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ABSTRACT 
An online approach to nonlinear system identification 
based on binary observations is presented in this paper. 
This recursive method is a nonlinear extension of the 
LMS-like (least-mean-square) identification method 
using binary observations. It can be applied in the case 
of weakly nonlinear Duffing oscillator coupled with a 
linear system characterized by a finite impulse response. 
It is then possible to estimate simultaneously both 
impulse response and Duffing coefficients, knowing 
only the system input and the sign of the system output. 
The impulse response is identified up to a positive 
multiplicative constant. The proposed method is 
compared in terms of convergence speed and estimation 
quality with the usual LMS approach, which is not 
based on binary observations. 
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1. INTRODUCTION 
Microfabrication of electronic components such as 
micro-electro-mechanical systems (MEMS) or nano-
electro-mechanical systems (NEMS) has known an 
increasing interest over the past two decades. The most 
notable innovation emanating from these systems is the 
possibility to massively integrate sensors with self-test 
features on the same piece of silicon. Indeed, it is well-
known that, as characteristic dimensions become 
smaller, the dispersions afflicting electronic devices 
tend to become larger. Typical sources of dispersions 
and uncertainties are variations in the fabrication 
process or environmental disturbances such as 
temperature, pressure and humidity fluctuations. As a 
result, it is usually impossible to guarantee a priori that 
a given device will work properly. Moreover, expensive 
tests must then be run after fabrication to ensure that 
only suitable devices are commercialized. An 
alternative consists in implementing self-test (and self-
tuning) features such as parameter estimation routines, 
so that devices can adapt to changing conditions. 

However, traditional identification methods 
(Walter and Pronzato 1997; Ljung 1999) are often 

tricky to “straightforwardly” adapt from macroscopic 
scale to microscopic scale. Their integration requires the 
implementation of a high-resolution analog-to-digital 
converter (ADC), which results in longer design times 
as well as larger silicon areas. Thus, parameter 
estimation routines based on binary observations are 
very attractive because they only involve the integration 
of a 1-bit ADC. Some important contributions that keep 
the added cost of testing as small as possible are 
available in the literature. 

In (Wigren 1998), Wigren has developed an LMS 
approach to the problem of online parameter estimation 
from quantized observations. The principle is to 
estimate the gradient of the least-square criterion by 
approximating the quantizer. Under some hypothesis, it 
is possible to guarantee the asymptotic convergence of 
this method to the nominal parameters. In (Negreiros, 
Carro, and Susin 2003), the authors have suggested 
using a white Gaussian input to excite the unknown 
linear system and to estimate the power spectral density 
(PSD) of the binary output. From this estimated PSD, 
the modulus of the unknown system transfer function 
can be analytically derived. However, it is not possible 
to obtain any information concerning the phase of this 
transfer function. This limitation has been overcome by 
deriving an analytical relationship between the impulse 
response coefficients of the system and the cross-
covariance of its binary input and output. Although this 
approach is fairly simple to implement, it relies on the 
mixing properties of the linear system, which may not 
be guarantee a priori. Recently, a basic identification 
method using binary observations (BIMBO) has been 
introduced in (Colinet and Juillard 2010). The 
theoretical framework of this offline WLS-like 
(weighted-least-square) approach is based on the 
minimization of a criterion, where the parameter-
dependent weights are chosen in order to smooth out the 
discontinuities of the unweighted least-square criterion. 
It is then possible to guarantee the consistency of this 
approach even in the presence of measurement noise, 
provided that the signal at the input of the quantizer is 
Gaussian and centered. Furthermore, the estimation 
quality of BIMBO has been investigated in the sense of 
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correlation coefficient between the nominal and the 
estimated system parameters. An alternative WLS 
criterion, which is easier to implement in the context of 
microelectronics, has also been presented in (Juillard, 
Jafari, and Colinet 2009). This approach is as efficient 
as the previous one without measurement noise, but 
leads to a systematic error otherwise. Finally, an online 
LMS-like identification method based on binary 
observations (LIMBO) has been derived from the past 
two WLS approaches in (Jafari, Juillard, and Colinet 
2010). Simulations have provided similar results than 
those obtained with the Wigren’s method in terms of 
convergence speed and estimation quality, and those 
with a lesser computational complexity. 

Unfortunately, the methods listed above deal with 
linear systems, while in many engineering applications, 
and especially in microfabricated devices, the dynamic 
may significantly be affected by nonlinear effects, 
which must be accounted for in order to robustly model 
the system. In (Zhao, Wang, Yin, and Zhang 2007), the 
authors have studied identification of Wiener and 
Hammerstein systems, which are particular nonlinear 
structures, with binary-valued output observations. In 
this paper, we propose to extend LIMBO to nonlinear 
systems. For that, we consider a nonlinear Duffing 
oscillator that is coupled with a linear system 
characterized by a finite impulse response. The 
convergence of this recursive method is illustrated by 
numerical simulations and our results are compared 
with those obtained by the conventional LMS algorithm 
(i.e. without quantization). 

The structure of the article is the following. In 
section 2, the nonlinear system and its model are 
introduced. In section 3, the nonlinear LIMBO 
algorithm is derived. In section 4, the proposed method 
is compared with a traditional online method, which is 
not based on binary observations, in terms of 
convergence speed and estimation quality. Finally, 
concluding remarks and perspectives are given in 
section 5. 

 
2. FRAMEWORK AND NOTATIONS 
Let us consider a nonlinear system illustrated in figure 1 
below. 

 

 
Figure 1: Block diagram of the system model 
 
The first branch of this block diagram corresponds 

to a discrete-time linear time-invariant system �. We 
assume that this transfer function has a finite impulse 
response of length �, i.e. the impulse response can be 
represented by a column vector � = �����	
� . A cubic 
nonlinearity (the so-called Duffing nonlinearity) is then 
introduced at the level of the negative feedback branch 
such that � = ��� with � ∈ ℝ�. Obviously, the 

subscript indices � denotes the discrete time. Let � be 
an unknown additive measurement noise and let � = � + � be the noisy output. The system output is 
measured via a 1-bit ADC such that only the sign � = ���� is known. Here, the function � of a real 
number � is defined as follows: 

 

���� = � 			1			if			� ≥ 0			1			−1			otherwise (1) 

 
By supposing the system weakly nonlinear, the 

following approximation can be done (Schoukens, 
Nemeth, Crama, Rolain, and Pintelon 2003): 

 � = ℎ ∗ �. − ���� 
 

� = ℎ ∗ /. − �0ℎ ∗ �. − ����1�2 

 � ≃ ℎ ∗ �. − ��ℎ ∗ .��� 

(2) 

 
This approximation remains valid as long as the 

nonlinear term ��� remains smaller or of the same 
order of magnitude as .. The new block diagram of the 
system model is then graphically illustrated in figure 2 
below. 

 

 
Figure 2: New block diagram of the system model 

 
Consequently, the scalar value of the system output 

at time � is given by: 
 � = �45,� − ��47,� (3) 
 
In relation (3), 5,� = �.���	8��
 is the regression 

column vector of dimension � at time � and 7,� is 
defined by: 

 

7,� = /0�45�,�1�2�	
8��


 (4) 

 
Our purpose is to develop a recursive estimation 

method to find good estimates of both the parameter 
vector � and the Duffing coefficient �, starting from 9 
observations of the binary output : and knowing the 
input ;. Let �< (respectively, �=) be the estimated 
parameter vector (respectively, Duffing coefficient) at 
time �. Let us also introduce �= the estimated system 
output at time � and �̂ = ���=�. 

 
3. PROPOSED LMS APPROACH 
Under its original form (Jafari, Juillard, and Colinet 
2010), LIMBO has been carried out in order to estimate 
online the parameters of a linear system from binary 
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observations. From now on, since only the sign � of 
the system output is available at time �, the authors 
have judiciously defined the following instantaneous 
error: 

 ? = |� − �̂|�= (5) 
 
The general LMS algorithm is used to adjust the 

system parameters by minimizing this error using the 
following criterion: 

 ?A = �� − �̂�A�=A (6) 
 
This suitable formulation has been specified to 

ensure the derivability with respect to �<. We adopt the 
same criterion to deal with nonlinear constraints. 
Indeed, ?A is clearly differentiable with respect to �=, 
which is also differentiable with respect to �< and �=. 
Consequently, the criterion defined in (6) is 
differentiable with respect to the system parameters, and 
we can write: 

 

�<�
 = �< − 12 C D?AD�< 

 

�<�
 = �< − 12 C D?AD�=
D�=D�< 

 

�<�
 = �< − C�� − �̂�A�= D�=D�< 

(7) 

 
In the same manner, the following relation can be 

established: 
 

�=�
 = �= − E�� − �̂�A�= D�=D�= (8) 

 
In relations (7) and (8), C and E correspond to the 

LMS step-size parameters that guarantee stability and 
control the speed of convergence. The selection of these 
parameters is therefore very critical. We propose a 
procedure to determine an appropriate adaptive step-
size. We start by assuming that C = E. The idea then 
consists in finding C such that �=|0�<FGH,IJFGH1 = 0. 

Unfortunately, no analytical solution of this problem is 
currently available (except in the trivial linear case). 
Nevertheless, a numerical solution can be obtained 
without much difficulty directly by applying the widely-
used secant method, which is known to be a fast 
iterative method. In counterpart, an extra division is 
required. 

The derivative with respect to �< which appears in 
relation (7) can be expressed by: 

 D�=D�< = 5,� − �= K7,� + �<4 D7,�D�< L (9) 

 

By using the expression of 7,� introduced in 
relation (4), we have: 

 D7,�D�< = 3 /5�,�0�<45�,�1A2�	
8��


 (10) 

 
This yields the following relation: 
 

�<4 D7,�D�< = 3 /0�<45�,�1�2�	
8��
 = 37,� (11) 

 
Thus, the derivative with respect to �< is finally 

obtained by introducing (11) into (9). As a result, we 
find: 

 �<�
 = �< − C�� − �̂�A�=05,� − 4�=7,�1 (12) 
 
By following the same reasoning, the derivative 

with respect to �= which appears in relation (8) can also 
be easily expressed by: 

 D�=D�= = −�<47,� (13) 

 
And we obtain the following equation: 
 �=�
 = �= + C�� − �̂�A�=�<47,� (14) 
 
Algorithm 1 summarizes the main steps of the 

method described above. 
 

Algorithm 1: Nonlinear LIMBO 
LIMBO NL 
Require:   ;, :, �, 9 
 

01:   OJ
 ← Q1			0		 … 			0S4 
 

02:   �<
 ← OJH‖OJH‖U 
 

03:   V̂
 ← 0 
 

04:   �=
 ← 0 
 

05:   for  � = 1 to 9 do 
 

06:      5,� ← �.���	8��
 
 

07:      7,� ← /0�<45�,�1�2�	
8��


 
 

08:      �= ← �<45,� − �=�<47,� 
 

09:      �̂ ← ���=� 
 

10:      OJ�
 ← �< − C�� − �̂�A�=05,� − 4�=7,�1 
 

11:      �<�
 ← OJFGH‖OJFGH‖U 
 

12:      V̂�
 ← �= + C�� − �̂�A�=�<47,� 
 

13:      �=�
 ← V̂�
‖OJ�
‖A� 
 

14:   end for 
 

15:   return    �<�
, �=�
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In algorithm 1, the normalization step on line 11 
ensures that the norm of �< remains constant and equal 
to 1. As a result, line 13 is added to maintain the 
homogeneity. We then guarantee the stability of our 
method (in the stability limits of the system). In 
counterpart, it is not possible to obtain any information 
about the amplitude of the impulse response. This 
identifiability problem has also been encountered in the 
linear case. 

Finally, the full operating model is graphically 
illustrated in figure 3 below. 

 

 
Figure 3: Block diagram of nonlinear LIMBO 
 

4. RESULTS AND DISCUSSION 
In this section, the results obtained with nonlinear 
LIMBO are compared in terms of convergence speed 
and estimation quality with those obtained by applying 
a typical LMS procedure. Let us underline that contrary 
to our approach, the standard LMS method is not based 
on quantized output measurements. The objective of 
this work is to compare the performances of our method 
with a widely-used one, which does not suffer from a 
lack of a priori information. 

The input signal is a Gaussian white noise with 
zero mean and unit standard deviation. We consider an 
impulse response of length � = 50 and the Duffing 
coefficient is set to � = 0.01. The identification 
procedure detailed in the previous section is applied 
starting from 9 = 10Y observations of the binary 
output. The quality of the online estimation �< is 
defined as 1 − Z  where Z is the cosine of the angle 
made by �< and �. Since both vectors are normalized, 
we have Z = �4�< and the following equivalence 
relation: 

 lim→^�1 − Z� = 0 ⇔ lim→^ Z = 1 

 lim→^�1 − Z� = 0 ⇔ lim→^ �< = � 
(15) 

 
Concerning the impulse response, both methods 

present encouraging results in terms of estimation 
quality and convergence speed, in absence of 
measurement noise. Indeed, the fifty coefficients of the 

column vector �, i.e. the entire impulse response, have 
been rapidly and successfully estimated. Without 
surprise, Duffing coefficient identification also yields 
reasonable results for both methods in terms of 
estimation quality, but with a notable advantage for the 
nonlinear LMS approach in terms of convergence 
speed. This significant difference, which is an 
immediate consequence of quantized data, is shown in 
figure 4 below. 

 

 
Figure 4: Comparison of nonlinear LMS and LIMBO 
methods for Duffing coefficient identification 

 
The same behavior is distinctly observable in 

figure 5, which displays the quality of the online 
estimation. Indeed, LIMBO stops converging after 
having reached an error level approximately equal to 108`, while the LMS approach converges to the 
nominal parameters within the limits of finite machine 
precision. 

 

 
Figure 5: Comparison of nonlinear LMS and LIMBO 
methods in terms of convergence speed and estimation 
quality (SNR = ∞	dB) 

 
In order to perturb the data, we consider an 

additive Gaussian noise such that the output signal-to-
noise ratio (SNR) is equal to 20 dB. The estimation 
quality is graphically illustrated in figure 6 below. In 
this experiment, the nonlinear LMS (respectively, 
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LIMBO) approach stops converging after having 
reached an error level approximately equal to 108g 
(respectively, 108�). Although measurement noise has 
induced significant performance degradation, the 
estimation quality remains quite appreciable. Once 
again, the standard LMS method presents the best 
results in terms of convergence speed, but the gap is 
slightly reduced. 

 

 
Figure 6: Comparison of nonlinear LMS and LIMBO 
methods in terms of convergence speed and estimation 
quality (SNR = 20	dB) 

 
Finally, let us remember that in LIMBO, unknown 

parameters are updated only if � − �̂ is not null, i.e. 
only if � h �̂. This “change of sign” has appeared 
about 450 times in absence of noise, and about 3700 
times with a SNR of 20 dB. Consequently, the LIMBO 
method has shown quite similar performances than the 
typical LMS method, especially in the case of perturbed 
data, and those with a lesser iteration number. However, 
contrary to the LMS approach, it is not possible to 
obtain any information concerning the amplitude of the 
impulse response, since � is normalized in LIMBO 
algorithm. 

 
5. CONCLUSION 
In this paper, we have extended the LIMBO method, 
which has been introduced in (Jafari, Juillard, and 
Colinet 2010), in order to estimate online the 
parameters of a nonlinear system starting from binary 
observations. We have focused on the identification of a 
nonlinear Duffing oscillator that is coupled with a linear 
system characterized by a finite impulse response. 
Simulation results, in terms of convergence speed and 
estimation quality, have been truly admirable without 
measurement noise, and nearly similar to those obtained 
by applying a typical LMS procedure, which is not 
based on binary observations, in the noisy case. 
Consequently, nonlinear LIMBO is an inexpensive 
online test method that can be easily implemented on 
microfabricated devices, since it only requires the 
integration of a 1-bit ADC. 
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