz 0 0 0
0 0 0 0 0 0 1 0 −kxz




G =


 f 1

f 2

f 3


 W =




F

M

0
0
0




Using some rows combination of the matrix A, Eq
(16) can be written as :

ÂG = Ŵ (17)

With: Â =




1 0 0 1 0 0
0 1 0 0 1 0
1 0 −kxz 0 0 0
0 0 0 1 0 −kxz

−Py,1 Px,1 0 −Py,2 Px,2 0
Pz,1 0 −Px,1 Pz,2 0 −Px,2

0 0 0 0 0 0
0 −Pz,1 Py,1 0 −Pz,2 Py,2

1 0 0
0 1 0
0 0 0
0 0 0
1 0 −kxz

−Py,3 Px,3 0
Pz,3 0 −Px,3

0 −Pz,3 Py,3




Ŵ =




FX

FY

0
0
MZ

MY

0
MX




where Â ∈ ℜ8×9 is the resulting matrix of A af-
ter combination. G ∈ ℜ8 is the robots force vec-
tor. Ŵ ∈ ℜ8 is the resulting vector of W after
combination. Thus, the force distribution problem
is subjected to the inequality constraints expressed
by (11), (12) (14).

4 Quadratic Problem Formulation

and Solution

The solution to the inverse dynamic equations of this
system is not unique, but it can be chosen in an opti-
mal manner by minimizing some objective functions.
The approach taken here consists of minimizing the
sum of the weighted torque of the robot, which re-
sults in the following objective function [20],[25],[35]
:

fG = pTG +
GTQG

2
(18)

with:

pT = [τ̂T
1 JT

1 ......., τ̂
T
n JT

n ] ∈ ℜ3n

Q =




J1q1J
T
1 . . . 0

...
. . .

...

0 . . . JnqnJ
T
n


 ∈ ℜ3n×3n

where τ̂j is the joint torque vector due to the weight
and inertia of the robot ”j”, Jj is the Jacobian of
the robot ”j”, and qj is a positive definite diago-
nal weighting matrix of the robot”j”. This objec-
tive function is strictly convex. Because the time for
obtaining a solution does not depend on an initial
guess, a quadratic programming is superior to lin-
ear programming in both speed and quality of the
obtained solution [20]. The general linear-quadratic
programming problem of the force distribution on
robot is stated by :

pTG +
GTQG

2
(19)

ÂĜ = Ŵ (20)

BĜ ≤ C (21)

where G ∈ ℜ9 is a vector of the design variables. It
should be pointed out that the expression (21) is the
resulting inequality constraints for the combination
of equations (11),(12) and (15) where :

6
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B = [BT
1 BT

2 BT
3 BT

4 ]T ∈ ℜ9×24

C = [τ1max .. τ6max − τ1max .. −
τ6max 0 0 0 0 0 0]T ∈ ℜ24

with

B1 =


 JT

1 R1 0 0

0 JT
2 R2 0

0 0 JT
3 R3


 ∈ ℜ9×9

B2 =


 −JT

1 R1 0 0

0 −JT
2 R2 0

0 0 −JT
3 R3




B3 =


 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 −1




B4 =


 0 1 −µ⋆ 0 0 0 0 0 0

0 0 0 0 1 −µ⋆ 0 0 0
0 0 0 0 0 0 0 1 −µ⋆




In Eq (20), we have eight linear independent equa-
tions with nine unknown variables. By using Gauss
algorithm, this equation is transformed as follow :

[I8 Âr]

[
Ĝb

Ĝr

]
= Ŵr (22)

where I 8 ∈ ℜ8×8 identity matrix, Âr ∈ ℜ8 is the
remaining column of the matrix Â after transforma-
tion. Ĝb ∈ ℜ8 is the partial vector of G. Ĝr ∈ ℜ is
the unknown element of Ĝ which denotes the design
variable. Ŵr ∈ ℜ8 is the resulting vector of Ŵ after
transformation. Equation (22) may be rewritten by
the following form

I8Ĝb + ÂrĜr − Ŵr = 0, (23)

Which yields to

Ĝb = Ŵr − ÂrĜr. (24)

Finally, it results in

G =

[
Ĝb

Ĝr

]
=

[
Ŵr

0

]
+

[
−Âr

1

]
Ĝr. (25)

Now let Ĝ0 = [Ŵ
T

r 0]T ∈ ℜ8 and N =

[−Â
T

r 1]T ∈ ℜ9, then Eq (25) becomes

G = Ĝ0 + NĜr. (26)

Substituting Eq (26) into Eqs (19) and (21), the
linear quadratic programming problem can be ex-
pressed by :

minimize f(Ĝr), (27)

subject to BNĜr ≤ C−BĜ0. (28)

where

f(Ĝr) = pT Ĝ0 + 1
2Ĝ

T

0QĜ0 + pTNĜr

+1
2Ĝ

T

0 QNĜr + 1
2Ĝ

T

r NTQĜ0

+1
2Ĝ

T

r NTQNĜr

Since Ĝr is a single variable denoted by x, the opti-
mal force distribution can be written as :

minimize a0x
2+a1x+a2 subject to x ∈ [b1 b2]

(29)

With

a0 = 1
2N

TQN

a1 = pTN + 1
2Ĝ

T

0 QN + 1
2N

TQĜ0

a2 = pT Ĝ0 + 1
2Ĝ

T

0 QĜ0

Where [b1 b2] denotes the bound resulted from
Eq(28). Since it is clear that a0 ≥ 0 because of the
positive-definite matrix Q, There must be an optimal
solution for the force distribution problem.

5 Robot dynamic modeling

For each robot, the serial robot dynamic model [28],
[36], is given by the following equations :

Γ = f (θ, θ̇, θ̈) = M(θ)θ̈ + C(θ, θ̇)θ̇ + Q(θ) + JT f

(30)

C ∈ ℜ6×1,Q ∈ ℜ6×1 and JT f ∈ ℜ6×1.Where,

• θ, θ̇ and θ̈ are, respectively, the generalized co-
ordinate, speed and acceleration vectors,

• M(θ), n × n matrix representing the inertia of
the robot,

• C(θ, θ̇), n × 1 vector representing coriolis and
centrifuge terms,

• Q(θ), n× 1 vector of gravity terms

• JT , jacobian matrix of the robot

• f, force acting on the supporting robot ”j”

7
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Equation 30 can be written as follows :

Γ = M(θ)θ̈ + H(θ, θ̇) + JT f (30)

with :

H(θ, θ̇) = C(θ, θ̇)θ̇ + Q(θ)

By setting θ̈ and f to 0, we can compute H(θ, θ̇)
using Newton-Euler algorithm.

5.1 Object Dynamic

Consider an object of mass m0 being carried by
the two manipulators, so when the load is grasped
by the end-effectors of robots , the force exerted
from the tips of the manipulators act to translate or
rotate the object in any direction, then the dynamic
model of the object is given by :

(
m0I3 0

0 ϕ0

) (
γ0,0

ω̇0,0

)
+

(
−m0g0

ω0,0 ∧ (ϕ0ω0,0)

)
=

(
F

M

)
(31)

F and M are given by the following equations.

{
F =

∑6
j=1 F0

1,j

M =
∑6

j=1(C
0
1,j + P0

01,j ∧ F0
1,j)

(32)

where :

• γ0,0 and ω0,0 be, respectively, the object lin-
ear and angular accelerations in the coordinate
frame (x0, y0, z0).

• F0
1,j , the force applied by the robot ”j” at the

articulation ”6” on the object ”0”.

• C0
1,j , the moment applied by the jth robot in

the articulation ”6” on the object.

• P0
01,j , the distance between the articulation ”6”

of the jth robot and the origin of the coordinate
frame (x0, y0, z0) expressed in the same coordi-
nate frame.

• m0 and ϕ0 are, respectively, the mass and the
inertia matrix of the grasped object.

• I3, the identity matrix (3 × 3).

• g0 : gravity vector

6 Systems Dynamic Joint Con-

trol

Let us define Xd(t), the desired trajectory for
the arm motion. To ensure trajectory tracking
by the joint variable errors and the optimal force
distribution algorithm, computed torque control
is used for robots joint level control (figures 6
and 7).

with;

Xd
0 = [Px0, Py0, Pz0, θ0, φ0, ψ0]

Xd
1 = [Px1, Py1, Pz1, θ1, φ1, ψ1]

Xd
2 = [Px2, Py2, Pz2, θ2, φ2, ψ2]

where:

Xd
0 , X

d
1 and Xd

2 denote respectively the desired
p osition and orientation of object, robot1 and
robot2

e(t) = Xd −X(t) (33)

Then, the overall robot arm input becomes:

Γ = AJ−1(Ẍ− J̇θ̇) + H (34)

X (t) = Ẍ + kv(Ẋd − Ẋ) + kp(Xd −X) (35)

This controller is shown in figures (6) and (7)

6.1 Choice of PD Gains

It is usual to take the n × n matrices diagonal
so that:

kv = diag[kvi], kp = diag[kpi]

and kpi = ω2
n, kpi = 2ξωn with ξ the damping

ratio and ωn the naturel frequency.
The PD gains are usually selected for critical
damping ξ=1. Then, to avoid exciting the res-
onant mode, we should select natural frequency
to half the resonant frequency ωn < ωr/2.
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Figure 6: System overall control

Figure 7: Torque control of the robot ”j”

7 Simulations

In order to show the effectiveness of proposed
approach, we consider two identical 6-DOF ma-
nipulators handling a rigid object in a task
space. The base of each robot is located
at a distance a1 see figure(2), We denote Xi

∈ ℜ6 where: Xi=[Pxi, Pyi, Pzi, θi, φi, ψi]
T The

end-effector position of robot i is designed by:
[Pxi, Pyi, Pzi]

T , while the orientation is repre-
sented by [θi, φi, ψi]

T . Furthermore the load vec-
tor coordinates (generalized forces) at the object
is known. The values of masse m(i) in Kg, the
moment of inertia Ix(i), Iy(i),Iz(i) in Kg.m2

and the lenghts in meter of different links of each
robot used in simulation , are given in table (3)

and µ = 0.05 is the static coefficient of friction.

Link”i” Ix(i) Iy(i) Iz(i) m(i) Kg l(i)

Link”1” 0.01 0.05 0.06 25 1

Link”2” 0.1 0.2 0.3 30 0.75

Link”3” 0.4 0.4 0.2 15 0.50

Link”4” 0.3 0.5 0.01 4 0.25

Link”5” 0.01 0.6 0.03 4 0.10

Link”6” 0.2 0.2 0.6 2 0.1

Table 3: Physical parameters of the robot

Some simulations were conducted with Matlab.
We consider that the desired trajectory of the
object in the operational space is given as fol-
lows : x = 1 + 2.5.sin(0.3)t,
y=−3 + 2.t, z=robj=r1 + sin(2.t), θ(t)z=π/2 +
1.5.sin(t) is the rotation about the ox axis and
αx(t)= π/2+0.5.sin(0.3t) the rotation about the
oy axis. τj = [10 10 10 10 10 10]T is the maximum
joint torque vector and For the objective func-
tion Eq (18), the weighting matrix are choosen
as follow : p = 0and Q = I (the identity ma-
trix).
The figure 8 shows the trajectory of the object
in the X-Y-Z supported by the two robots.

−2 0 2 4 6 8

−5

0

5
0

0.5

1

1.5

2

2.5

3

X−atelier
Y−atelier

Z
−

a
te

li
e

r

Robot1

Object Robot2

Figure 8: View of the object suported by tow robots

The associated joints coordinates are obtained
by using the direct and inverse geometric model
(Eq (2)and Eq (3)). The Figure (9.a) and (9.b)
show respectively the profiles of the position Px,
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Py, Pz and orientation θ, φ, ψ of the grasped
object in the operational space.
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Figure 9: Computed position and orientation of
robot1

However the position Px, Py, Pz and ori-
entation θ, φ, ψ respectively of robot1 and
robot2 are presented in Figures (10.a),(10.c)
and (11.a),(11.c). The figures (10.b),(10.d),
(11.b),(11.d),(12.c),(12.d) and (13.c),(13.d)
demonstrates convergence of corresponding
signals illustrated in figures cited above. In the
figures (14.a) and (14.b) the force distribution
acting respectively by robot(1) and robot(2)
on the grasped object are given. We can show
that, this distribution validate the following
force equilibrium equation :

Σfxj = Fx, ,Σfyj = Fy, Σfzj = Fz

Elsewhere, the z-force components fzj are never
negative, respecting the contact constraint . We
can also show that the constraint Eq (10) are
always satisfied as shown in figure (14c). and
(14d) for the robot(j) ,j=1,2 where the curve
fx2

j + fy2
j is always under the curve µ2fz2

j
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Figure 10: Computed position and orientation of
robot2
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Figure 11: Position and orientation of the grasped
object

8 Conclusion

In this paper, the force distribution problem has
been presented in the case of multiple manipu-
lators system grasping a same object. First, the
robot inverse and direct geometric models are
presented. Then, the real time force distribu-
tion problem are formulated in terms of non lin-
ear programming problem. After problem size
reduction and transformation, the initial prob-
lem is solved in terms of quadratic programming
problem. After then, we present the develop-
ment for real-time operational space control of
the system.Finally, Simulations results are pre-
sented in order to show the effectiveness of the
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Figure 12: Joints coordinates of the robot2
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Figure 13: Joints coordinates of the robot1

proposed approach. Actually, we are working
on the generalization of this approach for n > 3
robots case.
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