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ABSTRACT

The present paper is devoted to the research of the
controlled semi-markov queueing model M/M/n*/N*.
Research of income functional is carried out at control
of several parameters. The control is based on the
system structure. In the article the income functional is
constructed on the trajectories of the controlled semi-
markov process. The main problem is to search an
optimal control strategy for the given model. The given
research algorithm also can be used for various models
at control with both discrete and continuous model
parameters. Algorithmization of the problem is
presented.

Keywords: optimization, semi-markov controlled
process, control strategy, income functional

1. INTRODUCTION

The main part of research works of queueing theory
showed that the model structure is considered
invariable, and the model characteristics are
investigated at the fixed initial parameters and
functions. The interarrival time distribution, the service
time distribution, the number of servers, the system
capacity are considered to be fixed. In the present paper
we change the model structure and investigate the
system model using variables of controls.

The purpose of the queueing model theory is to
present recommendations on maintenance for high
efficiency system functioning.

Notice that the functioning increase can be reached
using control parameters. There can be several control
parameters in the model. There may be the interarrival
time distribution, the service time distribution, the
number of servers, the system capacity and others. We
are interested in several control parameters, that means
the controls set expansion.

One of the main results of the controlled semi-
markov processes theory is strategy determination that
gives the maximum value for the functional. The main
theory of semi-markov processes can be found in the
following works (Bellman R.A. 1957, Jewell W. S.,
1967).

It is important to note that we can obtain new
results using investigation for not only stationary

characteristics (stationary queue length, loss probability,
etc.), but using structure model changing.

Stochastic character of the interarrival time and the
service time generates a stochastic process in the
queueing model. For the controlled stochastic process
the problem of a choice of optimum control strategy is
given. In the present paper a controlled semi-markov
process is used. On the trajectories of the controlled
semi-markov process the income functional is
constructed.

The result of the functional research is a choice of

optimal control strategies for the given model.
Similar works linked with the control in queueing
systems (Banik A.D. 2009, Swishchuk A. 1999,
Kashtanov V.A. 2010), one of the advantages of the
given work is simultaneous control using several
parameters of system.

To calculate parameters of the system functioning
quality and to choose optimum control, the following
algorithm is used:

Construct semi-markov process,

Determine structure of control,

Enter constants describing incomes and costs,
Calculate additional characteristics,

Calculate income functional and search for
optimum control.

2. PROBLEM STATEMENT
The queueing model can be represented using Kendall’s
notation M/M/n*/N*,

For the given model:

e the interarrival time distribution is a Poisson
distribution with parameter A,

e the service time distribution is an exponential
distribution with parameter p  (service
intensity),

e the number of servers channels is a parameter
of control, n* is a maximum possible value,

e the maximum number of places in the queue
(system capacity) is also a parameter of
control. N* is a maximum possible value.



The present paper is devoted to the research of the
controlled semi-markov queueing model using model
structure control.

Describe the system in details and enter some
assumptions:

e Maximum possible number of servers is n,

each of which can serve simultaneously only
one requirement. The number of servers is a
control parameter and can change from 0 up to
n.

e Maximum possible number of places in the
queue is N. It is a parameter of control and can
change from 0 up to N.

e Markov moments are the moments of the
service termination and the arrival epoch. The
control strategy is to be chosen at the markov
moments only.

e Each state of the system can be described using
pair of parameters (i, j), where

e ! _thenumbers which are served, 0<i<n,

o J_ the numbers which are in the queue,
0<j<N.

e It is not rational to increase the number of
empty/free places in the queue more, than by
one at every markov moment. Therefore in the
store never will be more than one empty seat in
the queue.

e Instead of addition of an extra seat being in
state (0,0) it is possible to add extra servers (if
it is more profitable, expense for the free
working server is less than an expenses for an
additional places in the queue.

e We assume, that the queueing model is
directed on service of the greatest possible
number of requirements, hence, we assume,
that it is more profitable to send the
requirement to server (if such opportunity is
represented). Thus, when from the store the
requirement sends on service, the number of
places in the queue decreases for one unit.

e If one of the servers has finished service and
there are requirements in the queue model
passes from set (i, j) to set (i, j-1).

e When one of channels has finished service and
in the store there are no requirements, the
system passes from set (i, 0) in set (i-1,0).

e Note, that the control is carried out at markov
moments. The transition probability depends
on the made decision (strategy).

3. RESEARCH ALGORITHM
To calculate parameters of the system functioning
quality and to choose optimum control, the algorithm
investigated by Kashtanov is used.

For construction of the controlled semi-markov
process it is necessary to define the parameters: markov
moments, the states set, the set of controls, a semi-
markov kernel. The next step is to determine:

e ftransition probabilities of the embedded
markov chain,

e conditional mathematical expectations of the
saved up income provided that process is in
state (i,j) and through time t will pass in state
@),

o mathematical expectations of the saved up
income for the full period when process is in
state (i,)).

e Then, a parameter value of the functioning
quality (the income functional) is calculated.

Parameter of functioning quality is the income

functional. The income functional is defined as follows:
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where
s; - mathematical expectation of the saved up
income for the full period when process is in state i,
m; - mathematical expectation of the saved up
income for the full period when process is in state i,
W - stationary probabilities of the embedded
markov chain.

4. CONSTRUCTION OF THE CONTROLLED
SEMI-MARKOYV PROCESS

Semi-markov process €( s described with a 2-
dimensional markov chain (&0, ,
nz0,§,€E,0, R =[0,0)

The markov chain ) is defined with transition
probabilities (semi-markov kernel):
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A 3-dimensional markov chain (controlled semi-
markov process) is described as follows:
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WhereE =.2,., N} the final states' set, 0, . a
component is identified as time duration. On the set
R™ =[0,0) O _algebra is stated. U is a control set
with O -algebra A of a subset of this set.

Markov chain (.0,.u, is defined using transition
probabilities:
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Each system state can be described by pair of
parameters (i, j), where

I the number of requirements which are on service
0<i<n

J - the number of requirements which are on places in

the queue 0<js<N.

Define the control set. We can control choosing the
number of servers and the number of additional/extra
places in the queue.

The control set of the servers quantity is

0 - we do not add servers,
1 - we make decision to add 1 extra server.

u - we add u additional servers, where
Ifu<n-i.

The control set of the extra places is V= {O’l},
where:

V=0 — we do not add places,

V=1 — we add one place for expectation in the
queue.

Note, that at the markov moments in each state the
desicion {u,v} can be made, that depends on the
concrete system state.

In state (0,0) there are no requirements either on
service, or in the queue in the system.

In the given state it is possible to make a decision
on addition of an extra place (or inclusion of the server).

Hence, in state (0,0) following controls U = {0,1},
V = {0,1} are possible. It is meaningful to add only one
seat in the queue or to include one server/device.

In state (1,0), 0<i<n the following controls are
possible U={0,1},V={0,1}.

In state (0,j), 0<jsN , there are no requirements
on service, there are j requirements in the queue. So in
state (0,j) the controls U={0,u},V={0,1} are possible.
And 0 Su <min(j,n)

In state (ij), O</<mO0<J/<N = there are i

requirements on service, there are j requirements in the
queue. In state (i,j) the controls U={0,u},V={0,1} are

possible. And 0 < <min(j,n—10)

In state (i,N), <7 are i requirements on service,
there are N requirements in the queue (maximum
possible). So in (i,N) the controls U={0,u},V={0} are
possible. And 0 < <min(N,n—i)

In state (n,)), 0<j<N , there are n requirements
on service (maximum possible), there are j requirements
in the queue. The controls U={0},V={0,1} are possible.

In state (n,N) there are n requirements on service
(maximum possible), there are N requirements in the
queue (maximum possible). So in state (n,N) the
controls U={0},V={0} are possible.

Construct semi-markov kernel for the given system.

The interarrival time distribution is a Poisson

distribution with parameter A, Fy=1-e™

The service time distribution is an exponential
distribution with parameter p (service intensity),
Gt)=1-e""

Semi-markov  kernel Qi (1) is a

probability of that the semi-markov process will pass in
4 n

state (@ j") and the time before this transition will not

surpass t provided that process is in state (@) and in

this state a decision from the set of controls (u,v) is
made.
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Notice, that cases of states (0, j), (n, j), (i, N), (n, N)
are described by formulas for a case (i, j), considering
the controls sets for each concrete state.

5. ADDITIONAL CALCULATIONS
For construction of a conditional mathematical
expectation of  the saved up income

R piy 1:7) provided that process is in state (i,j) and
through time t will pass in state (i’,j’) and in this state a

decision from the set of controls (u,v) is made, we
shall enter the constants describing incomes and costs:

% - income received per service of one number;

~ - payment per time unit of server work device

during the service time of the customer ;



~%. payment per time unit in case the number is in
the queue;

~C - payment per time unit in case extra place in
the queue is not used;

~%. payment per one lost number;

“C% - payment per time unit in case server is
working, but not used (without service).

R jyijn (545 V)

Then for all possible states can be

described.
Conditional mathematical expectation of the saved
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up income provided that process is in

(0,0)

state can be described:
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We can define conditional mathematical
expectation of the saved up income for all possible
system states (see semi-markov kernel).

Calculate @) mathematical expectations of the
saved up income for the full period when process is in
state (i,j).
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Where 7w 'is a probability that in state (i,j) we
choose strategy (u,v) from the given control sets.
For example, in state (0,0), U={0,1},V={0,1}.

Meo,0) 2_[ 1- z ZQ(O'O)(,U-V)(I, {u,v})px[t(')‘,yo] dt
0 (@ 70E ww
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In state (i),0 <1 <m0 </ <N y=(o,u},v={0,1},
0<u <min(j,n—i)

Ifu=j,an—i then:

1
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Else:
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Notice, that cases of states (0, j), (n, j), (i, N), (n, N)
are described by formulas for a case (i, j), considering
the controls sets for each concrete state.

Provide additional calculations. Calculate variables

$G.»" Variables *¢) are mathematical expectations of
the saved up income for the full period when process is
in state (i,)).
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Taking into consideration degenerated distributions
(see next page) we have:

S =
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For example, in state (i,N):

—(c,((+w)+e;(J—u)+e)+ei+u)u

SNy (u,l) = A+(i+u)u
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Notice, that cases of states (0, j), (n, j), (i, N), (n, N)
are described by formulas for a case (i, j), considering
the controls sets for each concrete state.



Stationary probabilities of the embedded Markov
chain are defined from the equations:

T = zﬂ'kpkl

keE

Z”kzl

: (12)

p, = lim O, {u,v})
where =

Taking into consideration that model state is
described using pair of parameters, the system can be
defined:

Ty = Z”u,j)p(i,j)(i',f'w Z”(iw =1

(i,j)eE (i",j)eE (13)

where
P jyiny = ,ETOC Qi jyiy (11, v})

Use theorem for controlled semi-markov
processes for the income functional calculation
(Kashtanov and Medvedev 2002) and find S (1).

Note, that calculations are to be automated because
of complexity.

Using the theorem about the accumulation
functional  fractional-linearity =~ concerning  the
distributions defining structure of the accumulation (see
Appendix), and the theorem about a maximum of
fractional-linear  functional, we wuse the basic
conclusion: it is possible to search for optimum strategy
in the set of determined strategies of control (Kashtanov
and Medvedev 2002). So all results of the calculations
are obtained substituting degenerated distributions.

We receive the functional, depending on the
variables which are responsible for control

S((Vgg eV eesVon VsUg e Uy oeeslhyy )-

Further it is necessary to define a maximum of the

. . u, V.
functional S depending on 7, 7 (see set of controls).
Then we receive the solve of the problem. That is the

* * * *

vE v u* . u .
strategy (V% ggsrmsss VH o st ¥ ggseeeens ¥,y ), at which
the maximal income is received. Hence, when the

process is in state (@) we take the decision

* *
w VTt € U. The choice of the decision defines the

most effective system work.

6. CALCULATION EXAMPLE
The calculation results have shown the opportunities of
control expansion, in other words using several
parameters of control leads to more effective model
functioning. For example for model M/G*/1/2* we can
use discrete and continuos controls (Kashtanov and
Kondrashova 2010).

There are three states in the system.

State {0} — there are no numbers in the system;

State {1} — one number is being served, there are
no numbers in the queue;

State {2} — there are one number is on service,
there is one number in the queue.

In state 1 we can add 0,1,2 additional places in the
queue. In state 2 we can add 0 or 1 additional places in
the queue. We receive, that the quantity of every
possible strategy combinations for choice V equals six.
u —service duration in state,y € [0,0) can be chosen in

each state (control parameter).

In state i we choose the service time and we make
the decision on creation of additional/extra places in the
queue (except state i=0). Hence, we use two parameters
of control from the given set of controls: {u, v}.

Write down the strategy pairs for states 1 and 2 :
(0,0); (0,1); (1,0); (1,1); (2,0); (2,1). Last strategy pair
concerns to a classical case of the problem when all
places are used and we control only with the service
time. And the control of service duration is also used
(t1,T2 — service duration in 1 and 2 state, that take
maximum value for income functional at fixed v).

Table 1: Calculation example

Strategy Maximum Value ©! Value ©2
value S

(0,0) 8 0 -
(0,1) 8 0 -
(1,0) 2 0 -
(L,1) 2 0 -
(2,0) 0,24418416 1,05 0
(2,1) 1,16934403 1,367 0,674
(0,0) 1 0 -
(0,1) 1 0 -
(1,0) -0,743454243 0,879 -
(1,1) -0,743454243 0,879 -
(2,0) 1,54211326 1,387 0
2,1) 2,28817567 1,482 0,448

7. CONCLUSION

In the paper the research of the controlled semi-markov
queueing model M/M/n*/N* is carried out. The control
is based on the system structure. In the paper the
construction of the controlled semi-markov process and
the construction of the income functional on its
trajectories are used.

The formula for the income functional calculation
for the given system is received. The calculation
example for the model is  demonstrated.
Algorithmization of the problem is presented.

The calculation results have shown the
opportunities of control expansion, in other words using
several parameters of control leads to more effective
system functioning.

APPENDIX A
Theorem. If there is a controlled semi-markov process,
for which the embedded Markov chain is ergodic, at
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least, one of the distributions is non-trellised

. S, . 1
and the average income "' is final at any ' < E , then:

S 57,
S =thz(t) — icE
>0
" S,
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where 1 are stationary probabilities of conditions’
distribution of the embedded Markov chain.

APPENDIX B

Eegin

Bloclk
“Data”

Elock “Strategy v ™

.

EBlock “Strategy ™

'

Block

gCalculation o

End

Figure 1: Block-diagram of the automated decision for
M/M/n*/N*

Block “Data”: input n, N, A, y, cost constants ¢;, ¢, ¢3,
C4,Cs5,Csp
Block “Strategy v ”: generating of strategy massive for v

for every possible combinations.

Block “Strategy u”: generating of strategy massive for
u for every possible combinations.

Block “Calculation S”: additional calculations for
necessary characteristics for each strategy combination
(cycle). Choice of optimum functional value and

optimum strategy.
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