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ABSTRACT 
The contact defects between wheel and rail which are 
originated from wheel profile irregularities and train 
overloading or unbalancing could deteriorate railway 
tracks. The interaction defects influence more 
drastically the maintenance of railways with high traffic 
like the ones of Eurotunnel tracks. Several works have 
been performed on different issues of dynamic 
interaction model between rail and wheel. Such a model 
can be used for analysis and numerical simulation for 
wheel profile geometry and train load characteristics. 
The aim of this paper is to review the major methods 
and models and classify them, so that different parts of 
the model are demonstrated: wheel profile geometry, 
wheel/rail contact model, vehicle and track structure 
and substructure models, calculation methods and 
transient simulation models. To achieve the accurate 
prediction by the model, different methods of exploiting 
the experimental data to identify the load and diagnosis 
the interaction defects are also presented. 

 
Keywords: Track/train interaction model, wheel profile 
irregularity, track response, identification and diagnosis 

 
1. INTRODUCTION 
The reduction of railway operating cost is a key issue 
for infrastructure managers and railway operators. In the 
scope, maintenance cost reduction is a major target. 
Highest speed, increased traffic density and load result 
in accelerated degradation (fatigue). In the same time, 
interoperability, variety of different vehicles, induces a 
wider variety of potential degradation sources. One of 
the most important problems facing the railway 
maintenance is the monitoring of dynamic behavior of 
tracks subjected to moving loads (freight and passenger 
trains) and the defect diagnosis. The structures are 
therefore subjected to severe vibrations and dynamic 
stresses, which in turn are much more than the 
corresponding static stresses. 

The dynamic force of railway interaction is 
influenced by geometrical characteristics of wheel and 
rail and dynamic characteristics of the load. The goal of 

diagnosis is to identify these characteristic and the 
defects related to them. The main geometrical defects 
are out-of-roundness of wheel profile, rail corrugation, 
rail joints discontinuity and wheel/rail roughness. 

The out-of-roundness (OOR) defects concern the 
deviation of the wheel tread geometry from its circular 
shape. Different types of out-of-roundness are 
catalogued by the International Union of Railways (ETF 
04). Two major types of OOR are wheel polygonal and 
wheelflat. When the brakes are applied to a railway 
wheel, it can sometimes happen that the wheel locks 
and slides along the rail. The reason for this may be 
poorly adjusted, defective or frozen brakes or lack of 
adhesion at the wheel/rail interface, for example, due to 
leaves on the rail head. This sliding causes severe wear 
of the part of the wheel in contact with the rail, leading 
to the formation of a wheelflat. Such flats on the wheel 
may be typically 50 mm long but can extend to over 
100 mm long. 

A gathering of several flats leads to the creation of 
a polygon. When the wheels rotate, wheelflats generate 
large impact forces between the wheel and track. 
Polygonal wheels with a few dominating harmonics (1 
to 5 wavelengths around the wheel circumference) have 
previously been detected especially on high-speed 
trains. Simulation results show that the most important 
wavelength-fixing mechanisms of the wheel OOR are 
the vertical resonance of the coupled train-track system 
and the frequency region including the lowest vertical 
track antiresonance (Johansson and Andersson 05). 

Wheelflats and rail roughness are very important in 
the context of dynamic wheel-rail interaction and track 
deterioration. Dynamic characteristics of the load as 
variable moving speed and unbalance of wagons load 
are other important issues to study subsequently. 
Hereby the parameters like train charge and its vertical 
position are considered to be fixed.  

In order to investigate the track/train dynamic 
interaction with various load balancing and wheel 
profile defects, train speeds and static loads, a proper 
mathematical model is essential. Such a model can be 
used for analysis and numerical simulation for different 
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train characteristics and parameters (speed, load …) and 
method of diagnosis. The aim of this paper is to review 
the major methods and models and classify them, so 
that different parts of the model are demonstrated: 
wheel profile geometry, wheel/rail contact model, 
vehicle and track structure and substructure models, 
calculation methods and transient simulation models. 
Such a model is then usable to identify the moving train 
characteristic and diagnosis the defects on profile of 
railway wheel. This paper reports on an overview 
within the framework of the wheel defect topic of the 
“Track Train System Availability” (TTSA) project of i-
Trans competitiveness cluster. 

 
2. PREVIOUS WORKS 
The interaction defects between wheel and rail causes 
noise and safety problem. When wheel locks and slides 
along the rail, it produces wear and flattening the wheel. 
Consequently large vibration amplitudes are created 
which lead to the damage of track and propagation of 
fatigue cracks. Several works have been performed on 
different issues of dynamic interaction between rail and 
wheel. In this part the related more recent studies are 
addressed contingent on the following topics. 

 
2.1. Geometry of Wheelflat 
The force of contact is expressed as a function of the 
relative displacement between wheel and rail at the 
contact point, and it depends on the un-deformed 
wheel–rail geometry and the elastic characteristics of 
the wheel–rail contact. Two main kinds of model have 
been used to study wheel/rail interactions, a moving 
irregularity between a stationary wheel and rail, and a 
wheel rolling on the track.  

For a discretely supported rail the moving 
irregularity model cannot deal with the parametric 
excitation at the sleeper-passing frequency caused by 
the varying dynamic stiffness in a sleeper bay, and may 
underestimate the interaction force level at high speeds 
(Wu and Thompson 06). The moving wheel model is 
therefore essential to investigate the effects on 
wheel/rail interaction due to the parametric excitation 
(Sheng and Thompson 04). This model incorporates 
vehicles, a track and a layered ground, and uses the 
moving axle loads and the vertical rail irregularities 
such as wheelflat in its inputs (Baeza, Roda, and 
Nielsen 06b). 

In a rough approximation, the relation between d, 
depth of a wheelflat, l0, its length, and R, the radius of 

the wheel could be � ≊
��
�

��
. The geometric equations of 

a wheelflat is detailed in (Baeza, Roda, Carballeira, and 
Giner 06a; Pieringer and Kropp 08b). 

Two kinds of wheelflat geometry are generally 
considered: the fresh wheelflat with sharp edges as 
occurring right after formation and the rounded 
wheelflat, which rapidly develops from the fresh 
wheelflat as a result of wheel tread wear and plastic 
deformation. In the literature, a rounded flat is given the 
same depth as the fresh flat but with a greater length.  

Above a certain critical train speed, the wheel 
separates from the rail when the interface encounters 
certain types of discontinuities. The strength of the 
impact and the frequency of repetition are proportional 
to the train speed (Vér, Ventres, and Myles 76). For a 
fresh wheelflat, of depth 2 mm and length 86 mm, loss 
of contact is found to occur for speeds above 30 km/h. 
For a rounded flat of the same depth but overall length 
121 mm the speed at which loss of contact first occurs 
increases to about 50 km/h (Wu and Thompson 02). 

Pieringer and Kropp (08b) derived the equations 
for the geometric parameters of a wheelflat related to 
the centre angle, Φ0. Because the contact algorithm 
requires the wheel profile expressed in Cartesian 
coordinates in the wheel-following coordinate system 
(x',z'), the orientation of the wheel in this coordinate 
system was described by the angle φ, 0≤φ<2π, see 
figure 1. 

 
(a)                                   (b) 

Figure 1. Geometry of wheelflats in φ=0 (a); and in 
angular position φ>0 (b) 
 

In order to distinguish the fresh and rounded flats 
with simpler equations, Baeza et al. defined the 
irregularity function as the vertical displacement of the 
wheel form a reference point for bringing wheel and rail 
in contact  (Baeza, Roda, Carballeira, and Giner 06a).  

 
2.2. Model of contact 
This still-relevant classical solution provides a 
foundation for modern problems in contact mechanics. 
In linear elastic context, where the area of contact is 
much smaller than the characteristic radius of the body, 
each body can be considered an elastic half-space. An 
elastic sphere of radius R indents an elastic half-space to 
depth d, and thus creates a contact area of radius a. The 
applied force F is related to the displacement d by 

F =



�
E∗R�/�d�/� where 

�

�∗
=

����
�

��
+

����
�

��
 and E�, E� are 

the elastic modules and ν�, ν� the Poisson's ratios 
associated with each body. 

This equation is usable for interaction of a round 
wheel with a rail surface. To consider a wheelflat, it is 
considered that a rigid cylinder is pressed into an elastic 
half-space. So it creates a pressure distribution 

described by p�r� = p��1 −
 �

!�
���/� where r is a the 

radius of the cylinder p� =
�

"
E∗ #

!
 and the relationship 

between the indentation depth and the normal force is 
given by F = 2aE∗d. 
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For the first time, Hertz solved the problem 
involving contact between two elastic bodies with 
curved surfaces. Based on geometrical effects on local 
elastic deformation, the Hertz formulation relates the 
normal transmitted force between the bodies by 
F& = K(δ

�.+. The application of 2D Hertzian contact 
had been dominating related to the other methods just as 
these cases (Vér, Ventres, and Myles 76; Nielsen and 
Igeland 95; Zhai and Cai 97; Nordborg 02; Sun and 
Dhanasekar 02; Sheng, Jones, and Thompson 04; Ford 
and Tompson 06; Wu and Thompson 06). 

Despite its popularity, limits of this approach are 
that geometric requirement in Hertzian model by which 
the non-deformed surface collide, should be elliptic 
paraboloids. Other assumptions which are made in 
determining the solutions of Hertzian contact problems 
are: 

• the strains are small and within the elastic limit, 
• each body can be considered an elastic half-

space, i.e., the area of contact is much smaller than the 
characteristic radius of the body, 

• the surfaces are continuous and non-conforming, 
• the surfaces are frictionless. 
This requirement is not satisfied when rail-wheel 

contact coincides with flat. Additional complications 
arise when some or all these assumptions are violated 
and such contact problems are usually called non-
Hertzian. The theoretical results of a Hertzian and a 
non-Hertzian contact model are compared and it is 
found out that Hertzian model tends to overestimate the 
peak impact forces (Baeza, Roda, Carballeira, and Giner 
06a; Pieringer and Kropp 08b). Non-linearities in the 
wheel/rail interaction cannot be neglected in the case of 
excitation by wheelflats because of the resulting large 
contact forces and the occurrence of loss of contact for 
train speeds above the critical speed. 

A two dimensional model consisting of a Winkler 
bedding of independent springs between wheel and rail 
is introduced (Pieringer and Kropp 10b). Figure 2 
shows that for the calculation of the normal contact 
force, this model takes into account one line of 
combined wheel/rail roughness, in the rolling direction. 
The springs in the bedding are independent and allow 
for loss of contact. 

 
Figure 2. Bedding model of contact 

 
The most general non-Hertzian model used in 

railway diagnostic is proposed by Kalker (Kalker  95). 
As mentioned, loss of contact which is occurred on 
wheelflats, passing over rail joints, and non-linearity 
could not be considered by Hertzian approach. Thereby 
the pretabulated Kalker model has taken much attention 
lastly (Baeza, Roda, Carballeira, and Giner 06a; Baeza, 
Roda, and Nielsen 06b; Mazilu 07; Mazilu 10). To 

summarize the process,  Baeza, Roda, Carballeira, and 
Giner (06a) defined the potential contact area (PCA) in 
such way that it contains every point of the contact area 
and is rectangular. A discretization of the PCA is 
established in equal rectangular elements within which 
the magnitudes to be defined in each element are 
considered to be constant, as seen in the figure 3. 

 
Figure 3. Definition of the potential contact area 
 

2.3. Vehicle Model 
In most of cases, a simple model for vehicle is used to 
achieve the necessary frequency band (Nordborg 02; 
Wu and Thompson 02; Mazilu 07; Pieringer and Kropp 
08b; Steenbergen 08; Pieringer and Kropp 10a). The 
vehicle motion is governed by the wheel-rail contact. 
The simplest 1D vehicle model is an unsprung mass. In 
this model, as shown in figure 4(a), an unsprung mass 
which represents the wheel is connected to a sprung 
mass assimilated by a static load for the rest of vehicle. 
Because the primary suspension filters the high 
frequency vibration of contact, only the vertical 
dynamics are considered (Baeza, Roda, Carballeira, and 
Giner 06a). This model has 2 degrees of vertical 
movement and the masses are connected through a 
suspension. 

(a)                                                                         

(b)                                            

(c)            
Figure 4. Vehicle model in 1D (a), 2D (b) and 3D (c) 

 
Using just an unsprung mass to show whole 

vehicle is not the case in practice, where multiple 
wheels roll on the rail. It is shown that the high-
frequency excitation from each wheel can be treated 
independently by using the superposition principle, 
provided that the rail vibration is considered as a 
frequency band average (Wu and Thompson 01). 

Although a single unsprung mass on a nonlinear 
Hertzian contact was the most common vehicle model, 
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it is shown that this model may largely underestimate 
the dynamic response (Nielsen and Igeland 95). 
Therefore a 2D vehicle model is proposed which 
contains 2 unsprung masses. Figure 4(b) presents the 
complete configuration of this model. The other parts of 
the model are 1 sprung mass and 2 suspensions and it 
has 6 dof. By comparing the results calculated for 
vehicle models including one and two unsprung masses, 
it was found that the interaction between the two wheels 
of the bogie model was primarily due to the vibration of 
the track structure, whereas the bogie frame was not 
much a effected by the imperfections studied. This is 
not surprising since bogie suspensions are designed to 
isolate the unsprung masses from the rest of the vehicle 
(Nielsen and Igeland 95). 

For vibration analysis in dissymmetric load and 
stability analysis, 3D vehicle model is proposed (Zhai 
and Cai 97; Szolc 01; Sun and Dhanasekar 02; Hou, 
Kalousek, and Dong 03; Johnsson and Andersson 05). 
Figure 4(c) (Hou, Kalousek, and Dong 03) shows a 
complete bogie model which is consisted of two 
wheelsets and a bogie frame. The primary suspension 
between the wheelsets and the bogie frame consists of 
linear springs and viscous dampers (Johnsson and 
Andersson 05). The considered vehicle model is 
supported on two double-axle bogies at each end and is 
described as a 10 dof lumped mass system comprising 
the vehicle body mass and its moment of inertia, the 
two bogie masses and their moments of inertia, and four 
wheelset unsprung masses (Zhai and Cai 97; Sun and 
Dhanasekar 02). 

 
2.4. Track Model 
The model of rail and its supports is the most important 
part which affects the accuracy and speed of the 
simulation and has attracted much attentions. The 
simplest model which is widely used to represent an 
infinite rail is Euler-Bernoulli beam (Zhai and Cai 97; 
Szolc 01; Nordborg 02; Steenbergen 08; Hammoud, 
Duhamel, and Sab 10). The dynamic response of an 
Euler-Bernoulli beam under a moving load is analyzed 
(Lee 94). This model is limited for high frequencies. 
Timoshenko beam model was developed to consider the 
shear deformation and large deflections, and has been 
used to study vehicle/track dynamics to examine the 
effect of wheelflats since 1926 (Sun and Dhanasekar 02; 
Wu and Thompson 02; Baeza, Roda, and Nielsen 06b; 
Mazilu 07). Timoshenko beam model is known to 
provide a good representation of the vertical vibration 
of the rail up to about 2 kHz, above which the rail cross-
section deformation should be taken into account. The 
shear deformations can be included not only for 
mechanical reasons, but also in order to optimize the 
discretization in the space-domain. So the physically 
more realistic Timoshenko beam model offers 
additional numerical advantages when dealing with 
transient dynamic problems in unbounded domains. 

UIC60 is the most frequent rail type, so its 
characteristic is frequently used. To have a better 
representation of the rail, it is divided into two parts: the 

upper part representing the head and the lower part 
representing the foot. Both the head and the foot are 
represented by infinite Timoshenko beams in the rail 
axis direction. These two beams are connected by 
continuously distributed springs to allow relative 
motion between them (Wu and Thompson 99). 

Although Euler-Bernoulli model is satisfactory at 
low frequencies, to consider the shear deformation and 
rotary inertia at higher frequencies a Rayleigh-
Timoshenko finite beam elements is used (Pieringer, 
Kropp, and Thompson 10b). As an example, curve 
squealing of railway wheels occurs erratically in narrow 
curves with a frequency of about 4 kHz (Pieringer and 
Kropp 10a). 

A simple model to fix the rail to the ground is the 
continuous foundation like an elastic half-space and a 
Winkler Bedding. The main difference between the 
elastic half-space and the Winkler bedding lies in the 
fact that in the elastic half-space the points are coupled 
with each other, while in the Winkler bedding a set of 
non-coupled springs is used. Because the points in the 
elastic half-space are coupled an iterative procedure is 
necessary to determine the displacements due to the 
roughness profile at each time step. Therefore this 
model is computationally more expensive than the 
Winkler bedding. However, the Winkler system cannot 
represent a real foundation. It's because the coupling 
between a beam and an elastic mass under a mobile 
charge is a problem. Complete comparison between 
maximum moment and maximum displacement 
obtained by Winkler bedding and halfspace showed that 
for a given maximum moment, the Winkler bedding 
yields 1.5 to 1.8 times higher spring constant than the 
halfspace (Fischer and Gamsjäger 08). 

In figure 5, the vertical geometry of the rail, which 
is continuously supported, is described by z(x). 
Continuously supported beam is a significant 
simplification, which will especially affect the model 
results when irregularities having a predominant 
wavelength that is comparable to the sleeper spacing 
distance (Steenbergen 08). 

 
Figure 5. Moving wheel on irregularity z(x) (a) and 
equivalent excitation z(t) (b) 

 
Figure 6 shows a slab track is considered as an 

infinite structure consisting of elastically supported 
double Euler-Bernoulli beams (Mazilu 10). 

Some more examples of using the continuous 
support are presented here: 

A simple model is developed based on essential 
cross-sectional deformation of a double Timoshenko 
beam in vertical vibration at high frequencies (Wu and 
Thompson 99). 
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The foundation consists of distributed non-
interacting springs and dampers (Winkler foundation). 
A track model which has been discretized by use of 
standard polynomial finite elements will therefore be 
sought (Nielsen and Igeland 95). 

 
Figure 6. Mechanical model of a moving mass and an 
infinite homogenous structure 

 
The dynamic behavior of the isolated substructures 

(rails and sleepers) is described by linear beam theory. 
The sleepers are modeled as Euler beams on a Winkler 
foundation, where the ballast is the elastic foundation. 
Therefore, initially, ballast is considered as having 
linear characteristics. However, it is possible to include 
nonlinearities by incorporating them as external forces 
as a function of sleeper displacements (Baeza, Roda, 
and Nielsen 06b). 

Despite these numerous applications, continuously 
supported beam is a significant simplification, which 
will especially affect the model results when 
irregularities having a predominant wavelength that is 
comparable to the sleeper spacing distance, and so is not 
preferred related to discretely supported beams. In cases 
when loss of contact occurs the effect of the 
discreteness of the supports becomes important. 

While conventional Timoshenko beam model may 
be used only up to about 2000 Hz, the discretely 
supported rail model could consider the vertical 
vibration from about 1000 to 6500 Hz. For high 
frequencies (at least 5 kHz), the rail cross-sectional 
deformation is significant. The equation of Timoshenko 
beam with discrete supports is given in (Sun and 
Dhanasekar 02). 

A discretely supported rail could consider higher 
frequency vibration modes. Properties associated with 
the discrete supports are sleeper-passing frequency 
f- = v l⁄ , and pinned-pinned frequency f11 and the 
wavelength λ11 = 2l, where v is the train's speed and l 
is the distance between 2 consecutive sleepers. 
Numerical simulations show that it is necessary to 
include discrete supports in rail modeling to describe 
the response at low frequencies, determined by the 
sleeper-passing frequency  f-, and around the pinned–
pinned frequency f11, usually around 1 kHz-in 
particular if the rail is very smooth or has a corrugation 
with a wavelength corresponding to the pinned–pinned 
frequency. If the rail has a corrugation it may also be 
necessary to include the nonlinear contact spring, since 
loss of contact occurs for great corrugation amplitudes, 
e.g., if the corrugation amplitude r� is greater than 15 
µm when the preload P is 65 kN. 

This model is a flexible approach which could be 
developed in different degree of freedom for the 

support. The rail is normally described as an infinitely 
long beam discretely supported at rail/sleeper junctions 
by a series of springs, dampers and masses. In (Zhai and 
Cai 97), the three layers of discrete springs and dampers 
represent the elasticity and damping effects of the rail 
pads, the ballast, and the subgrade, respectively. The 
two layers of discrete masses below the rail represent 
the sleepers and the ballast, respectively. In order to 
account for the shear continuity of the interlocking 
ballast particles, shear springs and dampers are 
introduced between the ballast masses to model the 
shear coupling effects in the ballast. Also the transient 
differential equations for 3 layer of supports and a 10 
dof car model is developed. 

Railpad and ballast/subgrade have a large influence 
on the track dynamics at low frequencies. In figure 7, 
two different visco-elastic models of the rail pad is 
shown (Nielsen 08). 

 
Figure 7. Vehicle model (2 wheelsets) and2 different 
visco-elastic models of the rail pad 

 
Two track models that include different models of 

rail pads and ballast/subgrade are compared (Nielsen 
08). In track model A, each rail pad is modeled as a 
discrete linear elastic spring and a viscous damper in 
parallel (Kelvin model). In track model B, each pad is 
modeled by a three-parameter visco-elastic model 
(standard solid model), see figure 7. In track model A, 
the support under each sleeper is modeled by a Kelvin 
model, whereas in track model B, a four-parameter 
visco-elastic model is adopted. The four-parameter 
model means two spring–damper sets coupled in series, 
with each set containing one elastic spring and one 
viscous damper coupled in parallel. 

A model is proposed in (Baeza, Roda, and Nielsen 
06b) for wheel-rail contact, railpad and ballast with the 
interaction forces between them and the vehicle. It 
provides a model with a reduced number of coordinates, 
so a low computational cost. The developed track model 
is based on a sub-structuring approach, where a modal 
description of each isolated rail and sleeper is adopted. 
Ballast and railpads are considered as connection 
elements, where the ballast connects sleepers and 
ground and the railpads connect sleepers and rails. 

 
2.5. Calculation in Time and Frequency Domain 
The issue of wheel/rail interaction may be studied by 
applying the frequency-domain analysis or the time-
domain analysis. The most wide spread prediction 
model for railway noise is a frequency-domain model. It 
establishes a relationship between receptance and 
external force at different frequencies using a 
mathematical transformation under set assumptions, 
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thereby avoiding the solution of complicated differential 
equations. It is in the nature of frequency-domain 
models that they can only include a linear contact 
model. So the frequency-domain analysis requires the 
assumption that the track is a linear (steady state) 
structure. Steady-state interaction for an asymmetrical 
vehicle/track model is calculated by (Hou, Kalousek, 
and Dong 03). For steady state, each wheel/rail force is 
a periodic function of time and can be expressed as a 
Fourier series. The noise is usually presented in 
frequency bands such as one-third octaves. 

Frequency-domain method mainly proposed by 
Remington is premature, requiring evidence from more 
advanced description of the generation mechanism. To 
study the non-linear effect of roughness on interaction 
force and provide an excitation input to exciting linear 
model of noise, 2 procedures are examined (Remington 
and Webb 96). Alternative excitation mechanisms 
include nonlinearities and parametric excitation due to 
charging rail and contact receptance with position. For 
continuously supported track, nonlinear wheel/rail 
contact effects are mostly unimportant, unless the 
roughness level is very high or the static load is very 
small. 

Because of the fact that the model is simplified and 
its linearity, it is not suitable for quantitative predictions 
with a high level of accuracy. So the nonlinear 
characteristics of the track structure and the non-linear 
wheel/rail contact should be modeled in time-domain. 
However, the time-domain models are more complex 
than frequency-domain models. 

Based on a derivation of the translational and 
rotational dynamic stiffness of both infinite 
Timoshenko and Euler-Bernoulli beams on Winkler 
foundation in the frequency-domain and time-domain 
beam models, the use of Timoshenko’s beam model 
leads to an asymptotic behavior in the frequency-
domain which is linear with respect to iω. Thus, the 
corresponding expression in the time-domain is a first-
order time derivative. Contrary to Timoshenko’s model, 
Euler-Bernoulli’s beam theory generates rational 
powers of iω in the frequency-domain and consequently 
fractional derivatives in the time-domain with memory 
integrals to be solved. Their evaluation asks for 
nonlocal time-solvers with much higher computational 
effort than local solvers (Ruge and Birk 07). 

Two methods of time & frequency-domain are 
presented to diagnosis the noise generation in wheel/rail 
contact including discrete supports, parametric 
excitation, and nonlinear contact spring (Nordborg 02). 

A wavenumber-based frequency-domain 
calculation method is used for the response of a 
periodically supported rail to a moving harmonic load, 
allowing dynamic wheel/rail forces to be calculated for 
single or multiple wheels moving over an initially 
smooth or rough track. It is shown that this approach is 
more efficient than a full time-domain approach, but 
extends earlier work by including the effect of forward 
motion explicitly. 

Another application of time-domain method is that 
the roughness spectrum is not derived from the 
wheelflat geometry directly, but from the results of the 
time-domain calculation. Thus, it is used as a means of 
converting the wheel/rail interaction force into an 
equivalent roughness input. It is shown that a time-
domain wheel/rail interaction analysis model gives 
similar results to quasi-static roughness filtering with a 
constant load for moderate roughness, but dynamic 
effects became significant when the roughness 
amplitudes were large, particularly with dipped rail 
joints (Ford and Thompson 06). 

In order to predict the consequent noise radiation, 
the wheel/rail interaction force is transformed from 
time-domain into the frequency-domain and then 
converted back to an equivalent roughness spectrum. 
This spectrum is used as the excitation to a linear, 
frequency-domain model of wheel/rail interaction to 
predict the noise. This hybrid approach has been shown 
to be adequate by comparing direct and hybrid 
calculations for a wheel with a single, lightly damped 
resonance (Wu and Thompson 02). 

 
3. TRANSIENT SIMULATION MODELS 
Displacements in physical coordinates, required to 
calculate the forces transmitted through railpads and 
contacts, and the values of the force terms which appear 
in the differential equations (Baeza, Roda, and Nielsen 
06b). From the geometry, the kinematics, and the 
dynamics of the wheel/rail system, analytical models 
could be developed to identify the major variables 
controlling the generation of impact noise. The coupling 
between normal and lateral directions was introduced 
through the track dynamics due to an offset of the 
wheel/rail contact point from the rail centre line which 
is assumed as an input to the model (Pieringer, Kropp, 
and Nielsen 08a). 

The beam model could be considered in time-
domain via its receptance. Vertical vibration 
receptances of the rail have been calculated using both 
continuously and discretely supported rail models (Wu 
and Thompson 99). Nielsen studied the vertical 
dynamic behavior of a bogie moving on a rail discretely 
supported via railpads by sleepers resting on an elastic 
foundation. The transient interaction problem is 
numerically solved by use of an extended state-space 
vector approach in conjunction with a complex modal 
superposition for the track (Nielsen and Igeland 95). 

Hammoud showed that the fully continuous 
solutions could not give a satisfactory response for the 
frequency response model. A formulation for coupling 
discrete and continuum models for both dynamic and 
static analyses was given, which offered the better 
simulations of material properties than the discrete 
calculations (Hammoud, Duhamel, and Sab 10). 

Consideration of wheels moving along a discretely 
supported rail is normally achieved in the time-domain 
by solving differential equations as an initial-value 
problem. Pretension in the rail affects the dynamic 
response of the rail. The wave propagation velocity in 
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the track is greater than 1000 km/h. For train speeds not 
exceeding 350-400 km/h the proper estimations 
performed have shown that the wave effects can be 
neglected and the most significant influence of vehicle-
track relative motion is expressed by periodic 
fluctuation of track properties during run over 
successive sleepers. 

In analytic solution for a continuously supported 
rail equation, the derivations related to time and 
positioned are replaces with its Laplace and Fourier 
transformed equivalent. But the analytical method will 
never give a simple and precise solution for a discretely 
supported rail. To obtain the satisfactory results, one 
method is using the Green's function; where wheel and 
rail are represented by impulse response functions. 
Otherwise the time-domain approaches require the track 
to be truncated into a finite length. To minimize wave 
reflections from the truncations and to be able to 
account for high-frequency vibration, the track section 
must include at least 100 sleepers and the rail must be 
modeled using either the finite element method or the 
modal superposition method employing more than 100 
modes (Sheng, Li, Jones, and Thompson 07). The 
mentioned solutions are explained in this part. 

 
3.1. Finite Element Method 
It is generally found that the infinite beams representing 
the rail resting on an elastic foundation provides only a 
limited insight into the dynamic response of various 
track components. An improvement to such models is 
achieved by accounting the discrete spacing of the 
sleepers. The discrete support models and the finite 
element model allow improved prediction of the rail 
response and offer the potential for refinement by 
including all conceivable track components as layers. 

The advantages of finite element modeling is that 
the dynamic analysis solved by use of numerical time-
stepping routine, non-linear components and contacts 
may be included. Using real valued modal analysis and 
U-transformation, to find the dynamic response of an 
infinite uniform beam, by exact or approached methods. 
Disadvantage of finite element is that non-physical 
discontinuity in slope over element boundaries may 
occur.  

A finite element time-domain model for is 
proposed to determine the dynamic responses to 
wheel/rail interaction (Hou, Kalousek, and Dong 03). 
The solution of the wheelflat case reveals that the 
wheel/rail impact on one rail significantly affects the 
wheel/rail interaction on the other side of the track. 

 
3.2. Assumed Mode Simulation for Discrete Support 
The modal properties of rail and sleepers can be 
calculated from an Euler-Bernoulli or Timoshenko 
beam model. The equation of motion in matrix form is 
formulated by using Hamilton's principle and the 
assumed mode method (Lee 94). The intermediate point 
constrains are located arbitrarily along the beam and are 
modeled as linear springs of very large stiffness. 

From a modal basis viewpoint, the vertical 
displacement of a point located through the longitudinal 
coordinate x at the instant of t is 34�5, 7� =

∑ 9:
4 �5�;:

4 �7�
<=
:>� , where 9:

4 �5� is the mth vibration 
mode and ;:

4 �7� is a set of modal coordinates. 
Problem size depends on the number of rails and 

sleepers, the number of vibration modes considered in 
the modal descriptions of these elements, and the 
number of coordinates considered in the vehicle model 
(Baeza, Roda, Carballeira, and Giner 06b). 

 
3.3. Green's Function 
As described, one approach for track model is a 
finite/boundary method which should be used for a 
truncated model. To achieve a high precision in this 
method, the track model is sufficiently long, which is 
time consuming. Other approach based on analytical 
models and Green's function method, consider the track 
as an infinite structure. 

Because the time-dependent stiffness of the track is 
obtained by inversing the receptance due to a unit 
stationary harmonic load, some authors have tried to 
study the transient simulation model by Green's 
function (Mazilu 07; Pieringer, Kropp, and Nielsen 08a; 
Mazilu 10). Mazilu investigated the interaction between 
a moving vehicle and a slab track by using new forms 
of the time-domain Green’s functions for both slab track 
and vehicle, that are suitable to account for the 
nonlinear wheel/rail contact and the Doppler effect, due 
to substructure technique. From the receptance of the 
rail and slab in the stationary coordinate system, and 
applying the inverse Fourier transform, the time-domain 
Green’s functions of the rail and slab are calculated 
step-by-step taking into account the moving impulse 
force and assembled in the so-called the Green’s matrix 
of the track, invoking the damping feature of the track 
structure. From this equation, the contact force results 
and then, the wheel and bogie displacements and the rail 
and slab deflection may be calculated separately. More 
accurate results for the high-frequency range might be 
obtained by replacing the Euler–Bernoulli beam model 
with the Timoshenko beam model. 

On the other hand, the Green’s functions of the 
two-mass oscillator (the wheel and the suspended mass 
of the bogie) for the time-domain analysis are expressed 
via the Laplace transform. Starting from the equations 
of the wheel and rail displacement, the Green’s matrix 
of the track (only the vector corresponding to the rail) 
and the Green’s function at wheel meet in the nonlinear 
equation of the wheel/rail contact. From this equation, 
the contact force results and then, the wheel and bogie 
displacements and the rail and slab deflection at the 
section of the contact point may be calculated 
separately. No limitative condition regarding the 
wheel/rail contact or the irregularities of the rolling 
surfaces is required. In the quasi-static conditions, all 
Green's functions are set to zero. The quasi-static 
approach proposed by Wu is adequate to account for the 
nonlinearity of the wheel/rail contact, but they are not 
able to simulate the presence of the Doppler Effect. 
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Green function could be used for both frequency-
domain and time-domain models. The time-model 
proposed by Heckel's determines the vertical rail 
deflection by time integrating Green function. The 
frequency-domain model solves a descretized integral 
equation by coupling the frequency components which 
are the Fourier coefficients of expansion of the varing 
receptance along the track, described by the track's 
Green function. Transforming of Green's function in 
frequency-domain into time-domain is down by a 
discrete Fourier transform. 

Pieringer also presented the wheel Green’s 
functions and the track by moving Green’s functions 
(Pieringer, Kropp, and Nielsen 08a). One major 
advantage of the presented interaction model is its high 
computational efficiency. Even if combined with a 
complex finite element model of the track, the 
calculation time for a simulation is typically less than 
20 seconds. Because the Green’s matrix of the track has 
to be calculated once for a particular speed and then it 
can be used to simulate the interaction between the 
track and the vehicle for any set of vehicle parameters. 
One drawback of the moving Green’s functions is that it 
should be calculated for each train speed. 

 
4. VEHICLE PARAMETERS IDENTIFICATION 

AND WHEEL DIAGNOSIS 
One method to evaluate the life assessment of the rail is 
direct measurement of the forces exerted by the train. A 
transducer called MPQY is developed for measuring the 
interaction train/track forces to forecast life of the rail 
(Delprete and Rosso 09). If the interaction forces could 
be measured, a damage model can be used to evaluate 
the track life. So in a continuous procedure, every 
vehicle should be equipped by a force measuring 
instrument. Since this solution is not suitable for 
infrastructure managers and is expensive for railway 
operators, a stationary instrumentation on the rail is 
often preferred. 

 
4.1. Vehicle parameters identification 
In recent years, the technique of moving load 
identification has been developing very rapidly. 
Although different systems have been developed for 
measuring static weigh of the moving vehicles, the 
important problem is to identify the dynamic load 
railways. This problem has been discussed with 
different approaches for bridge deck. Here some cases 
are presented and they illustrate the possibilities for 
identifying a vehicle moving on ground-jointed rail. 
Other parameters like the friction coefficient could be 
characterized by the load and contact conditions. 

The implementation of bridge weigh-in-motion 
technology is an inexpensive method to measure vehicle 
characteristics and true dynamic response (Liljencrantz, 
Karoumi, and Olofsson 07). An existing method of 
moving load identification on a single-span bridge deck 
was generalized for a continuous bridge deck with 
general boundary conditions (Zhu and Law 06). Based 
on modal superposition and regularization technique, 

this method was used to identify the moving loads on 
the elastically supported bridge deck. Numerical 
simulations showed that the method has been effective 
to identify accurately the moving loads on the bridge 
with elastic bearings using different types of measured 
responses. Measured acceleration gives better results 
than those from strains. Therefore, data acquisition is 
based primarily on the use of accelerometers. 

Au, Jiang, and Cheung (04) simulated the 
acceleration measurements from the solution to the 
forward problem of a continuous beam under moving 
vehicles, together with the addition of artificially 
generated measurement noise. The identification was 
carried out through a robust multi-stage optimization 
scheme based on genetic algorithms, which searches for 
the best estimates of parameters by minimizing the 
errors between the measured accelerations and the 
reconstructed accelerations from the moving vehicles.  

While most of moving force identifications are 
based on modal decomposition and modal truncation 
error, a finite element based method was developed 
(Law, Bu, Zhu, and Chan 04). The measured 
displacements were formulated as the shape functions 
of the finite elements of the structure are modeled as 
straight beam. In this method, the identified results are 
relatively not sensitive to the sampling frequency, 
velocity of vehicle, measurement noise level and road 
surface roughness. 

 
4.2. Railway wheel diagnosis 
Wheel defects like OOR and wheelflat cause high 
impact forces to train and track components. The 
accelerometer based methods for determining the wheel 
impact load resulting from wheel defect could prevent 
catastrophic failure of these components. This approach 
relies on the dynamic response of the track in 
determining the magnitude of the impact load imposed 
on the track by a defective wheel (Wasiwitono, Zheng, 
and Chiu 07). 

The wavelet transform could be used to develop a 
diagnostic tool for quantifying the wheelflat defect in 
different train speeds. It is claimed that this diagnostic 
method is very effective to detect all the damaged wheel 
and to measure the train speed with a single rough 
sensor set-up (Belotti, Crenna, Michelini, and Rossi 06). 
To detect the performance robustness, they varied the 
threshold value of 10% and verified how results modify. 

Skarlatos, Kleomenis, and Trochidis (04) proposed 
a fuzzy-logic method for wheel defects diagnosis. First, 
the vibration signatures caused by the rail-wheel 
interactions were recorded on the rail both in case of 
healthy wheels and wheels with defects known a priori. 
The measurements were made on new rails without any 
defect. Consequently, any expected change in the 
vibration signatures would reflect the condition of the 
wheels. Next, the measured data were statistically 
analyzed and confidence intervals for the wheel 
condition depending on train speed and frequency of 
analysis were established. 
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Another method of detecting the wheelflats by 
accelerometer is energy and cepstrum analysis of rail 
acceleration. Energy analysis is useful to estimate the 
global stress which the undergoes, while ceptrum 
analysis, a signal processing technique capable of 
detecting echoes even in strongly noisy signals, allows 
the detection of the independently from the presence of 
other defects, even when their effects are hidden 
(Bracciali and Cascini 97). 

Recently one flat detector method using Doppler 
Effects is presented (Brizuela, Ibanez, Nevado, and 
Fritsch 10). This system analyses the rail/wheel contact 
by frequency and phase shifts. When a wheel moves at 
constant speed, the receiving signal presents a regular 
shift related to the movement speed. The difference 
between the emitted and the received frequencies 
changes if any defect on the wheel tread is detected. 

 
5. CONCLUSION 
In this review, some different models which provide an 
efficient prediction of wheel/rail dynamic behavior 
relating to the interaction defects were presented. 
Despite the large volume of researches which have been 
done on this subject, few work analyze 
comprehensively the problem for an experimental case. 

In order to specify a global dynamic model for 
railway vehicle/track interaction, some precise and 
quick methods will be developed. Following the 
overview, the models comprise 3 different sub-models 
for track, contact and vehicle, where each part could be 
refined with increasing complexity. The rail is modeled 
by Euler-Bernoulli, Timoshenko and double 
Timoshenko beam methods, considering the necessary 
frequency bandwidth. For the same reason, type of 
beam support could be continuous or discretized. For 
the model of contact, after using the nonlinear Hertzian 
force, a Winkler bedding contact will be implemented. 
Two central defects of interaction stated in our study are 
different types of wheel contour irregularity and 
asymmetrically loaded vehicle. To analyze the wheel 
profile irregularities, a 1D vehicle model with 2 dof will 
be used to reduce the calculation time of the model. But 
the asymmetrical loading problem could only be 
analyzed by implementing a 3D vehicle model. 

Firstly, each model should face to theoretical 
results reported in the literature. These models will be 
corrected and their parameters will be identified later by 
experimental results that are given via different 
experimental campaign on Eurotunnel platform. Based 
on the experimental data, the proposed methods of 
diagnosis will predict the defects of profile of railway 
wheel and identify the train load. 
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