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Abstract— In this paper, an online control method is devel-
oped and corresponding algorithm is proposed for driving Join
Free continuous Petri net from its initial marking, to target
marking through a linear trajectory by minimizing the time.
Then, the control problem in which some components of the
target marking are not specified is considered and developed
control method is used for that case.

I. INTRODUCTION

Discrete Petri Nets (PNs) are powerful graphical and
mathematical tools for modeling, analysis and synthesis of
Discrete Event Systems (DESs) [1], [2]. The distributed state
or marking of a PN is given by a vector of natural numbers
which represent the number of tokens in each place. This is
a significant advantage with respect to other formalisms such
as automata, where the state space is a symbolic unstructured
set.

Like in most modeling formalisms for DESs, PNs suffer
from the so called state explosion which leads to an exponen-
tial growth of the size of state space with respect to the size
of the system and population of initial state. Some relaxation
techniques are studied to overcome this difficulty and to
reduce the computational complexity of the analysis and
synthesis of PNs (i.e. decomposition techniques, Lagrangian
relaxations, fluidification and the others [3], [4], [5], [6]).
Fluidification may be very useful relaxation technique when
applied to highly populated systems.

For PNs, fluidification was introduced in [3], [7] aiming
at giving fluid (continuous) approximation of original PN in
the sense of behaviours and properties, and these models are
called continuous Petri nets. The idea is to try to overcome,
at least partially, the potentially very high computational
complexity arising in many practical situations.

Different techniques have been proposed for control of
continuous Petri nets in the literature [8], [9], [10], [11],
[12]. Steady state optimal control of continuous Petri nets
was studied in [13] where it is shown that, the optimal steady
state control problem of continuous Petri net system can be
solved by means of Linear Programming Problem (LPP) in
the case that all transitions are controllable and the objective
function is linear. For the problem of reaching a given
steady state from an initial marking, implicit and explicit
Model Predictive Control (MPC) methods minimizing a
certain performance index are proposed in [8]. The step
tracking problem, i.e. design of control laws to drive the
system states to target references was considered in [10] and
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a Lyapunov-function-based dynamic control algorithm was
proposed for the problem. That method requires solving a
BiLinear Programming Problem (BLP) for the computation
of intermediate states. In [12] an efficient heuristics for
minimum time control of continuous Petri nets, which aims
at driving the system from an initial state to a target one
by minimizing the time of a piecewise linear trajectory is
developed.

In some control problems, final states of some places may
not be specified, while that others are specified. Because
reaching desired final states of other places in minimum
time is more important then the unspecified final states.
Accordingly, corresponding components of the target state
are not specified in the control problem. In this paper, this
problem is considered for continuous Petri nets for the first
time in the literature.

For calculating the value of unspecified components under
the objective of time minimization, we developed an online
control strategy. This strategy focuses on timed continuous
Petri nets (contPN) without synchronizations called Join Free
contPN and drives JF contPN to a specified target state
through a linear trajectory by means of LPP. This method
proposes an online algorithm and requests solving BLP for
calculating unspecified components.

The remainder of the paper is organized as follows.
Section 2 briefly introduces the required concepts of contPN
systems and introduces the formulation of applied control. A
new control scheme for JF contPN is given in Section 3. In
Section 4, a method for calculating unspecified components
of target marking under the objective of time minimization
is adressed. Finally, some conclusions and future directions
are drawn in Section 5.

II. BASIC CONCEPTS AND NOTATION

We assume that the reader is familiar with Petri nets.
A continuous Petri net system is a pair 〈N , m0〉 where
N = 〈P, T, Pre, Post〉 is a net structure where P =
{p1, p2, ...p|P|} and T = {t1, t2, ... t|T|} are the sets of
places and transitions, respectively; Pre, Post ∈ N

|P |×|T|

are pre and post matrices connecting places and transitions;
m0 ∈ R

|P|
≥0 is initial marking (state).

For a place pi ∈ P and a transition tj ∈ T , Preij and
Postij represent the weights of the arcs from pi to tj and
from tj to pi, respectively. Each place pi has a marking
denoted by mi ∈ R≥0 . The vector of all token loads is
called state or marking, and is denoted by m ∈ R

|P |
≥0 . For

every node v ∈ P ∪T , the sets of its input and output nodes
are denoted as •v and v•, respectively.

108



A transition tj ∈ T is enabled at m iff ∀pi ∈• tj , mi > 0
and its enabling degree is given by

enab(tj, m) = min
pi∈•tj

{
mi

Preij

}
(1)

which represents the maximum amount in which t j can fire.
An enabled transition tj can fire in any real amount α, with
0 < α ≤ enab(tj , m) leading to a new state m′ = m + α ·
C ·j where C = Post − Pre is the token flow matrix and
C·j is its jth column. If m is reachable from m0 through
a finite sequence σ, the state (or fundamental) equation is
satisfied: m = m0 + C · σ, where σ ∈ R

|T |
≥0 is the firing

count vector, i.e., σj is the cumulative amount of firings of
tj in the sequence σ. The set of reachable markings from
m0 is denoted by RS(N , m0).

Left and right natural annullers of the token flow matrix
C are called P-semiflows (denoted by y) and T-semiflows
(denoted by x), respectively. If ∃ y > 0, y · C = 0, then
the net is said to be conservative. If ∃ x > 0, C · x = 0 it
is said to be consistent.

A timed continuous Petri net (contPN) is a continuous
Petri net together with a vector λ ∈ R

|T |
>0 where λj is

the firing rate of tj . As in untimed continuous Petri nets
state equation summarizes the way the marking evolves
along time. The state equation of contPN has an explicit
dependence on time m(τ) = m0 + C· σ(τ) where τ
is global time. But, in continuous systems, the marking is
continuously changing, so we may consider the derivative
of m with respect to time. This way, ṁ(τ) = C · σ̇(τ)
is obtained. Here, σ̇(τ) is flow throgh transitions and it is
denoted by f(τ)=σ̇(τ). Hence, the state equation is

ṁ(τ) = C · f(τ) (2)

Different semantics have been defined for continuous timed
transitions [14], [3]. Infinite server semantics is considered
in this paper. Under this semantics, the flow of transition tj

is the product of firing rate, λj , and enabling of transition
enab(tj, m(τ)):

fj(τ) = λj · enab(tj, m(τ)) = λj · min
pi∈•tj

{
mi(τ)
Preij

}
(3)

For the sake of simplicity τ is omitted in the rest of the
paper.

We consider Join Free contPNs (JF contPNs) which satisfy
|•tj | ∀j ∈ {0...|T |}. Let us define matrix Π ∈ R

|T |×|P |
≥0 as:

Πji =
{ 1

Preij
, if Preij �= 0

0, otherwise
(4)

The state equation of uncontrolled JF contPN is as follow:

ṁ = C · f = C · Λ · Π · m (5)

where Λ = diag{λ1, ....λ|T |}. Reachability set of JF contPN
is denoted by RS(N , λ, m0). Given that the continuous
Petri nets that we are considering are Join Free and every
transition is fireable, the set of reachable markings is equal
to the solutions of the state equation RS(N , λ, m0) =
{m | m = m0 + C · σ}, σ ∈ R

|T |
≥0 .

A. Control Scheme

Now let us introduce control concept that we consider in
this paper. In contPN, a transition is associated in general
to a machine and this machine can not work faster then its
maximum firing rate, the only control action we consider is
to brake it down. In other words, we assume that the only
action that can be applied to contPN is to reduce the flow
of transitions [15]. If a transition can be controlled (its flow
can be reduced or even stopped), we will say that it is a
controllable transition [13]. In this paper, it is assumed that
all transitions are controllable.

The controlled flow, w, of a contPN is defined as w(τ) =
f(τ) − u(τ), with 0 ≤ u(τ) ≤ f(τ), where f is the flow
of the uncontrolled system, i.e., defined as in (5), and u is
the control action.

Therefore, the control input u is dynamically upper
bounded by the flow f of the corresponding unforced system.
Under these conditions, the overall behaviour of a JF contPN
system in which all transitions are controllable is ruled by
the following system:

ṁ = C · [f − u] = C · w
0 ≤ u ≤ f

(6)

The constraint 0 ≤ u ≤ f can be rewritten as 0 ≤ f −u ≤
f . From the definition, w = f − u, the constraint can be
expressed as:

0 ≤ w ≤ Λ · Π · m (7)

The following sections focus on the control problem for JF
subclass in the case that some components of target markings
are not specified. In Section 3, an online control method
is developed and corresponding algorithm is proposed for
driving JF contPN from its initial marking, m0, to target
marking, mf , through a linear trajectory by minimizing
the time. Section 4 makes use of developed method for
the control problem in which some components of target
marking are not specified. We assume that m0 and mf are
strictly positive. The assumption that m0 is positive ensures
that the system can move at τ = 0 in the direction of mf

[16]; the assumption that mf is positive ensures that mf

can be reached in finite time [13].

III. A CONTROL METHOD FOR JF CONTPNS

In this section, an online control method that drives the
system from the initial marking m0 to a desired target
marking mf through a linear trajectory will be introduced.

Our procedure consists of using discrete time represen-
tation of the system, and calculating control input at each
sampling instant by using the maximum flows of transitions
at m0 in the direction to mf and maximum flows of
transitions at mf in the direction from m0 to mf .

Maximum flow of transitions at m0 in the direction to
mf is denoted by w0 and it is calculated by the following
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LPP, where s0 = w0 · τ0:

min
s0

τ0

s.t. mf = m0 + C · s0 (a)
0 ≤ s0j ≤ λj · Πji · m0i · τ0

∀ j ∈ {1, .., |T |} where i satisfies Πji �= 0 (b)

(8)

The equations correspond to: (a) the straight line connecting
m0 to mf , (b) flow constraints at m0. Notice that (b) is
a linear constraint because m0i and mf i are known ∀i ∈
{1, 2, .., |P |}.

Maximum flow of transitions at mf in the direction from
m0 to mf is denoted by wf and it is calculated by the
following LPP, where sf = wf · τf :

min
sf

τf

s.t. mf = m0 + C · sf (a)
0 ≤ sf j ≤ λj · Πji · mf i · τf

∀ j ∈ {1, .., |T |} where i satisfies Πji �= 0 (b)

(9)

The equations correspond to: (a) the straight line connecting
m0 to mf , (b) flow constraints at mf . Notice that (b) is
a linear constraint because m0i and mf i are known ∀i ∈
{1, 2, .., |P |}.
Proposition:Let 〈N , λ, m0〉 be a contPN system with m0 >
0. If mf belongs to RS(N , λ, m0) and mf > 0, then LPPs
in (8) and (9) are feasible.
Proof:Since mf is a reachable marking, then there exists s
such that the state equations (8)(a) and (9)(a) are satisfied.
By taking τ0 and τf sufficiently large (8)(b) and (9)(b) can
be satisfied since λj ·Πji ·m0i > 0 and λj ·Πji ·mf i > 0.�

Since it is assumed that, m0 > 0 and mf > 0, then the
linear trajectory from m0 to mf can be followed by the
system [16]. At each marking m on the line connecting m 0

to mf (i.e. m = α · m0 + (1 − α) · mf , α ∈ [0 1]), the
maximum flow in the direction to mf is calculated by

w = α · w0 + (1 − α) · wf (10)

Corresponding control action is calculated easily by u =
f −w where f and w are controlled and uncontrolled flow
vectors, respectively.

In order to calculate control inputs to drive the system
from m0 to mf through a linear trajectory and drive the
system to mf by using the calculated control we propose to
use discrete-time representation of contPN. The discrete-time
representation of the continuous-time system (6) is given by:

m[k + 1] = m[k] + Θ · C · w[k]
0 ≤ w[k] ≤ Λ ·Π · m[k] (11)

Here Θ is the sampling period (τ = k · Θ) and m[k] is the
marking at step k, i.e., at time k · Θ. The sampling period
should be small enough to avoid to reach negative markings.
Let us consider a place pi with p•i = {t1, t2, ..., tj} and
m[k]i > 0. Then state equation can be written as m[k+1]i =
m[k]i +Θ ·C(i, :) ·w[k] ≥ m[k]i −Θ · (λ1 +λ2 + ...+λj) ·
m[k]i = m[k]i · (1−

∑
tj∈p•

λj ·Θ) ≥ 0. Hence, if Θ is chosen

Algorithm 1

Input: 〈N , m0〉, mf , Θ
Step 1) Solve LPP in (8) and LPP in (9)
Step 2) k=0
Step 3) If m[k] �= mf

Step 4) Measure

m[k + 1] = m[k] + Θ · C · w[k] (13)

Step 5) Calculate corresponding α

α = m[k+1]1−mf 1
m01−mf 1

(14)

Step 6) If α > 1

Θ = mf 1−m[k]1
C(1,:)·w[k]

(15)

Step 7) Advance one step

m[k + 1] = m[k] + Θ · C · w[k] (16)

Step 8) Calculate corresponding w[k + 1]

w[k + 1] = α · w0 + (1 − α) · wf (17)

Step 9) k = k + 1

such that ∑
tj∈p•

λj · Θ < 1 (12)

then any marking reachable from m0 = m[0] ≥ 0 is
nonnegative [8].

In order to calculate controlled flows and drive the sys-
tem to mf , Algorithm 1 is developed. In this algorithm,
controlled flow is calculated at each sampling instant by
using the fact given in (10). Here, the controlled flows
w[0] = w0 and wf are obtained by solving LPPs in (8) and
(9), respectively. Then, at the first iteration, m[1], α and w[1]
(by using obtained α) are calculated. And obtained controlled
flow is realized. At the next iteration, m[2], α and w[2] are
calculated by similar way. This procedure is repeated until
mf is reached. During the execution of the algorithm, if α
is obtained as bigger than 1, that is mf is passed at the
current iteration, Θ is recalculated to reach mf accurately.
We developed MATLAB program for Algorithm 1. This
program is implemented on a PC with Intel(R) Core(TM)
2CPU T5600 @ 1.83GHz, 2.00 GB of RAM.

Example 1: Let us consider JF contPN in Fig. 1 with
λ = [1 1 1 1 1 1]T . The only minimal P-semiflow is
y = [2 2 1 1 1] and there are two minimal T-semiflows
x1 = [1 1 0 0 0 0]T and x2 = [0 0 1 1 1 1]T . Our aim is to
drive the system from m0 = [13 3 4 4 5]T to a final state
mf = [10 6 6 3 2]T by using the proposed control method.
The system dynamics can be described as follows:

ṁ1 = m2 + 1
2 · m5 − m1 − m1

ṁ2 = m1 − m2

ṁ3 = m1 − m3

ṁ4 = m1 − m4

ṁ5 = m3 + m4 − m5

(18)
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p1

t1 t2

p4

t3

p3

t5

p5

t4

t6

2

p2

Fig. 1: A JF Petri net [9]

At m0, solving LPP (8) yields w0 = [5.8 2.05
2.5 0 1.25 2.5]T τ0 = 0.8 t.u. At mf , solving LPP (9)
yields wf = [4.04 2.54 1 0 0.5 1]T τf = 2 t.u.

By executing Algorithm 1 (Θ = 0.01), mf is reached by
122 discrete steps, which corresponds to 1.22 time unit (t.u.)
Evolution of markings m1, m2 and m3 and, control actions-
controlled flows of transitions t1 and t2 are shown in Fig. 2
and 3, respectively.
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Fig. 2: Evolution of m1 and m2 for Example 1

IV. FINAL MARKING PLANNING FOR JOIN FREE

CONTPNS

So far, we introduced an online control method for
driving the system from a given initial state m0 to the

0 0.4 0.8 1.2
4

5

6

7

8

time (t.u.)

w 1&u
1

w
1

u
1

0 0.4 0.8 1.2
0.5

1

1.5

2

2.5

3

3.5

time (t.u.)

w 2&u
2

w
2

u
2

Fig. 3: Evolution of control actions and controlled flows of t1 and
t2 for Example 1

specified target marking. In this section, we consider the
control problems that final markings of some places are
specified, while the others are not. The set of places
whose final markings are specified precisely is denoted
by Psp = {pi | mf i is specified} and the set of places
whose final markings are not specified is denoted by Pun =
{pi | mf i is un-specified}. In order to calculate the mf i∀pi ∈ Pun by minimizing the time (or maximizing controlled
flows w0 and wf ), Algorithm 1 is used again with only one
modification. Thus, as differ from the first case we propose to
solve BLP in (19) instead of LPPs (8) and (9) with variables
τ0, τf , s0, sf , mf i ∀pi ∈ Pun where s0 = w0 · τ0,
sf = wf · τf :

min τ0 + τf

s.t. mf = m0 + C · s0 (a1)
0 ≤ s0j ≤ λj · Πji · m0i · τ0

∀ j ∈ {1, .., |T |} where i satisfies Πji �= 0 (a2)

mf = m0 + C · sf (b1)
0 ≤ sf j ≤ λj · Πji · mf i · τf

∀ j ∈ {1, .., |T |} where i satisfies Πji �= 0 (b2)

mf = m0 + C · σ, σ > 0 (c)

(19)

The equations correspond to: (a1)&(b1) the equation of
the straight line connecting m0 to mf ; (a2)&(b2) flow
constraints at m0 and mf , respectively; (c) reachability
condition of mf . Note that, since the net we consider is con-
sistent (19)(c) is equivalent to BT

y ·mf = BT
y ·m0, mf > 0

where BT
y is basis of P-semiflows [13].

Example 2: Let us go back to Example 1 with the same
initial marking m0 = [13 3 4 4 5]T and Θ. But in this case,
final marking of some places (not all) are specified: mf 1 =
10, mf 4 = 3, mf 5 = 2, that is Psp = {p1, p4, p5} and
Pun = {p2, p3}. Our objective is to find the final markings
of mf 2 and mf 3 by minimizing the time and drive the system
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to fulfilled final marking. For this example, BLP in (19) leads
to:

min τ0 + τf

s.t. 10 = 13 + s02 + s06 − s01 − s03

mf 2 = 3 + s01 + s02

mf 3 = 4 + s03 − s05 (a1)
6 = 4 + s03 − s05

6 = 5 + s04 + s05 − 2 · s06

0 ≤ s01 ≤ 13 · τ0

0 ≤ s02 ≤ 3 · τ0

0 ≤ s03 ≤ 13 · τ0 (a2)
0 ≤ s04 ≤ 4 · τ0

0 ≤ s05 ≤ 4 · τ0

0 ≤ s06 ≤ 2.5 · τ0

10 = 13 + sf2 + sf 6 − sf 1 − sf 3
mf 2 = 3 + sf 1 + sf 2
mf 3 = 4 + sf 3 − sf 5 (b1)
6 = 4 + sf3 − sf 5
6 = 5 + sf4 + sf 5 − 2 · sf 6

0 ≤ sf1 ≤ 10 · τf

0 ≤ sf2 ≤ mf 2 · τf

0 ≤ sf3 ≤ 10 · τf (b2)
0 ≤ sf4 ≤ mf 3 · τf

0 ≤ sf5 ≤ 6 · τf

0 ≤ sf6 ≤ 3 · τf

2 · mf 2 + mf 3 = 18 (c)

(20)

By solving the BLP in (20), markings of unspecified places
are obtained as mf 2 = 6.5 and mf 3 = 5, that is mf =
[10 6.5 5 3 2]T . By executing Algorithm 1, mf is reached by
90 discrete steps (0.90 t.u.). Evolution of markings m 1, m2

and m3 and control actions-controlled flows of transitions t1

and t2 are shown in Fig. 4 and 5, respectively.

V. CONCLUSION

An online control method is developed for JF contPN. The
method takes discrete time representation. In this method,
in order to drive the system from its initial marking to
target marking, corresponding control action is calculated
and applied at each time step. Algorithm 1 which uses LPP
is developed for this method.

In some control problems, target markings of some places
are given while that of others are not specified. In that case,
we propose to calculate unspecified target markings of places
by solving a BLP with time minimization objective. Then
Algorithm 1 is executed again with a simple modification.

An interesting point is to extend this work to more general
structures, that is for other types of contPNs.
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