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Abstract— This paper presents the principles of a fault
diagnosis system for photovoltaic plants that makes it possible
iterative diagnosis processes. It proposes a solution for auto
generating tests from models and consecutive measurements.
Moreover, it is shown that overall possible diagnoses may be
compute from the symptoms coming from the generated tests.
The operation principles are detailed and technological aspects
for implementation are discussed. Thanks to these diagnosis
systems, maintenance operators just have to depict the photo-
voltaic plant and to introduce iteratively the measurements they
do. The system to be diagnosed is transformed into a MILP
Problem (Mixed Integer Linear Programming) and a GLPK
solver is used to find out all the possible diagnoses.

Index Terms— Fault diagnosis, detection test design, Symp-
tom generation, constraint satisfaction problem, MILP solver.

I. I NTRODUCTION

Today’s competitive global economy requires continued
advances in fault diagnostic technology to achieve and
maintain cost advantages. This challenge can be envisaged
by using, as much as possible, efficient diagnostic systems
that makes it possible to detect an isolate the faults the wich
occurs in systems.

In this paper, the model-based diagnosis method has been
adopted because of its analysis capabilities and its gener-
ality. This method provides an alternative to the traditional
techniques based on experience, such as rule-based or case-
based reasoning systems. In the model-based method, tree
main kinds of approaches might be found: The FDI ap-
proach, which focuses on fault detection in dynamic systems,
has been summarized in [2]. The communityFDI (Fault
Detection and Isolation ([19], [12], [4], [10], [14]) bases
the foundations of its solving approaches on engineering
disciplines such as control theory and static decision making.
The DX approach, summarized in [13], focuses on the
diagnosis reasoning. The main works of theDX approach
([22], [7]) base the foundations of solution approaches on the
field of computer science and artificial intelligence. Recently,
a bridge approach between FDI and DX has been proposed
([17], [20]).

The bridge approach has been adopted for the design of
diagnosis system. It can be decomposed into two stages:
detection and isolation. In the first stage, the detection tests
are computed for the system to be diagnosed from the system

model composed of a set of constraints. Then, symptoms
are deduced from these detection tests. One of the proposed
methods for the symptom generation is to transforme the
system to be diagnosed into a MILP Problem (Mixed Integer
Linear Programming) which is a regular constraint satis-
faction problem and to use GLPK solver which makes it
possible to compte symptomes.
In the second stage, the fault diagnosis is performed from
the generated symptoms.

In order to find out the detection tests, several sensors
have to be installed. The performance of a diagnostic system
highly depends on the number and on the location of
actuators and sensors. Several sensor placement methods are
presented in this paper.
[23] has proposed a method based on consecutive retraction
of sensors, which takes into account diagnosability criteria.
This approach is based on Analytical Redundancy Relations
(ARR) [2]. However, this method requires an a priori design
of all the ARR for a given set of sensors.
Recently, the sensor placement problem satisfying diagnos-
ability objectives becomes possible without designingARRs.
[11] has proposed a efficient method based on a Dulmage-
Mendelsohn decomposition [9]. Nevertheless, this method
only applies to just-determined sets of constraints while most
practical systems are under-determined when sensors are not
taken into account, and over-determined afterwards.
Another sensor placement method without designingARRs
has be presented in ([27], [28]). This method improves the
possibility of detecting and localizing faults in systems for
which only the structure is known. It considers the complete
range of specifications with respect to the constraints, i.e.
the set of constraints that must be diagnosable, the set of
constraints that must be non discriminable but detectable and
the set of constraints that must be non detectable.

The paper is organized as follows. Section II describes
the necessary steps for fault diagnosis. Section III presents
the concepts used to model systems in a standardized form
for diagnosis. Section IV details the methods to find out all
the testable subsystems. Section V presents a new method of
symptom generation from the testable subsystems by trans-
forming the system to be diagnosed into a MILP Problem
and by using a GLPK solver. In section VI, the diagnosis
reasoning method is presented. In section VIII, the steps
of the fault diagnosis system is applied on a photovoltaic
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Fig. 1. Fault diagnosis system

system. Finally, the conclusions are drawn in Section IX.

II. FAULT DIAGNOSIS SYSTEM SCHEMA

The goal of a fault diagnosis system is to detect and isolate
the possible faults which can occur in systems. The necessary
steps of the diagnostic system are given in figure 1.

1) the first step is the structural modeling of the system
to be diagnosed. This step consists in colleting a
structural model of the systsem behavior

2) the second step is the sensor placement. This step
makes it possible to find the optimal sensor placement
satisfying objectives like observability, monitorability
and diagnosability

3) the third step is the design of testable subsystems
(TSSs) i.e a constraint set which leads to a test. This
step makes it possible to compute the necessaryTSSs
for diagnosis

4) the fourth step is the analytical modeling of the system
to be diagnosed. This step consists in colleting a model
the system behavior according to section III

5) The fifth step is the symptom generation. This step
makes it possible to generate the symptoms from the
TSSs found.

6) The last step is the diagnostic analysis. This step
computes out all the diagnoses from the symptoms
found.

III. SYSTEM MODELING FOR DIAGNOSIS

This section deals with concepts used to model systems
in a standardized form for diagnosis. Let us firstly introduce
some basic definitions.

A variable models an information, material or energy flow.
It is namedshared variablewhen it is shared by several
components. Shared variables play the role ofport ([6])
for connection between components. Variables are therefore
potentially observable elements of information about the
actual state of system. It is important to distinguish between
a variable which is related to a physical phenomena from
a parameter which is model-dependent. Generally speaking,
even if the variable is observable, it is not possible to merge
it with data because in fault diagnosis, data are only known
providing that some actuators or sensors behave properly.

This fact leads to the concept ofdata flow. It is used to
model data provided by a source of information concerning
a variable. This source may be a sensor or an actuator. The
set of all possible data flows, that can be collected from a
system when spanning all the possible values for controlled
variables, is namedOBS. A set of observed values is written
obs.
In fault diagnosis, a system is not supposed to remain in a
given mode. Indeed, diagnostic analysis aims at retrieving
the actual behavior modes of the components of a system.
At least, two modes have to be defined: theok mode, which
corresponds to the normal behavior andcfm mode, which is
the complementary fault mode: it refers to all the behaviors
that do not fit to the normal behavior. Sometimes, specific
fault modes may be modeled but in this paper, for the sake
of clarity, only the modesok andcfm are considered.

Except for the complementary fault mode, behavioral
modes are modeled by cause-effect relationships between
variables. These relationships are represented by constraints.
Each constraint refers to a set of mappings containing
unknown variables and known data flows represented by
obs ∈ OBS. This fact can be formalized as follows:

ok(ci) ↔ ∀obs ∈ OBS, ki(obs, Vi) = 0 (1)

whereki(obs, Vi) = 0 is the constraint set to be satisfied by
componentci in modeok(ci) andVi is the set of variables
involved in ki.

However, it is obvious that in most of practical fault
diagnosis problems, it is not possible to check all the context.
Equation (1) leads to:

ok(ci) → ∀obs ∈ O, ki(obs, Vi) = 0 (2)

whereO ⊂ OBS.
For the sake of simplicity, elementary models are formal-

ized by:
(ok(ci), ki(obs, Vi) = 0) (3)

Consequently, the model of a systemΣ is composed of a
set of components and a set of behavioral modes related to
these components.

Let’s now present the way of constructing the system
model. A complex system can be broken into a set of
connected components. In other words, a system can also be
constructed by joining together its components. The model
of a component is assumed to be embedded into it thanks to
a communication mechanism: component could be named
smart or intelligent components. This model can represent
one of the possible modes (ok or cfm here). As mentioned
before, a component can connect others via its variables.
Several components can be joined together via a connection
point, which is a shared variable. The connection points
between the different components of a system have to be
specified by the installer. A variable can also be connected
to sensors which provide data flows.
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In order to illustrate the fault diagnosis system, consider
for instance the photovoltaic system shown in figure 2.
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Fig. 2. A photovoltaic system composed of 3 panels.

This system is basically composed of tree main panels
Photowatt PW1650 each:panel1, panel2 and panel3. The
panels are connected in series. The variables ofpanel1
are ambient irradiation, denotedpanel1.Ga, the ambient
temperature denotedpanel1.Ta, the cell temperature
denotedpanel1.Tc, the panel current denotedpanel1.I, the
panel voltage denotedpanel1.V , the short circuit current
panel1.Isc and the open circuit voltage denotedpanel1.Voc.
The model corresponding to the normal behavior (theok
mode) of panel1 is given by the constraintsk1−1, k1−2,
k1−3, k1−4 and k1−5. In these constraints, the mentionned
variables ofpanel1 are indicated, for short, by:Ga, Ta, Tc,
I1, V1, Isc1 andVoc1 .

(ok(panel1), k1−1 : Isc1 = 5.3×Ga)
(ok(panel1), k1−2 : Tc = Ta + 0.031×Ga)
(ok(panel1), k1−3 : Voc1 = 0.6− 0.0023(Tc − 25))
(ok(panel1), k1−4 : Vt1 = 0.000345(273 + Tc))
(ok(panel1), k1−5 : I1 = . . .
Isc1(1− exp((V1 − 72× Voc1 + 0.45× I1)/72Vt1)))

(4)
By replacing the constraintsk1−1, k1−2, k1−3, k1−4 in the
constraintk1−5, the following constraint is obtained:

k1 : I1 = 5.3×Ga(1− exp((V1 − 72(0.6− . . .
0.0023(Ta + 0.031×Ga − 25)) + 0.45× I1) . . .
/72(0.000345(273 + Ta + 0.031×Ga)))).

(5)

For a given measure ofGa, the photocurrent can be
calculated by the following relationship:
Iph = G

GST C
[Iph,STC + α(Tc + TSTC)] where:

G: irradiation received by the photovoltaic cell
Tc: the cell temperature
α: coefficient of temperature of the short circuit current
GSTC : the irradiation at standard condition[1000W/m2]

TSTC : the temperature at standard condition[25C ]
Iph,STC : the photocurrent at standard condition

In the same, The model corresponding to the normal
behavior (theok mode) ofpanel2 and panel3 is given by
the constraintsk2 andk3 .

k2 : I2 = 5.3×Ga(1− exp((V2 − 72(0.6− . . .
0.0023(Ta + 0.031×Ga − 25)) + 0.45× I2) . . .
/72(0.000345(273 + Ta + 0.031×Ga)))).
k3 : I3 = 5.3×Ga(1− exp((V3 − 72(0.6− . . .
0.0023(Ta + 0.031×Ga − 25)) + 0.45× I3) . . .
/72(0.000345(273 + Ta + 0.031×Ga)))).

(6)

They do not give any information about the relation
between the panels. The connections between panels have
to be taken into account. The same current passes through
panel1, panel2 andpanel3. Also, the total voltageV is the
sum ofV1, V2 andV3. These connections are expressed by
the constraintsk4, k5, k6 andk7.

(ok(connection1), k4 : I1 = I2)
(−(connection1), k5 : I2 = I3)
(−(connection1), k6 : I3 = Ichamp)
(ok(connection2), k7 : Vchamp = . . .
V1 + V2 + V3)

(7)

(7) represents the connection model for the system. This
model has to be deduced from data provided by the installer.
The sensors are modeled by the following constraints:

(ok(sensor1), k8 : Ga = G̃a

(ok(sensor2), k9 : Ta = T̃a

(ok(sensor3), k10 : I1 = Ĩ1

(ok(sensor4), k11 : V1 = Ṽ1

(ok(sensor5), k12 : V2 = Ṽ2

(ok(sensor6), k13 : V3 = Ṽ3

(ok(sensor7), k14 : Ichamp = ˜Ichamp

(ok(sensor8), k15 : Vchamp = ˜Vchamp

(8)

Requesting models from component database of the photo-
voltaic system, permits to get component models (5) and (6)
together with the observation models (8). The photovoltaic
system installer provides data that make it possible to estab-
lish (7).

The set of all the elementary models can be decomposed
into several sets:

• Ecomp that contains the elementary models with modes
and without dataflows (for example, the constraint sets
5, 6 and 7).

• Eobs that contains the elementary models with modes
and with dataflows, which contain terminal constraints
(for example, the constraint set 8).

IV. D ESIGN OF TESTABLE SUBSYSTEMS(TSSS) FOR

FAULT DIAGNOSIS

The goal of a diagnosis system is to detect abnormal
behaviors to avoid failures, breakdowns and damages and
to propose hypotheses about the possible faulty components.
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The faults in a physical system can be diagnosed by checking
the consistency between knowledge represented by a behav-
ior model and observations. In this research, the diagnosis
system is a two-stage process: detection and isolation stages.
In the first stage, the detection tests are computed from
the model of the system to be diagnosed. This model
is composed of a set of behavioral constraints, a set of
terminal constraints containing dataflows. The principle used
for testing is to form testable subsets of behavioral and
terminal constraints. In the following, the testable subsets of
constraints is called as testable subsystems (or TSSs). One
can notice the equivalence between a detection test and a
TSS.
In the second stage, a fault diagnosis analysis is performed
using the symptoms generated during the previous stage.
Generally speaking, each detection test is related to a subset
of behavioral constraints.
According to expressions (1), (2) and (3), a testable subsys-
tem can be written as:⋃

i∈T (ok(ci), ki(obs, Vi) = 0) (9)

↔
(∧

i∈T ok(ci),
⋃

i∈T ki(obs, Vi) = 0
)

By definition, if (9) is testable subsystems, it means that
it exists a constraintkT , depending only on data flows, such
askT (obs) = 0 ↔

⋃
i∈T ki(obs, Vi) = 0. Therefore, the test

is given by: (∧
i∈T ok(ci), kT (obs) = 0

)
(10)

In the scientific literature, there are several methods
for finding all the testable subsystems: the more general
ones rely on a structuro-behavioral modeling. A method
based on a bipartite graph approach has been used in
([3]), ([8]), ([25]). It makes it possible to compute the
testable subsystems. Another method has been proposed in
([26]). This method is based on the retraction of sensors
measuring the variables of a system. A method based on
the Dulmage-Mendelsohn decomposition ([9]) has been
proposed in ([15]). A general method for finding all the
possible testable subsystems has been proposed in ([21]).
This method is based on a structural analysis. It provides
the constraints that have to be used for the design of each
detection test and manages situations where constraints
contain non deductible variables.

V. NEW METHOD FOR SYMPTOM GENERATION BY USING

MILP PROBLEM ETGLPK SOLVER

The symptoms generation from the testable subsystems is
a very important step for the fault diagnosis. In literature,
there are several methods for symptom generation. The
value propagation ([1]) and the constraints propagation ([24]
are efficient methods for symptom generation. But, most
approaches require the definition of propagation heuristics
that depend on the problem to be solved whereas for fault
diagnosis, general approaches are searched

In this section, a new method for symptom generation
is presented. The main idea is to transform the constraints
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Fig. 3. Symptom generation by using the Milp problem and GLPK

of each TSS into a MILP Problem i.e a regular constraint
satisfaction problem and then to use an MILP solver that
check if each TSS has a solution or not. If the solver gives
a solution then the test resulting from a TSS is positive
and consequently, the behavior is consistent with reference
model. If the solver does not find any solution then the test
resulting from the TSS is negative and consequently, there
is a inconsistency between observation and reference model.

MILP problems (Mixed Integer Linear Programming)
make it possible to solve the linear or linearized problems.
In order to formalize a MILP problem, a linear model de-
scribing the behavior of the system has to be formulated. This
mathematical model has been implemented automatically in
Java.

In order to solve the formalized problem, a MILP solver
is needed. Several solvers are available:
• the GLPK solver (open-source software). This solver is

suitable for medium problems.
• the CPLEX solver. This solver is suitable for great size

problems
In this paper, the GLPK solver has been used. Figure 3 shows
the necessary steps for symptom generation.

A. Linearization of a decreasing curve

The model of the photovoltaic system presented in figure
2 contains linear constraints (see relationships 7) and non-
linear constraints (see relationships 5 and 6). Because the
MILP can only manages linear or linearized problems, the
constraints 5 and 6 have to be linearized (see figure 3).
Because the curve of each panel is a decreasing curve, this
section details the linearisation method of a decreasing curve
(see figure 4).

Let consider a point(x, y) on the curve. The following
constraints can be written:

x1 ≤ x ≤ x2 ↔ y = y1 − y1−y2
x2−x1

(x− x1)
x2 ≤ x ≤ x3 ↔ y = y2 − y2−y3

x3−x2
(x− x2)

(11)

with dom(x) = [x1, x3] anddom(y) = [y3, y1].
By taking into account the variablesδ1 and δ2, the

constraints 11 can be rewritten by the following equations:

(δ1 = 1) ∧ (δ2 = 0) ↔ y = y1 − y1−y2
x2−x1

(x− x1)
(δ1 = 1) ∧ (δ2 = 1) ↔ y = y2 − y2−y3

x3−x2
(x− x2)

(12)
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or:

δ1 − δ2 = 1 ↔ y = y1 − y1−y2
x2−x1

(x− x1)
δ1 + δ2 = 2 ↔ y = y2 − y2−y3

x3−x2
(x− x2)

(13)

Constraints (13) can be rewritten in a MILP format:

(y1 − y)− y1−y2
x2−x1

(x− x1) ≤ (y1 − y3)(1− δ1 + δ2)
(y1 − y)− y1−y2

x2−x1
(x− x1) ≥ (y2−y1)(x3−x1)

x2−x1
(1− . . .

δ1 + δ2)
(y2 − y)− y2−y3

x3−x2
(x− x2) ≤ (y1 − y3)(2− δ1 − δ2)

(y2 − y)− y2−y3
x3−x2

(x− x2) ≥ (y3−y2)(x3−x2)
x3−x2

(2− . . .

δ1 − δ2)
(14)

In order to describe the variablesδi, the following constraints
are written:

δ1 = 1 ↔ x1 ≤ x
δ2 = 1 ↔ x2 ≤ x

(15)

These constraints can be rewritten in a MILP format:

x1 − x ≤ 0
x1 − x ≥ (x1 − x3)δ1

x2 − x ≤ (x2 − x1)(1− δ2)
x2 − x ≥ (x2 − x3)δ2

(16)

Because all the values ofδi are not possible, the following
constraints have to be added:

δ2 ≤ δ1

δ1 + δ2 ≥ 1 (17)

Relationships (14), (16) and (17) represent the linearized
equations of the decreasing curve.
This linearization approach has applied for equations (5) and
(6).

B. MILP metamodel

A metamodel can be defined as a language from which a
model can be generated. The figure 5 shows all the necessary
classes for the model construction.
The computer implementation of the metamodel is done

LowerEqualConstraint Solution

EqualityConstraint Constraint MILPproblem

ConstraintCoefficient GreaterEqualConstraint

Variable

ContinuousVariable BinaryVariable

Use Use

Use

UseUse

Use

Use

Use

Use
Index

Index

Fig. 5. Metamodel structure of the optimisation problem

without user intervention, but obviously, the user should
complete the metamodel with the necessary data. This is
made easy by using external files of type xml.

C. GNU Linear Programming Kit (GLPK)

GLPK is free, open source software. It makes possible to
solve mathematical programs. Specifically, it solves linear
programs (LP) via revised simplex method and primal-dual
interior point method. It also solves linear mixed-integer
programs (MILP) via branch-and-bound algorithm, together
with advanced cut routines.
GLPK is intended to solve large-scale problems. It provides
an optional presolver, which transforms the problem into
one that has better numerical properties for the simplex
algorithm; this is particularly useful for large-scale problems.
GLPK was developed, and is maintained, by Andrew
Makhorin, Department for Applied Informatics, Moscow
Aviation Institute.

VI. D IAGNOSIS ANALYSIS

The diagnosis analysis aims at computing all the possible
diagnoses from the symptoms provided by the detection tests.
Different kinds of approaches may be used to analyze the
symptoms. The decision tree approach is a general approach
to analyze symptoms but not relevant for complex systems
([5]). Case-based reasoning compares the current symptoms
with patterns coming from a knowledge database in order
to retrieve a similar situation with the current one ([16]).
This approach is not exhaustive and does not benefit of
the knowledge about the behavioral modes of the system
components. The signature based approach relies implicitly
on a no exoneration assumption ([20]), which may lead
to erroneous diagnoses. The bridge approach shows that
the consistency-based reasoning can be used to analyze the
symptoms coming from the detection tests depicted by the
involved modes ([18]), ([20]). The bridge approach presented
in ([20]) shows that a detection test based on a TSS, can be
depicted as a set of modes of related components.

145



Depending on the way of testing, test (10) yields to:∧
i∈T ok(ci) ↔ ∀obs ∈ OBS, kT (obs) = 0 (18)

or ∧
i∈T ok(ci) → ∀obs ∈ O, kT (obs) = 0 (19)

whereO ⊂ OBS.
Practical diagnosis relies on expressions like (19). For

each, unsatisfied testkT (obs) 6= 0 for a givenobs ∈ OBS
yields:

kT (obs) 6= 0 →
∨
i∈T

cfm(ci) (20)

where the set{cfm(ci); i ∈ T} is named explanation forT :
Expl(T ).

If a test is satisfied,kT (obs) = 0, it does not lead to any
formal conclusion.

If a test has been performed for all the possible observa-
tions OBS, equation (20) becomes:∧

i∈T

ok(ci) ↔ ∀obs ∈ OBS, kT (obs) = 0 (21)

But it is almost never possible to test all the possible
situationsOBS because:

• even if the variables are observable, the system has to
be controllable to be able to check all the possibleOBS

• sensors and actuators may be faulty, so it is not possible
to prove that all the situationsOBS have been checked.

Therefore, to compute diagnoses, expressions like (20) are
used. A diagnosis is thus a conjunction of faulty modes such
that it may explain all the current known test explanations.
Then, in each diagnosis, the fault mode of every faulty
component is taken into account. In other words, consider
a set of inconsistent detection tests{T1, . . . , Tn}. Finding a
diagnosis consists in searching a conjunction of modes which
verifies the following expression:∧

Ti

∨
modej∈Expl(Ti)

modej (22)

The second method which can be used to sort the diagnosis
exploits the priori reliability of components:p(mode(ci) =
ok(ci)). Then, because there are only two considered modes,
p(mode(ci) = cfm(ci)) = 1−p(mode(ci) = ok(ci)). Then,
if d =

∧
i cfm(ci) is a diagnosis, its a priori probability is

given by:

µa
T (d) =

∏
i

(1− p(mode(ci) = ok(ci)) (23)

VII. D IAGNOSIS STRATEGY OF PHOTOVOLTAIC SYSTEM

In this section, the diagnosis strategy of photovoltaic
systems is presented.
The list of the necessary sensors for diagnosis analysis are:

1) current sensor
2) voltage sensor
3) temperature sensor
4) pyranometer
5) laptop and diagnosis software

Suppose that the variables to be measured are determined,
the following steps are necessary for fault detection and
isolation:

1) the sensors measuring the variablesGa and Ta are
installed in order to plot the curve of each photovoltaic
panel in function ofI andV . This step is very impor-
tant to linearize the non-linear constraints modelling
these panels.

2) the other sensors are consecutively installed (one by
one, two by two....)

3) measurements of installed sensors are collected
4) these measurements are entered into the diagnosis

software
5) the diagnosis software finds the testable subsystems
6) this software generates the symptoms by using the

testable subsystems
7) this software finds all the possible diagnoses
8) if the goal is satisfied then the analysis diagnosis is

finish, else, the steps 2, 3, 4, 5, 6 et 7 are repeated

Consequently, the diagnosis software provides all the possi-
ble diagnoses.

VIII. A PPLICATION

In this section, the iterative diagnosis process presented
in this paper is applied on the photovoltaic system (Fig. 2)
in order to satisfy the following specifications: the faults on
panels have to be isolated and the faults on connections have
to be at least detected. The necessary sensors are already
determined. The necessary sensors are already determined.
The photovoltaic system with sensors is modelled by the
constraint sets (5, 6, 7 and 8).
By applying the diagnosis strategy presented in section VII,
all the sensors already determined have to be installed.
Suppose that the measured values are:Ta = 330, I1 = 3.40,
V1 = 21.6851, V2 = 28.9135, V3 = 28.9135, Vchamp =
79.5121, Ichamp = 3.40. Suppose also that the value of
photocurrent related to the measured irradiationGa is Iph =
3.77.
By applying one of methods of testable subsystem design, 8
minimal testable subsystems (TSSs) are obtained. ThisTSSs
are:

• TSS1 : k11, k3, k5, k8, k4, k15, k14
• TSS2 : k12, k6, k5, k8, k4
• TSS3 : k12, k11, k3, k6, k15, k14
• TSS4 : k11, k10, k9, k7, k13
• TSS5 : k11, k3, k10, k2, k5, k15, k14
• TSS6 : k12, k6, k10, k2, k5, k15, k14
• TSS7 : k9, k1, k8, k15, k14
• TSS8 : k10, k2, k8, k4, k15, k14

By applying the method of symptom generation, the follow-
ing results are obtained: the tests resulting from the testable
subsystemsSST1, SST2, SST3, SST4, SST5, SST6,
SST8 are positive (observations are consistent with models)
and the test resulting fromSST7 is negative (observations
are inconsistent with models).
The symptoms found are used for diagnosis analysis. A
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diagnosis software DXLAB (developed in the laboratory G-
SCOP) has been used to find out all the possible diagnoses.
These symptoms are declared in DXLab as in figure 6.
Once symptoms are declared, the diagnoses shown in figure

abed@ubuntu-pioneer:˜$ dxlab
Welcome into DXLAB version 0.2.2
[1] test k3 k4 k5 k8 k11 k14 k15 positive
test t001 [enabled], symptom:0.0 % (positive)

k3, k4, k5, k8, k11, k14, k15
[2] test k4 k5 k6 k8 k12 positive
test t002 [enabled], symptom:0.0 % (positive)

k4, k5, k6, k8, k12
[3] test k3 k6 k11 k12 k14 k15 positive
test t003 [enabled], symptom:0.0 % (positive)

k3, k6, k11, k12, k14, k15
[4] test k7 k9 k10 k11 k13 positive
test t004 [enabled], symptom:0.0 % (positive)

k7, k9, k10, k11, k13
[5] test k2 k3 k5 k10 k11 k14 k15 positive
test t005 [enabled], symptom:0.0 % (positive)

k2, k3, k5, k10, k11, k14, k15
[6] test k2 k5 k6 k10 k12 k15 k16 positive
test t006 [enabled], symptom:0.0 % (positive)

k2, k5, k6, k10, k12, k15, k16
[7] test k1 k8 k9 k14 k15 negative
test t007 [enabled], symptom:100.0 % (negative)

k1, k8, k9, k14, k15
[8] test k2 k4 k8 k10 k14 k15 positive
test t008 [enabled], symptom:0.0 % (positive)

k2, k4, k8, k10, k14, k15

Fig. 6. The sysmptom declaration

7 were obtained.
Suppose that the sensors are reliable (faults on sensors are

[9] show diagnoses
#0 (score:100.0 %, apriori:10.0%, vote:100.0%)

k1 is not ok

#1 (score:100.0 %, apriori:10.0%, vote:87.5%)
k9 is not ok

#2 (score:100.0 %, apriori:10.0%, vote:62.5%)
k8 is not ok

#3 (score:100.0 %, apriori:10.0%, vote:50.0%)
k14 is not ok

#4 (score:100.0 %, apriori:10.0%, vote:37.5%)
k15 is not ok

Fig. 7. The possible diagnoses

not considered), the diagnosis software shows that a fault has
occured in the panel 1. Consequently, the problem has been
isolated and the specifications are satisfied.

IX. CONCLUSIONS

This paper points out how iterative fault diagnosis system
can be achieved. The necessary steps are detailed. The mod-
elling aspect is firstly discussed. The information required to
depict a system to be diagnosed has been presented. Then, all
the possible testable subsystems are generated and the way
of testing them has been presented. Testable subsystems are
transformed into a MILP problem and a GLPK solver is used
to illustrate a possible implementation. Finally, a photovoltaic
system that makes it possible to clarify the iterative diagnosis
process is presented.
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