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ABSTRACT 

A new approach based on the Partial Least Squares 

(PLS) and Wavelet Transform is presented for the 

industrial process monitoring. A different scheme for 

applying PLS for multiple faults diagnosis is used in 

this approach. Because of multi-scale nature of the 

variable measurements in the most of industrial 

processes the Discrete Wavelet Transform (DWT) is 

applied to extract the multi-scale features of these 
measurements. Comparison of the ability of this Multi-

Scale PLS (MSPLS) algorithm with the PLS to 

diagnosis the multiple faults in the Tennessee Eastman 

process (TEP) benchmark, demonstrates the efficiency 

of the proposed approach and indicates that this MSPLS 

algorithm can be useful for process monitoring and 

detection and diagnosis multiple faults. 

 

Keywords: fault, detection, diagnosis, discriminant 

PLS, MSPLS 

 

1. INTRODUCTION 
P Partial Least Squares (PLS) structure is one of the 

Statistical Process Monitoring (SPM) methods that 

widely used for monitoring the abnormal situations that 

happen in the processes. PLS projects the input-output 

data down into a latent space, extracting a number of 

main factors with an orthogonal structure, while 

capturing most of the variance in the original data 

(Geladi and Kowalski 1986; Wold et al. 1984). A 

popular application of PLS is to select the predictor 

block X, containing the variables measurements and the 

predicted block Y, containing the product quality data 
(Raich and Cinar 1995). This model can be used for 

detecting, identifying and diagnosing the faults 

(Piovoso and Kosanovich 1994). Another application of 

PLS mainly focusing on fault diagnosis is to define Y as 

class membership (Chaing Russell, and Braatz 2000). 

This PLS model is known as discriminant Partial Least 

Squares. To diagnosing the multiple faults in the 

process, discriminant Partial Least Squares is applied in 

this study. 

Similar to the other statistical process monitoring 

methods, there are some limitations for applying PLS 

on process monitoring. Most processes in modern 

industrial plants are typically complex, and such a 

complexity seems reflected in collected data, which 

contain the cumulative effect of many underlying 

phenomena and disturbances, with different form in the 

time and frequency domain (Reis Saraiva and Bakshi 

2008).Therefore, the overall systems are composed of 

processing units that have different time scales and 

frequency bands (Reis Saraiva and Bakshi 2008).For 
detecting, identifying and diagnosing events in these 

systems using statistical (data-driven) methods, the 

collected data blocks, containing the measured variables 

should be assayed and treated in several scales. In 

discriminant Partial Least Squares, all of the process 

variables data and quality variables will be gathered into 

one data block. Therefore the other limitation is the 

autocorrelation of variables. 

Wavelet Transform is able to decompose the variables 

into different scales representation. Also, the online 

wavelet decomposition (includes downsampling) is 

useful to decorrelate the autocorrelation between the 
measurements (Ganesan Das and Venkataraman 2004). 

In this study, an online Wavelet Transform is applied to 

the discriminant Partial Least Squares to build a 

MSPLS model for process monitoring. The Tennessee 

Eastman Process (TEP) data with multiple faults is used 

to examine the ability of the proposed MSPLS 

algorithm to diagnosis these multiple faults. 

 

2. TENNESSEE EASTMAN PROCESS 

The Tennessee Eastman Process (TEP) was created by 

the Eastman Chemical Company to provide a realistic 
industrial process for evaluating process control and 

monitoring methods (Downs and Vogel 1993). 

The test process is based on a simulation of an actual 

industrial process where the components, kinetics, and 

operating conditions have been adjusted for specific 

aims. The process consists of five major units: a reactor, 

condenser, compressor, separator, and stripper; and, it 

contains eight components: A, B, C, D, E, F, G, and H 

(Chaing Russel and Braatz 2001). 
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Figure1: Tennessee Eastman Process (Lyman 1995) 

 

As shown in Figure 1, the gaseous reactants A, C, D, 
and E and the inert B are fed to the reactor where the 

liquid products G and H are formed and the species F is 

a by-product of the reactions. The labels in Figure 1 

represent flow meters (FI), thermometers (TI), pressure 

gauges (PI), level detectors  (LI), agitator speed control 

(SC), steam supply (Stm), and cooling water 

supply/recycle (CWS/CWR) (Wilson and Irwin 2000).  

The process contains 53 variables containing 41 

measured and 12 manipulated variables. The 

measurements of these 53 variables, is generated from 

the open-loop and the closed-loop simulations for the 
Tennessee Eastman process (TEP) as well as the 

training and testing data files used for evaluating the 

statistical methods (PCA, PLS, FDA, and CVA). 

The training set used in this study consists of 500 

observations for each variable which was generated 

with no fault and 1440 observation generated under 

three programmed faults. Fault 1 is connected to the 

step change in the cooling water. Fault 2 is a low drift in 

the reaction kinetics, and Fault 3 is associated with one 

of the sticking valves. The testing set contains of 3840 

observations which starts with normal operation. Then, 

each of the faults mentioned above occurs to the system 
at determinate times. 

 

3. MODEL DESCRIPTION 

 

3.1. Discriminant PLS modeling 

Discriminant PLS selects the matrix X, containing all 

process variables and selects the matrix Y, to focus PLS 

on the task of fault diagnosis (Chaing, Russell and 

Braatz 2000). To determine the predicted class in the 

prediction step, discriminant analysis is used (Nouwen 

et al. 1997). 

To apply discriminant PLS for multiple fault diagnosis, 

the model is trained with observations of normal 

operation and also with faulty observations. The output 

(Y) of the training data is no longer the quality 

variables, the predicted variables are dummy variables 

(0 or 1), where 0 is corresponds to the faultless 

observation and the 1 is faulty observation. In the case 

that there is only one possible fault in the process, the 

predicted block is one column vector. In this study, 

however there are 3 possible faults and discriminant 

PLS model needs to be built for each of those faults as 

shown in Figure 2. 

 
Figure2: Discriminant PLS structure. Each sub block of 

x is corresponds to one sub mode in predicted block. 

 

One problem about this model is that the predicted 

outputs are not exactly 0 and 1, and need to be assigned 

to 0 or 1. One way to do that is to assign the nearest 

value to the predicted value. 

3.2. Wavelet Transform and multi-scale modeling 

Wavelet Transform analyses the signal containing 

multi-frequency content at different resolutions. The 

family of wavelet basis functions may be represented 
as: 
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Where, s and u represent the dilation and translation 

parameters, respectively. )(t  is the mother wavelet. 

Any signal may be decomposed to its contribution at 

multiple scales by convolution with the corresponding 

filters. Using online Wavelet compels the translation 

parameters to be discretized dyadically as 
 ku m2

 
and so the wavelet decomposition downsamples the 

coefficients at each scale. This approach permits the use 

of orthonormal wavelets, which approximately 

decorrelate autocorrelated measurements (Ganesan Das 
and Venkataraman 2004). 

To construct the MSPLS structure, in this study, the 

Wavelet Transform is used to decompose the 

measurements to its contribution at multiple scales, and 

the discriminant PLS is applied to each scale to 

diagnosis the multiple faults mentioned earlier. Scales at 

which the current coefficient detects the faults are 

selected as being relevant at the current time. The signal 

and covariance at the selected scales are reconstructed 

by the inverse wavelet transform. The schematic 

diagram of MSPLS algorithm is shown in Figure 3. 
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Figure3: Multi-scale PLS for process monitoring 

 
The type of mother wavelet and the optimum 

decomposition level are two important selective items 

that should be first determined for the implementation 

of the online DWT (Lee Lee and Park 2009). Choosing 

a proper mother Wavelet usually depends on the 

purpose of its application. As mentioned above, an 

orthonormal Wavelet can approximately decorrelate the 

autocorrelated measurements. Based on a systematic 

approach proposed by Maulud (Maulud Wang, and 

Romagnoli 2006) for selecting the optimum 

decomposition level, the ‘Haar’ wavelet with level three 
is used in this study. The ‘Haar’ Wavelet has a simple 

mother function and is a common Wavelet which is 

applicable in discrete signal processing and also doesn’t 

make the non-causality problems (Aradhye et al. 2003). 

 

4. MONITORING AND RESULTS 

The training data set used in this process contains data 

which are generated under different conditions. After 

the modeling with MSPLS, the model is applied to 

monitoring the TE process. To show the ability of 

MSPLS to diagnosis multiple faults in process, the 

testing data used in this study contains three different 
faults which occur at determinate times. Fault1 start at 

the sample time 1100 and is connected to the step 

change in the cooling water. Fault2 start at the sample 

time 2100 and is a low drift in the reaction kinetics. 

Fault3 start at the sample time 3000 and is associated 

with one of the sticking valves. 

Table 1: Table1: The percent variance captured by 

MSPLS and discriminant PLS for the simulated faults. 

 

To compare the monitoring ability of the MSPLS 

algorithm and PLS algorithm, the monitoring diagrams 

of the PLS and MSPLS are shown in the Figure 4 and 

Figure 5 respectively. In these figures the predicted 

variable for each fault is drawn. This value is between 

‘0’ and ‘1’ where ‘0’ indicates the faultless observation 
and ‘1’ a faulty observation. Different colors for 

different faults have been used. The blue sketch is for 

Fault1, red is for Fault2 and green is for Fault3. 

 
Figure4: Monitoring results of discriminant PLS. The 

blue graph is relevant to fault1, red is for fault2, and 

green is corresponds to fault3. 

 

As shown in Figure 5 the MSPLS can detect all of three 

faults at acceptable time delay, while PLS could not do 
this adequately. This issue also is emphatic in table 1 

where the percent of variance captured by PLS and 

MSPLS at each scale is shown for each fault, and the 

final MSPLS algorithm. It is obvious that this value for 

MSPLS is more than PLS. 

 
Figure5: Monitoring results of MSPLS. The blue graph 

is relevant to fault1, red is for fault2, and green is 

correspond to fault3. 
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5. CONCLUSIONS 

In this paper, a discriminant PLS is used for 

constructing a new MSPLS algorithm for monitoring on 

the processes with multiple possible faults. This 

methodology has the potential of detection and 

diagnosing each abnormal event, denoting the time and 
frequency location of each event. In addition to 

exploiting the useful properties of Wavelet Transform, a 

MSPLS model which could separately construct a sub 

model for each possible fault and can detect each of 

these faults separately. The presented MSPLS algorithm 

can do this job adequately. 

Future works can bring into focus on use of other types 

of mother wavelet, with the aim of improving detection, 

diagnosis and identification capabilities. The application 

of this methodology to other processes is also visualized 

as an interesting field for future research activities to be 

carried out. 
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