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ABSTRACT 
A useful decomposition of the input and output variable 
spaces is obtained by using the relationships supporting 
Partial Least Squares Regression (PLSR). The resulting 
technique is capable to classify faults or anomalies 
according to four types: those associated to 
measurements of input variables, those related to 
measurements of output variables, those linked to the 
inner latent structure of the complex processes data and 
those related to upsets that follow its correlation 
structure. This classification is suggested by the 
different subspaces in which the whole measurement 
space can be decomposed by using PLSR modeling and 
specific statistics actuating on each subspace. Hence, 
using an in-control PLSR model, the tool is able to 
detect anomalies and to diagnose its kind. The approach 
can be used for monitoring closed loop systems and to 
detect abnormal controller functioning. Several features 
of the proposed classification technique are analyzed 
through static and dynamic simulation examples. 

 
Keywords: PLSR, space decomposition, multivariate 
process monitoring, fault detection indexes. 

 
1. INTRODUCTION 
The need for associating input and output data sets 
obtained by online data login of several variables 
originated in complex processes constitutes a problem 
that requires increasing attention. Monitoring strategies 
are used in industry to detect and diagnose abnormal 
processes behavior. Fault detection indices are lately 
being proposed to indicate abnormalities in process 
operations: a fault signal appears basically when one 
single or combined index goes beyond its control limit. 
After a fault is detected, the need of having a diagnostic 
about its cause becomes almost mandatory. Typically, 
this diagnostic is performed by analyzing the 
contributions made by each measured variable to the 
index has given the alarm. 

Lately, PLSR has become a powerful approach to 
find multivariable linear structures in the data, mainly 
because significant co-linearity, which is frequently 
implicit in there, can be adequately overcome. 

Nowadays, the chemical process industries appeal 
to multivariable control technologies for controlling 
complex multi-input multi-output (MIMO) processes 
systems.  However, in general, it is clear that not only 
multivariable control systems but also traditional multi-

loop control systems must be monitored for improving 
quality and performance standards and for stabilizing 
production throughputs. Hence, monitoring medium or 
large processes to detect abnormalities or undesirable 
low performances has become an important research 
field.  

As mentioned before, the multivariate nature of 
most processes frequently shows highly correlated 
variables. However, they usually move in an effective 
subspace of lower dimension, this is because latent 
variable (LV) methods can transform noisy and 
correlated data into a smaller informative set free of ill-
conditionings. Since PLSR lays on a reduced set of 
input-output LV’s, it allows fitting a MIMO linear 
model using an identification data set that might have 
been originally ill-conditioned. 

Lately, some applications based on PCA/PLS are 
being done through data acquisition systems collecting 
measurements directly from the plant. An important 
contribution in this area was provided by AlGazzawi 
and Lennox (2009), who investigated the ability of 
multivariate statistical process control (MSPC) 
techniques to monitor industrial model predictive 
control (MPC) systems. This has also encouraged the 
development of a data-driven LV-MPC method, where 
PLSR is used for fitting a multi-step ahead prediction 
model and the MPC is then implemented in the space of 
the LV’s (Laurí et al., 2010). This type of works 
confirms the actual efforts to improving the way of 
managing multivariable data sets.  

This work attempts a contribution in this area by 
providing an online data processing technique capable 
of orientating process engineers towards the main 
causes of alarming faults signals and undesirables 
performances. Hence, the presentation is as follow: in 
Section 2 we recall the main relationships arising when 
developing a PLSR model; in particular the Sub-section 
2.1 formalizes the PLSR implicit decomposition and 
describes several geometric properties useful for better 
understanding of the contribution. In Section 3 the main 
statistical tools are introduced and their roll in the 
measurement decomposition is described. Sub-section 
3.2 and the numerical application example in Sub-
section 4.1 have a core importance in understanding the 
proposed technique. Sub-section 4.2 presents a more 
realistic case through the application to a non-
isothermal continuous stirred tank reactor (CSTR). 
Finally, the conclusions are given in Section 5. 
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2. PLSR MODELING  
The PLSR model developed here is calculated by 
simultaneously deflating the data matrices, using the 
classical PLS-NIPALS algorithm (Geladi and 
Kowalski, 1986). This procedure gives better results for 
multivariate prediction and for process monitoring that 
others alternative PLS algorithms (Gang et al., 2010). 
Besides, the simultaneous deflation on both data 
matrices allows the detection of predictor variables that 
can play an interfering effect (Godoy et al., 2011).  

Given a predictor matrix X=[x1 ... xN]´ (N×m), 
consisting of N samples with m variables per sample, 
and a response matrix Y=[y1 ... yN]´ (N×p), with p 
variables per sample, PLSR can be used to find a 
regression model between the measurement vectors 
x=[x1…xm]´ and y=[y1…yp]´, even when their 
correlation matrixes (Rx and Ry) are both positive semi-
definite (i.e. X and Y have collinear variables). The 
method projects X and Y onto correlated low-dimension 
spaces defined by a common (small) number of A latent 
variables. The implicit objective of the PLS-NIPALS 
algorithm in each a-run is to find the solution of the 
following problem: 
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max . . 1, 1
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where Xa and Ya are the deflated a-versions of X1=X 
and Y1=Y.  
 This provides an external, an internal, and a 
regression model. The external model decomposes X 
and Y in score vectors (ta and ua), weight vectors (pa 
and qa), and residual error matrices ( iX  and i 2Y ), as 
follows: 
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where [ ]1... A=P p p , [ ]1... A=Q q q , [ ]1... A=T t t , and 

[ ]1... A=U u u  are orthogonal by columns. Call to the 
pseudo-inverse of  ( ); then, the 
prediction of T is directly obtained from Eq. (2), as: 

, because the row space of 

R
′P ′ ′= =P R R P I

=T XR iX  belongs to the 

null-space of the linear transformation , i.e. ′R i 0=XR  
(Meyer, 2000). If  is the compact singular 
value decomposition (SVD) of , then 

A A A′ =P W Σ V′
′P

1( ) A A A
− −′= =R P V Σ W′  where −  denote a generalized 

inverse (Meyer 2000). Equivalently, from Eq. (3),  is 
the pseudo-inverse of  (

S
′Q ′ ′= =Q S S Q I ), and since 

, then: . For the internal model, ta is 
linearly regressed against the y-score vector ua, i.e.: 
i 2 0=Y S =U YS

 

1
ˆ , ( ... )Adiag b b= + = + =U TB H U H B         (4) 

where b1…bA are the regression coefficients determined 
by minimization of the residual matrix H. Then, the 
following X-Y regression model is obtained: 

 
i

l
i i2 1′ ′= + + = + +Y XRBQ HQ Y Y Y Y2  (5) 

 
where i 2 ′= −Y Y YSQ  and . Also, i

l

1 ′= −Y YSQ Y
l =X XRP'  verifies:   

 
                        l l′ ′= =XRBQ XRBQ Y                (6) 

 
The selection of A is determined by supervising the 

simultaneous deflation of X and Y. 
 

2.1. PLS decomposition of the input and output 
spaces 

After synthesizing an in-control PLSR model, the 
measurement vectors  and m∈x \

p∈y \  can be 
decomposed as described in the following Lemma (see 
Proof 1 in Appendix). 
Lemma 1. Call ⊥P R

Π  ( ⊥Q S
Π ) the projector on the 

model subspace { } mSpan ⊆P \  ( { } pSpan ⊆Q \ ), 

along the residual subspace  ({ }Span ⊥R { }Span ⊥S ). 
Then: 

 
            , ,⊥ ⊥′ ′= = −

P R R P
Π PR Π I PR                   (7) 

, ,⊥ ⊥′ ′= = −
Q S S Q

Π QS Π I QS                    (8) 

 
where ⊥  denotes the orthogonal complement of the 
subspace. 

From Lemma 1, we propose the following theorem 
on the PLS decomposition (see Proof 2 in Appendix). 

Theorem 1. Input and output variable spaces can be 
decomposed (by PLSR) in complementary oblique 
subspaces, with both modeled subspaces interrelated 
according to: 

 
ˆ m= + ∈x x x� \ , 

{ }ˆ MXS Span′= ∈ ≡x PR x P ,              

( ) {ˆ RXS Span }⊥′= − = − ∈ ≡x x x I PR x R�   (9) 
*

2ˆ p= + ∈y y y� \ , 

{ }*ˆ MYS Span′= ∈ ≡y QS y Q ,  

( ) {*
2 ˆ RYS Span }⊥′= − = − ∈ ≡y y y I QS y S�    (10) 

*
1ˆ ˆ ,= +y y y�  

ˆ ˆ MYS′= ∈y QBR x , 
                 *

1 ˆ ˆ MYS′ ′= − = − ∈y y y QS y QBR x�     (11) 
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The x and y modeled projections are related to the 
latent spaces and to each other, as follows: 

 
ˆ ˆ ˆ ˆ ˆ ˆ, , ,′ ′ ′= = = = = =t R x P x u Bt S y x Pt y Qu,

] ]

)

    (12) 
 

where  and  are the latent 
coordinate vectors on the model hyper planes. Hence, 
their correlation matrixes are related through: 

1[ At t ′=t " 1ˆ ˆ ˆ[ Au u ′=u "

 
1

1( 1) ( ... AN diag λ λ− ′= − =Λ T T ,  (13a) 
1

1
ˆ ˆ( 1) ( ... AN dia )g δ δ− ′= − = =Δ U U BΛB , (13b) 
1

ˆ
ˆ ˆ( 1)N − ′ ′= − =xR X X ΛPP               (14a) 

1
ˆ

ˆ ˆ( 1)N − ′ ′= − =yR Y Y QΔQ   (14b) 
 

where λi and δi are the estimated variances of ti and , 
respectively. 

ˆiu

Figure 1 illustrates all the geometric properties 
mentioned in this work. Each measurement vector is 
decomposed and their projections are compared with 
their limits. 

 
Figure 1: Induced PLS-decomposition with their 
relations and control limits. 
 
3. PROCESS MONITORING BASED ON PLSR 
3.1. Fault detection indexes 
The multivariate process monitoring strategy uses 
statistical indexes associated to each subspace for fault 
detection. Based on the in-control PLSR model, we can 
analyze any future process behavior by projecting the 
new x and y measurements onto each subspace. Thus, 
for detecting a significant change in SMX, the following 
Hotelling’s T2 statistic for t is defined: 

 

( ) ( )
2 222 1 2 1 2 1 2 ˆtT − − −′= = =Λ t Λ R x Λ P x′           (15) 

 
When a new special event (originally not 

considered by the in-control PLS model) occurs, the 
new observation x will move out from SMX into SRX. The 
squared prediction error of x (SPEX), or distance to the 
x-model, is defined as: 

 

( ) 22
XSPE ′= = −x I PR x�   (16) 

 

Then, SPEX can be used for detecting a change in 
SRX. Similarly, the T2 statistic for , is given by: û

 

( )
222 1 2 1 2ˆuT − − ′= =Δ u Δ S ŷ .  (17) 

 
In the same way, this statistic can be used for 

detecting changes in SMY, and the distance to the 
regression model in SMY is defined by: 
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and the distance to the y-model in SRY is defined as: 

 

( ) 22
2 2YSPE ′= = −y I QS y� .  (19) 

 
Frequently,  and  are singular. Then, the x̂R ŷR

generalized Mahalanobis’ distance for  and  are:  x̂ ŷ

ˆ ˆx

ˆ ˆ

 
ˆ ˆD −′=x x R x ,   (20a) 

ˆ ˆD −′=y yy R y .   (20b) 
 

Besides, Proof 3 in Appendix demonstrate the following  

Theorem 2. The metrics on , ,  or  are 
equivalents, i.e.: . 

x̂ t û ŷ
2 2

ˆ ˆt uD T T D= = =x y

The above theorem 2 tells that output variables can 
be monitored through a PLSR-based metric of the input 
variables. Therefore, we propose monitoring using four 
non-overlapped metrics (SPEX, Tt

2, SPEY1, and SPEY2) 
which completely cover both measurement spaces, each 
one on a different subspace. 

 
3.2. Fault diagnosis by means of alarmed subspaces 

An anomaly is a change in the measurements 
following or not the correlation structure captured by 
the PLSR model. If the change produces an out-of-
control point, the anomaly source can be classified 
according to a) an excessively large operation change of 
the normal operation; b) a significant increase of 
variability; c) the alteration of cross-correlations, and d) 
sensor faults. Cases a) and b) involve changes in the 
measurement vector following the modeled correlation 
structure; while cases c) and d) involve changes in some 
variables altering the correlation pattern with the others. 
In fact, an abnormal process behavior involves a 
deviation of the modeled correlations, thus increasing 
the value of the proper metric being used. In order to 
classify the abnormalities, we analyze the effect on each 
subspace (see Table 1). Rows 1), 2), 3) and 6) feature 
complex process changes; while rows 4) and 5) 
represent localized sensor faults. By analyzing the 
contributions to an alarmed index (Alcala and Qin, 
2011), such as SPEX (or SPEY), it could be possible to 
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discriminate changes in the X- / Y-outer part against 
sensor fault in x / y (see this ambiguity in Table 1).  

In summary, the proposed monitoring strategy is 
based on an input and output space PLS decomposition, 
which classifies the type of process fault or anomaly 
according to the statistic that triggers the alarm 
condition. 
 

Table 1. Fault diagnosis based on alarmed index. 
Fault/Anomaly in Tt

2 SPEX SPEY1 SPEY2 
1- Inner part, dB − − × − 
2- X outer part, dP − × o − 
3- Y outer part, dQ − − o × 
4- x sensor − × o − 
5- y sensor − − o × 
6- latent space upset × − − − 

×: high value. −: negligible value. o: high/low value.  
 
4. SIMULATION EXAMPLES 
4.1. A numerical evaluation example 
To understand the proposed decompositions and 
statistics as monitoring tools, we simulated different 
faults in a synthetic system. The system includes an 
internal and an external part and an input-output relation 
given by:  
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where  is the pseudo-inverse of P. The normal 
process operation follows a sequence of 4 states: 

. Matrixes X and 

Y are obtained on the basis of 32 realizations of x and y. 
The PLSR model was adjusted with centered data, 
without scaling, to identify a centered version of the 
latent process. The differences between the identified 
matrixes and the true ones are negligible, although the 
columns of  and  may include opposite signs to 
those of R and Q. Since such sign alteration is present 
in both matrixes, then: . Since 

, when  exhibits an opposite sign to 

that of the real u2 (e.g., because ), then 
. Six faults were simulated (see Table 1): 1) a 

change of the internal model at k=11: db2 = 0.7 b2; 2) a 

change of the process coefficient (plant) at k=19, given 
by dp2 = [0, 0.32, 0, 0,-0.08, 0.16, -0.16]’ (high SPEX if 

′R

( ){ } ( ) ( ) ( ) ( ){ }0 0
1 2 1 4

, 1,1 , 1,3 , 3,3 , 3,1t t =
…

R̂ Q̂

ˆ ˆ ˆ′ ≅QBR QBR

1

ˆ
A

a a a
a

b
=

′= ∑y q r 2û

2ˆ = −r r

2ˆ = −q q

2 RXd S∈p ), and at k=27; 3) dq1 = [ -0.08, 0.06, 0]’ 
(high SPEY2 if 1 RYd S∈q ); 4) a multiple sensor fault in 
the measurement x at k = 35, given by x = x + dx, with 
dx = [0.25  0  0  0  0  0.25  0]´; 5) a multiple sensor fault 
in the measurement y at k=43, with  [-0.23, 0.27, d =y
0.14] RYS′ ∈ , and 6) a change (following the modeled 
correlation structure) at k = 51, given by  = [0,  
3.1623,  0.6325,  -0.6325,  -1.2649,  1.8974,  0]’≡ P [0 
4]’. Table 1 shows the diagnosis expected in each 
simulated fault/anomaly. Figure 2 shows the evolution 
of each statistic with time, where it is possible to detect 
and classify the type of simulated fault on the basis of 
the information given in Table 1. 

ˆdx

 

 
Figure 2: Time evolution of each normalized PLSR-
statistic. 
 
4.2. Monitoring of a controlled reactor 
A simulated case study is used to evaluate the 
performance of the proposed monitoring technique for a 
variety of fault scenarios. The process is a continuous 
stirred tank reactor (CSTR) with a cooling jacket. The 
chemical kinetics is characterized by a classical first-
order irreversible reaction A→B. The instrumentation 
includes level, flow rate and temperature transmitters 
and two PI controllers, with set-points SPT and SPh. The 
controlled variables are the reactor temperature (T) and 
the tank level (h). The manipulated variables are the 
coolant flow-rate (QJ) and the output flow-rate from the 
reactor (Q). Input conditions TF, TJF, and CAF are 
assumed constant to the values in Table 2. Figure 3 
shows a schematic diagram of the reactor.  
 The mathematical model of the system is 
represented by (Singhal and Seborg, 2002):  
 

/
0

E RTA F A
A

dC Q C QCk e C
dt Ah

− −
= − + F A , 

( )/
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p p
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− −−Δ −
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Figure 3: Schematic of the CSTR system with a multi-
loop control system. 
 

Table 2: Nominal Operating Conditions and Model 
Parameters for the CSTR in Fig. 3 

Q = 100 L/min A = 0.1666 m2 
QJ = 15 L/min k0 = 7.2 × 1010 min-1 
TF = 320 °K ΔH = -5 × 104 J/mol 
TJF = 300 °K ρCp = 239 J/(L °K) 
T = 402.35 °K ρJCpJ = 4175 J/(L °K) 
TJ = 345.44 °K E/R = 8750 °K 
CAF = 1.0 mol/L UAJ = 5 × 104 J/(min °K) 
CA = 0.037 mol/L VJ = 10 L 
h = 0.6 m KC1 = -1, Ti1 = 1, KC2 = -15, Ti2=10, 
 
 Since data are auto-correlated, X and Y include 
time-lagged measurements to a given order. Notice that 
PLSR modeling works in this case as an alternative 
identification method for discrete dynamics like ARX. 
In this application, the adopted ARX order is 3, so the 
representation takes the form  

� ( ) [ ] ( ) [ ]
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1 1 2 3( 1) ( 1) ( 2) ( 3)k k k k= − + − + − + −B z A y A y A y  (21) 
 

where J A JQ Q C T T h x H ′⎡ ⎤= ⎣ ⎦y �  and 

 are centered and scaled. The 

sampling time is adjusted to Ts=5 min, a quite 
reasonable time interval considering an approximated 
settling time of Tst=120 min. To build the identification 
data set, 50 random set-point changes, each one every 
120 min., around the nominal values are implemented, 
and the step responses of the system were collected 
along 120 min after each step change. The input 
variables in z followed uniform distributions around the 
nominal value, with ranges SPh: 0.6 ± 0.05 m, SPT: 
402.35 ± 3 °K, and QF: 100 ± 5 L/min. The dynamic in 
Eq. (21) is adjusted by PLSR modeling and gave a 
standard error of = 4.2%. The determined model order 
is A=5 and, the post modeling verification with the 
Variable Importance in Projection Index (VIP) - for 
each xi (i=1…27) - gives greater than 0.8 for all of 
them, indicating that all the used predictors are 
significant (Godoy et al., 2011). 

[ T h FSP SP Q ′=z

 Figure 4 shows the time evolution of each statistic 
normalized by its control limit, which clearly exhibit the 
four simulated abnormalities (see Table 3). In the 
samples k = 121, 122 and 123, the discrete ARX model 
fails to follow the fast change experienced by the 
continuous process, resulting in a high SPEY1, SPEY2, 
SPEX. During the first transition (starting at k = 121) 
KC2 is away from the proper tuning. On the contrary, 
during the second transition (starting at k = 141) KC2 is 
close to the right tuning. Thus, the control system takes 
a longer time for stabilizing the controlled variables 
during the first transition than when the process system 
goes back to the previous condition (see Fig. 4a).  

 
 Table 3: Simulated fault scenarios. 
Type Location Magnitude Diagnosis 
sensor fault k=21..41 dQF =20 L/min 2/4 
sensor fault 
 propagated 

k=71..91 dh = 0.15 m       6 and 3/5 

system fault k=121..141 dKC2 = -0.75  3/5→6 
process fault 
-disturbance 

k=171..191 dk0= 0.36 1010   
         min-1        

3/5 

 

 
Figure 4: Simulation of statistical monitoring during 4 
different faults on the closed-loop operation of CSTR. ]
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 The simulation results show that the developed 
prototypes are able to identify abnormalities attributed 
to poor control performance, process upsets and 
disturbances, as well as sensor faults. The general 
approach proposed for closed-loop monitoring is based 
on designing a PLSR model that should be then used 
online to identify abnormalities. The model supporting 
this monitoring approach is based on operating data 
taken along periods where the controller is assumed to 
be working satisfactorily. Process data recollection 
constitutes a critical step when developing empirical 
models for monitoring control performances; it is highly 
desirable to be operating as close as possible to an 
optimal condition during the period in which the 
controlled process data is collected.  
 
5. CONCLUSIONS AND FUTURE WORKS 
The multivariate process monitoring approach proposed 
in this work is based on a PLSR model that represents 
‘in-control’ conditions. Thus, a meaningful deviation of 
the variables from their expected trajectories serves for 
the detection and diagnosis of abnormal process 
behaviors. The results obtained using two simulation 
examples illustrate that the proposed strategy is efficient 
and accurate enough as to deserve additional future 
work. In particular, a controlled CSTR is successfully 
monitored during different fault conditions or process 
abnormalities using the new detection indices. The 
combination of alarm/no-alarm conditions occurring 
during the simultaneous use of the proposed indices can 
be used for locating and classifying the disturbing event 
and contributes to a preliminary diagnosis. 
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APPENDIX A 
Proof 1. The oblique projector onto Span{A} along 
Span{B} can be obtained by the following equation 
(Meyer, 2000):  

 

             ( ) 1−⊥ ⊥′ ′= B BA BΠ A AΠ A AΠ   (A1) 

 
where  is the orthogonal projector onto ⊥

BΠ { }Span ⊥B . 
Since  and S are full-column-ranked, then: R

 
            (A2) ( ) 1 ,⊥

−⊥ ′ ′= = =RR
Π Π R R R R RR′

′            (A3) ( ) 1 .⊥

−⊥ ′ ′= = =SS
Π Π S S S S SS

 
Since  (or ′ ′= =P R R P I ′ ′= =Q S S Q I ), then Eq. (A1) 
and Eq. (A2) [or Eq. (A3)] yield: ⊥ ′=

P R
Π PR  (or 

⊥ ′=
Q S

Π QS ). Similarly, we have ⊥ ′= −
R P

Π I PR  (or 

⊥ ′= −
S Q

Π I QS ). □ 

Partially, Lemma 1 has already been proved by Gang et 
al., 2010). Each oblique projector in Eq. (7, 8) works as 
an identity matrix applied onto every vector belonging 
to its range. 
 
Proof 2. Eqs. (9, 10) can be proved by taking into 
account that: (i) { } {Span Span }⊥′− =I PR R  and 

{ } {Span Span }⊥′− =I QS S  (see Lemma 1); and (ii) the 
projections belong to complementary subspaces, 
because ( )( ) dim( ) dim( )MX Rrank S S′ ′− = +PR I PR X  

m=  and ( )( )rank ′ ′− =QS I QS ( )dim MYS +  

( )dim RYS p= . Then, Eq. (11) is directly derived from 
Eq. (6). □ 
  
Proof 3. Since Q is orthogonal by columns, the property 
of the generalized inverse of a SVD yields: 

( ) 1
ˆ

−− −′ ′= =yR QΔQ QΔ Q . Then, from Eq. (20b): 
1 1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ uD T− − −′ ′ ′ ′ 2= = =y yy R y y QΔ Q y u Δ u =
−

. Equivalently, 

by replacing ( ) 1
ˆ

−− ′ ′= =xR PΛP PΛ P  into Eq. (20a), the 

distance results: . 1 2
ˆ ˆˆ ˆ ˆ ˆ tD T− −′ ′ ′= = =x xx R x x PΛ P x

Furthermore, by combining Eqs. (12, 13, 14, 17), 
2 1 1 1

uT − − −′ 2
tT= =t BB Λ B Bt  is obtained. From all these 

equalities, Proposition 1 is proven. □ 
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