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ABSTRACT 
The present paper is devoted to the research of the 
controlled semi-markov queueing model M/M/n*/N*. 
Research of income functional is carried out at control 
of several parameters. The control is based on the 
system structure.  In the article the income functional is  
constructed on the trajectories of the controlled semi-
markov process. The main problem is to search an 
optimal control strategy for the given model. The given 
research algorithm also can be used for various models 
at control with both discrete and continuous model 
parameters. Algorithmization of the problem is 
presented. 

 
Keywords: optimization, semi-markov controlled 
process, control strategy, income functional 

 
1. INTRODUCTION 
The main part of research works of queueing theory 
showed that the model structure is considered 
invariable, and the model characteristics are 
investigated at the fixed initial parameters and 
functions. The interarrival time distribution, the service 
time distribution, the number of servers, the system 
capacity are considered to be fixed. In the present paper 
we change the model structure and investigate the 
system model using variables of controls. 

The purpose of the queueing model theory is to 
present recommendations on maintenance for high 
efficiency system  functioning. 

Notice that the functioning increase can be reached 
using control parameters. There can be several control 
parameters in the model. There may be the interarrival 
time distribution, the service time distribution, the 
number of servers, the system capacity and others. We 
are interested in several control parameters, that means 
the controls set expansion. 

One of the main results of the controlled semi-
markov processes theory is strategy determination that 
gives the maximum value for the functional. The main 
theory of semi-markov processes can be found in the 
following works (Bellman R.A. 1957, Jewell W. S., 
1967). 

It is important to note that we can obtain new 
results using investigation for not only stationary 

characteristics (stationary queue length, loss probability, 
etc.), but using structure model changing. 

Stochastic character of the interarrival time and the 
service time generates a stochastic process in the 
queueing model. For the controlled stochastic process 
the problem of a choice of optimum control strategy is 
given. In the present paper a controlled semi-markov 
process is used. On the trajectories of the controlled 
semi-markov process the income functional is 
constructed. 

The result of the functional research is a choice of 
optimal control strategies for the given model. 
Similar works linked with the control in queueing 
systems (Banik A.D. 2009, Swishchuk A. 1999, 
Kashtanov V.A. 2010), one of the advantages of the 
given work is simultaneous control using several 
parameters of system. 

To calculate parameters of the system functioning 
quality and to choose optimum control, the following 
algorithm is used: 

 
 Construct semi-markov process, 
 Determine structure of control, 
 Enter constants describing incomes and costs, 
 Calculate additional characteristics, 
 Calculate income functional and search for 

optimum control. 
 
2. PROBLEM STATEMENT 
The queueing model can be represented using Kendall’s 
notation M/M/n*/N*. 

For the given model: 
 
 the interarrival time distribution is a Poisson 

distribution with parameter λ, 
 the service time distribution is an exponential 

distribution with parameter μ (service 
intensity), 

 the number of servers channels is a parameter 
of control, n* is a maximum possible value, 

 the maximum number of places in the queue 
(system capacity) is also a parameter of 
control. N* is a maximum possible value. 
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The present paper is devoted to the research of the 
controlled semi-markov queueing model using model 
structure control.  

Describe the system in details and  enter some 
assumptions: 

 Maximum possible number of  servers  is n, 
each of which can serve simultaneously only 
one requirement. The number of servers is a 
control parameter and can change from 0 up to 
n. 

 Maximum possible  number of places in the 
queue is N. It is a parameter of control and can 
change from 0 up to N.  

 Markov moments are the moments of the 
service termination and the arrival epoch. The 
control strategy is to be chosen at the markov 
moments only. 

 Each state of the system can be described using 
pair of parameters (i, j), where 

  i  - the numbers which are served, ni 0 . 

 j - the numbers  which are in the queue, 
.0 Nj   

 It is not rational to increase the number of 
empty/free places in the queue more, than by 
one at every markov moment. Therefore in the 
store never will be more than one empty seat in 
the queue. 

 Instead of addition of an extra seat being in 
state (0,0) it is possible to add extra servers (if 
it is more profitable, expense for the free 
working server is less than an expenses for an 
additional places in the queue. 

 We assume, that the queueing model is 
directed on service of the greatest possible 
number of requirements, hence, we assume, 
that it is more profitable to send the 
requirement to server (if such opportunity is 
represented). Thus, when from the store the 
requirement sends on service, the number of 
places in the queue decreases for  one unit. 

 If one of the servers has finished service  and  
there are requirements in the queue model 
passes from set (i, j)  to set (i, j-1). 

 When one of channels has finished service and 
in the store there are no requirements, the 
system passes from set (i, 0) in set (i-1,0). 

 Note, that the control is carried out at markov 
moments. The transition probability depends 
on the made decision (strategy). 

 
3. RESEARCH ALGORITHM 
To calculate parameters of the system functioning 
quality and to choose optimum control, the  algorithm 
investigated by Kashtanov  is used. 

For construction of the controlled semi-markov 
process it is necessary to define the parameters: markov 
moments, the states set, the set of controls, a semi-
markov kernel. The next step is to determine: 

 transition probabilities of the embedded 
markov chain, 

 conditional mathematical expectations of the 
saved up income provided that process is in 
state (i,j) and through time t will pass in state 
(i’,j’), 

 mathematical expectations of the saved up 
income for the full period when process is in 
state (i,j). 

 Then, a parameter value of the functioning 
quality (the income functional) is calculated. 

Parameter of functioning quality is the income 
functional. The income functional is defined as follows: 


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where 
si - mathematical expectation of the saved up 

income for the full period when process is in state i, 
mi - mathematical expectation of the saved up 

income for the full period when process is in state i, 
πi - stationary probabilities of the embedded 

markov chain. 
 

4. CONSTRUCTION OF THE CONTROLLED 
SEMI-MARKOV PROCESS 

Semi-markov process )(t  is described with a 2-
dimensional markov chain ),( nn  , 

,,0 En n   ),0[  Rn . 
The markov chain ),( nn   is defined with transition 

probabilities (semi-markov kernel): 
 

    nnnn itjP ,, 11

  )(, 11 tQitjP ijnnn      (2) 
 

where ,,,1 Ejin  ),0[ t  and using initial 
distribution  

  ,00  iPpi  ,Ei ,1


i
Ei

p
 

assume   .100 P  
 

A 3-dimensional markov chain (controlled semi-
markov process) is described as follows: 

 
),,( nnn u , ,,0 En n   ),0[  Rn , Uun  . 
 

Where },...,2,1{ NE   - the final states' set, n  - a 
component is identified as time duration. On the set 

),0[ R    -algebra is stated. U -is a control set 
with  -algebra A  of a subset of this set. 

Markov chain ),,( nnn u  is defined using transition 
probabilities: 
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 uuiButjP nnnnnn   ,,,, 111  , 
UuABRtEji   ,,,,,   

 
Assume that: 

 
   uuiButjP nnnnnn ,,,, 111   
 iButjP nnnn    111 ,,  (3) 
and  

  ,00  iPpi  ,Ei ,1


i
Ei

p
   .100 P  

 
The probability 

),,( BtmQij  iButj nnnn    111 ,,  generates on 

the set ),( ii AU  probabilities measures: 
 

  i
Ei

ijnni ABEiBmQiBuPBG  


 ,,),(/)( 1 
. 

 

Then )(),,( BGBtmQ iij  , so: 
 

)(),,(),,( duGutmQBtmQ i
B

ijij 
 

 

where ),,( utmQij  uuitjP nnnn   111 ,,   
 
 
),,( BtmQij

  )(,, 111 duGuuitjP innnn
B

  
 (4) 

 
Each system state can be described by pair of 
parameters (i, j), where 
 i  - the number of requirements which are on service 

ni 0 . 
j - the number of requirements which are on places in 

the queue .0 Nj   
Define the control set. We can control choosing the 

number of servers and the number of additional/extra 
places in the queue.  

The control set of the servers quantity is 
},.....,1,0{ uU  , where: 

0 - we do not add servers, 
1 - we make decision to add 1 extra server. 
….. 
u - we add u additional servers, where 

inu 1 . 
The control set of the extra places is }1,0{V , 

where: 
v =0 – we do not add places, 
v =1 – we add one place for expectation in the 

queue. 

Note, that at the markov moments in each state the 
desicion {u,v} can be made, that depends on the 
concrete system state. 

In state (0,0) there are no requirements either on 
service, or in the queue in the system. 

In the given state it is possible to make a decision 
on addition of an extra place (or inclusion of the server). 

Hence, in state (0,0) following controls U = {0,1}, 
V = {0,1} are possible. It is meaningful to add only one 
seat  in the queue or to include one server/device. 

In state (i,0), ni 0  the following controls are 
possible U={0,1},V={0,1}. 

In state (0,j), Nj 0 ,  there are no requirements 
on service, there are  j requirements in the queue. So in 
state (0,j) the controls U={0,u},V={0,1} are possible. 
And ),min(0 nju  . 

In state (i,j), Njni  0,0 ,  there are i 
requirements on service, there are  j requirements in the 
queue. In state (i,j) the controls U={0,u},V={0,1} are 
possible. And ),min(0 inju  . 

In state (i,N), ni  ,  are i requirements on service, 
there are  N requirements in the queue (maximum 
possible). So in (i,N) the controls U={0,u},V={0} are 
possible. And ),min(0 inNu  . 

In state (n,j), Nj 0 ,  there are n requirements 
on service (maximum possible), there are j requirements 
in the queue. The controls U={0},V={0,1} are possible. 

In state (n,N)  there are n requirements on service 
(maximum possible), there are N requirements in the 
queue (maximum possible). So in state (n,N) the 
controls U={0},V={0} are possible. 
Construct semi-markov kernel for the given system. 

The interarrival time distribution is a Poisson 
distribution with parameter λ, 

tetF  1)( . 
The service time distribution is an exponential 

distribution with parameter μ (service intensity), 
tetG  1)( . 

Semi-markov kernel ),,()',')(,( vutQ jiji  is a 
probability of that the semi-markov process will pass in 

state )','( ji  and the time before this transition will not 
surpass t provided that process is in state ),( ji  and in 
this state a decision from the set of controls ),( vu  is 
made. 

In state (0,0) }1,0{)0,0( U , }1,0{)0,0( V . 
 

)1,0,()1,0)(0,0( tQ )0,1,()0,1)(0,0( tQ  )0,0,()0,0)(0,0( tQ
tetF  1)(  

 

In state (i,0), ni 0  }0{)0,( iU , }1,0{)0,( iV .  

 )1,0,()0,1)(0,( tQ ii )0,0,()0,1)(0,( tQ ii 
)1( )( 


 ite
i

i 



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)1,0,()1,)(0,( tQ ii  )0,0,()0,)(0,( tQ ii
)1( )( 


 ite

i


 . 
 

In state (0,j) }),min(,0{)0,( njU i  , }1,0{)0,( iV  
 

If njju  ,  then: 
 

)1,,()1,)(,0( jtQ jj )0,,()0,)(,0( jtQ jj

)1( )( 


 jte

j





 
)0,,()0,1)(,0( jtQ jj  )1,,()0,1)(,0( jtQ jj 

)1( )( 


 jte
j

j 



 

 
Else: 
 

)1,,()1,)(,0( utQ ujuj  )0,,(),)(,0( utQ ujuj  =

)1( )( 


 ute
u


  

)0,,()1,)(,0( utQ ujuj  )1,,()1,)(,0( utQ ujuj  =

)1( )( 


 ute
u

u 
  

 

In state (i,j), Njni  0,0 , 
}),min(,0{),( injU ji  , }1,0{)0,( iV , .),( jiUu  

 

If injju  ,  then: 
 

)1,,()1,)(,( jtQ iji )0,,()0,)(,( jtQ jiji 

)1(
)(

))(( 


 jite

ji





 
)0,,()0,1)(,( jtQ jiji  )1,,()0,1)(,( jtQ jiji 

)1(
)(

)( ))(( 


 jite
ji

ji 





 
 
Else: 
 

)1,,()1,)(,( utQ ujiji  )0,,(),)(,( utQ ujuiji 

)1(
)(

))(( 


 aute

ui





 
)0,,()1,)(,( utQ ujuiji  )1,,()1,)(,( utQ ujuiji 

)1(
)(

)( ))(( 


 uite
ui

ui 





 
 

In state (i,N), ni  , }),min(,0{),( inNU Ni  , 
}1,0{),( NiV , .),( NiUu  

And if }1{),( NiV , then }),min(,1{),( inNU Ni  . 
 

If inNNu  ,  then: 
 

)1,,()1,)(,( NtQ iNi )0,,()0,)(,( NtQ NiNi 

)1(
)(

))(( 


 Nite

Ni





 
 )1,,()0,1)(,( NtQ NiNi )0,,()0,1)(,( NtQ NiNi 

)1(
)(

)( ))(( 


 Nite

Ni
Ni 





 
 
Else: 
 

)1,,()1,)(,( utQ uNiNi  )0,,(),)(,( utQ uNuiNi 

)1(
)(

))(( 


 aute

ui





 
)0,,()1,)(,( utQ uNuiNi  )1,,()1,)(,( utQ uNuiji 

)1(
)(

)( ))(( 


 uite
ui

ui 





 
 

In state (n,j),  Nj 0  , }0{),( jnU , 
}1,0{),( jnV . 

 
)0,0,(),)(,( tQ jnjn )1,0,()1,)(,( tQ jnjn  =

)1( )( 


 nte

n


  
)0,0,()1,)(,( tQ jnjn  )1,0,()1,)(,( tQ jnjn  =

)1( )( 


 nte
n

n 
  

 

In state (n,N), }0{),( NnU , }0{),( jnV . 
 

)0,0,(),)(,( tQ NnNn =
)1( )( 


 nte

n


  

)0,0,()1,)(,( tQ NnNn  =
)1( )( 


 nte
n

n 
  

 
Notice, that cases of states (0, j), (n, j), (i, N), (n, N) 

are described by formulas for a case (i, j), considering  
the controls sets for each concrete state. 

 
5. ADDITIONAL CALCULATIONS 
For construction of a conditional mathematical 
expectation of the saved up income  

),,()',')(,( vutR jiji provided that process is in state (i,j) and 
through time t will pass in state (i’,j’) and in this state a 
decision from the set of controls ),( vu  is made, we 
shall enter the constants describing incomes and costs: 

1c - income received per service of one number; 
2c - payment per time unit of server work device 

during the service time of the customer ; 
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3c - payment per time unit in case the number is in 
the queue; 

4c  - payment per time unit in case extra place in 
the queue is not used; 

5c - payment per one lost number; 
6c  - payment per time unit in case server is 

working, but not used (without service). 

Then for all possible states ),,()',')(,( vutR jiji  can be 
described. 

Conditional mathematical expectation of the saved 

up income  ),,()',')(,( vutR jiji provided that process is in 

state )0,0(  can be described: 
 

)1,0,()1,0)(0,0( tR  )1,0,()0,0)(0,0( tR tc4  
)0,1,()0,1)(0,0( tR )0,1,()0,0)(0,0( tR tc6  

5)0,0)(0,0( )0,0,( ctR   
 
In state ),( ji : 
 

532),)(,( ))()(()0,,( ctujcuicutR ujuiji   
tcujcuicutR ujuiji ))()(()1,,( 432)1,)(,(   
132)1,)(,( ))()(()0,,( ctujcuicutR ujuiji   

1432)1,)(,( ))()(()1,,( ctcujcuicutR ujuiji   
 
If injju  ,  then: 
 

52)0,)(,( )()0,,( ctjicjtR jiji   
tcjicjtR jiji ))(()1,,( 42)1,)(,(   
12)0,1)(,( )()0,,( ctjicjtR jiji   

142)0,1)(,( ))(()1,,( ctcjicjtR jiji   
 
We can define conditional mathematical 

expectation of the saved up income for all possible 
system states (see semi-markov kernel). 

Calculate ),( jim  mathematical expectations of the 
saved up income for the full period when process is in 
state (i,j). 

 

 













0 )','(
)',')(,(),( )(1 dttQm

Eji
jijiji

   (5) 
],[

,)',')(,(
,

)',')(,( }),{,()( ji
vujiji

vu
jiji pvutQtQ 

  (6) 

dtpvutQm
Eji vu

ji
vujijiji 







  





)','( ,

],[
,)',')(,(

0
),( }),{,(1

  (7) 
 

Where 
],[

,
ji

vup is a probability that in state (i,j) we 
choose strategy (u,v) from the given control sets.  

For example, in state (0,0), U={0,1},V={0,1}. 
 

dtpvutQm
Eji vu

vuji 







  





)','( ,

]0,0[
,)',')(0,0(

0
)0,0( }),{,(1

 

)0,0()0,0(m )1,0()0,0(m 
1)0,1()0,0( m

 
In state (i,j), Njni  0,0 , U={0,u},V={0,1}, 

),min(0 inju  . 
If injju  ,  then: 
 

)0,(),( jm ji = )1,(),( jm ji  )(
1

ji   
 
Else: 

)0,(),( um ji )1,(),( um ji  )(
1

ui   
 
Notice, that cases of states (0, j), (n, j), (i, N), (n, N) 

are described by formulas for a case (i, j), considering  
the controls sets for each concrete state. 

Provide additional calculations. Calculate variables 
.),( jis  Variables ),( jis  are mathematical expectations of 

the saved up income for the full period when process is 
in state (i,j). 

 

 



Eji

t

o
jijijijiji vuxdQvuxRvuts

),(
)',')(,()',')(,(),( }),{,(}),{,(}),{,(

 





Eji t

jijijiji vuxdQvutxR
),(

)',')(,()'')(,( }),{,(}),{,,(
  (8) 
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Taking into consideration degenerated distributions 

(see next page) we have: 
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For example, in state (i,N): 
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Notice, that cases of states (0, j), (n, j), (i, N), (n, N) 

are described by formulas for a case (i, j), considering  
the controls sets for each concrete state. 
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Stationary probabilities of the embedded Markov 
chain are defined from the equations: 
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where  
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Taking into consideration that model state is 

described using pair of parameters, the system can be 
defined: 
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where 
}),{,(lim )',')(,()',')(,( vutQp jiji
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


. 
Use theorem for controlled semi-markov  

processes for the income functional calculation 
(Kashtanov and Medvedev 2002) and find S (1). 

Note, that calculations are to be automated because 
of  complexity. 

Using the theorem about the accumulation 
functional fractional-linearity concerning the 
distributions defining structure of the accumulation (see 
Appendix), and the theorem about a maximum of 
fractional-linear functional, we use the basic 
conclusion: it is possible to search for optimum strategy 
in the set of determined strategies of control (Kashtanov 
and Medvedev 2002). So all results of the calculations 
are obtained substituting degenerated distributions. 

We receive the functional, depending on the 
variables which are responsible for control  

)....,,..),..,,...(( 0000 nNijnNij uuuvvS   
Further it is necessary to define a maximum of the 

functional S depending on iju
, ijv

 (see set of controls). 
Then we receive the solve of the problem. That is the 

strategy )*,.....,*),*,.....,*(( 0000 nNnN uuvv , at which 
the maximal income is received. Hence, when the 
process is in state ),( ji  we take the decision 

Uvu ijij }*,*{ . The choice of the decision defines the 
most effective system work. 

 
6. CALCULATION EXAMPLE 
The calculation results have shown the opportunities of 
control expansion, in other words using several 
parameters of control leads to more effective model 
functioning. For example for model M/G*/1/2* we can 
use discrete and continuos controls (Kashtanov and 
Kondrashova 2010). 

There are three states in the system. 
State {0}  – there are no numbers in the system; 
State {1} – one number is being served, there are 

no numbers in the queue; 

State {2} – there are one number is on service, 
there is one number in the queue. 

In state 1 we can add 0,1,2 additional places in the 
queue. In state 2 we can add 0 or 1 additional places in 
the queue. We receive, that the quantity of every 
possible strategy combinations for choice v  equals six. 
u –service duration in state, ),0[ u  can be chosen  in 
each state (control parameter). 

In state i we choose the service time and we make 
the decision on creation of additional/extra places in the 
queue (except  state i=0). Hence, we use two parameters 
of control from the given set of controls: {u, v}.  

Write down the strategy pairs for states 1 and 2 : 
(0,0); (0,1); (1,0); (1,1); (2,0); (2,1). Last strategy pair 
concerns to a classical case of the problem when all 
places are used and we control only with the service 
time. And the control of service duration is also used 
(τ1,τ2 – service duration in 1 and 2 state, that take 
maximum value for income functional at  fixed v). 

 
Table 1: Calculation example 
Strategy Maximum 

value S 
Value 1  Value 2  

(0,0) 
(0,1) 
(1,0) 
(1,1) 
(2,0) 
(2,1) 

8 
8 
2 
2 

0,24418416 
1,16934403 

0 
0 
0 
0 

1,05 
1,367 

- 
- 
- 
- 
0 

0,674 
(0,0) 
(0,1) 
(1,0) 
(1,1) 
(2,0) 
(2,1) 

1 
1 

-0,743454243 
-0,743454243 
1,54211326 
2,28817567 

 

0 
0 

0,879 
0,879 
1,387 
1,482 

- 
- 
- 
- 
0 

0,448 

 
 

7. CONCLUSION 
In the paper the research of the controlled semi-markov 
queueing model M/M/n*/N* is carried out. The control 
is based on the system structure. In the paper the 
construction of the controlled semi-markov process and 
the construction of the income functional on its 
trajectories are used.  

The formula for the income functional calculation 
for the given system is received. The calculation 
example for the model is demonstrated. 
Algorithmization of the problem is presented. 

The calculation results have shown the 
opportunities of control expansion, in other words using 
several parameters of control leads to more effective 
system functioning. 

 
APPENDIX A 
Theorem. If there is a controlled semi-markov process, 
for which the embedded Markov chain is ergodic, at 

6



least, one of the distributions 
)(tQij  is non-trellised 

and the average income is  is final at any Ei , then: 
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where i  are stationary probabilities of conditions' 
distribution of the embedded Markov chain. 

 
APPENDIX B 
 

 
Figure 1: Block-diagram of the automated decision for 

M/M/n*/N* 
 

Block “Data”: input n, N, λ, μ, cost constants с1, с2, с3,  

с4 , с5 , с6. 

Block “Strategy v”: generating of strategy massive for v 

for every possible combinations. 

Block “Strategy u”: generating of strategy massive for 

u for every possible combinations. 

Block “Calculation S”: additional calculations for  

necessary characteristics for each strategy combination 

(cycle). Choice of optimum functional value and 

optimum strategy. 
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