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ABSTRACT  
The goal of this paper is to carry out a statistical study 
whose objective is the identification of time series of 
the greenhouse climatic parameters, in order to optimize 
the expenditure in cost and time of the culture under 
greenhouse. In this study, we showed that the inside 
temperature is the most influential parameters on the 
greenhouse. However, the automatic climate control 
requires the development of appropriate control laws 
that are based on models representing linear and nonli-
near system. We are therefore forced to make a study of 
the system to generate a model that faithfully reproduc-
es the operating parameters of greenhouse climate. In 
order to achieve the maximum benefit it is important to 
exploit the available data and an obvious choice here 
are the machine learning methods such as artificial 
neural networks. The use of recurrent Radial Basis 
Function (RBF) models is justified by employing a non-
linear greenhouse system, and hence to give the possi-
bility to identify and to control in the real time the in-
side temperature in the greenhouse, taking into accounts 
other climatic parameters within and outside the green-
house. A comparison of the measured and simulated 
data proved that the found model can envisage correctly 
the inside greenhouse temperature. 
 
Keywords: RBF networks, Recurrent RBF Networks, 
Nonlinear systems, Climatic Parameters, Greenhouse. 
 
1. INTRODUCTION 
The main aim of this paper is to provide a methodology 
of implementation of Radial Basis Function Networks 
(RBF) for identification of the inside temperature model 
in a greenhouse. The conventional techniques for this 
identification are based upon polynomial regression or 
auto-correlation-based statistical methods such as 
ARIMA (Ezzine, Lachhab, Eddahhak, and  Bouchikhi 
2007; Ezzine, Lachhab, Eddahhak, and Bouchikhi 2008; 
Lachhab, Ezzine, Eddahhak, Didi, Salinas Vazquez, 
García Lagos, Atencia, Joya, and Bouchikhi 2008). 
However, the functional relationship between the dif-
ferent climatic parameters is complex and cannot al-

ways be captured by these traditional modelling tech-
niques. Often this limits the practical usefulness as it is 
the case, the use of simplified traditional techniques 
based on conceptual models, such as regression tech-
niques, may hardly be justified. In order to achieve the 
maximum benefit, it is important to exploit the available 
data and an obvious choice here are the machine learn-
ing methods such as artificial neural networks. 

In the present work, a special type of neural net-
works that employs RBF network in the hidden layer 
has been utilized (Dreyfus, Martinez, Samuelides, Gor-
don, Badran, Thiria, and Herault 2002; Haykin 1994). 
Recurrent Radial Basis Function (RBF) Networks archi-
tecture is used to learn temporal sequences. It is based 
on the advantages of Radial Basis Function Networks in 
terms of training process time (Catfolis 1993; Chen, 
Giles, Sun, Chen, Lee, and Goudreau 1993). The recur-
rent or dynamic aspect is obtained by cascading looped 
neurons in the first layer. This layer represents the dy-
namic memory of the recurrent RBF network that per-
mits to learn temporal data. The proposed network 
combines the easy use of the RBF network with the 
dynamic performance of the Locally Recurrent Globally 
Feed forward network. 

In the present model, the variables eventually used 
included the inside temperature, the outside tempera-
ture, the inside humidity, the outside humidity, the CO2 
and the solar radiation, which produced the smallest 
error in the validation data. At a first stage, all climatic 
parameters are used, but we noted that the concentration 
of CO2 and the solar radiation have little influence 
compared to other variables (Ezzine, Lachhab, Ed-
dahhak, and Bouchikhi 2008). Thus these two parame-
ters are eliminated at the second stage. 

The rest of the paper is organised in three sections: 
a brief survey of system is presented in the second sec-
tion. The third section describes the Radial Basis Func-
tion (RBF) Networks, their training process algorithms 
and the architecture of recurrent RBF Networks for the 
time series prediction. Finally, the models and the re-
sults obtained for the temperature and the humidity un-
der greenhouse are presented. 
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2. MATERIAL AND EXPERIMENTAL DEVICE 
The greenhouse environment is automated with several 
actuators and sensors that are connected to an acquisi-
tion and control system based on a personal computer 
(Figure 1). Sensor devices are the basics of climate con-
trol because they provide necessary data for optimisa-
tion. Productivity, repeatability, output signal and usa-
bility by growers are the required characteristics of sen-
sors (Bouchikhi, Eddahhak, El Harzli, and El Bari 
2004). The developed system allows the acquisition of 
measurements of internal and external temperature and 
hygrometry, and global radiation.  

It consists of a heating system, moistening ducts 
and a static ventilation to control the internal climate. In 
order to improve the climate and water conduct of a 
culture under greenhouse, a tool of supervision is asso-
ciated to the actuator system. After the phase of installa-
tion and standardization of sensors inside and outside 
the greenhouse, a climatic data base of the greenhouse 
can be generated (Eddahhak, Lachhab, Ezzine, and 
Bouchikhi 2005; Eddahhak, Lachhab, Ezzine, and Bou-
chikhi 2007; Lachhab, Eddahhak, Ezzine, and Bouchik-
hi 2005; Lachhab, Eddahhak, Didi, Ezzine, Salinas, 
García-Lagos, Atencia, Joya, and Bouchikhi 2007). 

The controller is designed to insure: 
 
• The measurement, via some sensors, which 

monitor climate parameters, especially tem-
perature (LM35), humidity (HIH 4000-001), 
carbon dioxide (FIGARO AM4 module), light-
ing (Photo Resistor) and water availability in a 
desired range; 

• The processing of the data and storage of the 
results;  

• The operating of the climatic control devices, 
usually installed at a modern greenhouse. 

 
 

 

Figure 1:   Synoptic diagram of the experimental device 
 

A supervision tool optimises the commands sent to 
actuators, in order to optimize the climate under the 
greenhouse. We opted for a graphic program, carried 
out using LabVIEW (Figure 2), regrouping the follow-
ing functionalities: acquirement of sensor data outputs, 
display and treatment of information in real time, com-
mands to actuators, and, in short, creation of a historic 

based upon a picture database. The driving software 
permanently compares the magnitudes measured with 
the reference range in order to start or stop the appropri-
ate actuators. The user has a possibility to fix the thre-
shold of the inside temperature that start up the audible 
and visual alarms (Eddahhak, Lachhab, Ezzine, and 
Bouchikhi 2007). 

Data were collected in a greenhouse located at the 
Faculty of Sciences, Meknes, Morocco, between 11 and 
18 December 2007. The system is based around a Per-
sonal Computer (PC). Sensors and conditioning mod-
ules permit to measure the different climatic parameters 
inside and outside the greenhouse.  

 

 

Figure 2:  Graphical User Interface based on LabVIEW 
 

3. METHODOLOGY 
 
3.1. Model description 
The typical structure of an RBFN consists of three lay-
ers, namely the input, hidden and output layers. Each 
layer consists of a number of neurons (nodes). The 
nodes in the input layer are used only to pass the input 
data to hidden layer. No calculations are performed in 
the input layer nodes, and the connections between the 
input and the output layer are not weighed (Dreyfus, 
Martinez, Samuelides, Gordon, Badran, Thiria, and He-
rault 2002; Haykin 1994).  

The hidden layer contains k nodes, which apply a 
nonlinear transformation on the input variables. More 
specifically, each node j = 1, 2, …, k has a center value 
cj, where cj is a vector whose dimension is equal to the 
number of inputs to the node. For each new input vector 
x = [x1, x2, …, xN], the Euclidean norm of difference 
between the input vector and the node center is calcu-
lated as follows: 

( )∑
=

−=−=
N

i
ijijj cxxc

1

2
,ν                                    (1) 

 
the output of the hidden layer nodes is determined by a 
nonlinear function, called the ‘activation function’ of 
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the network. A typical selection for the activation func-
tion is the Gaussian function: 
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where the width ²σ is a variance. Thus, the output of 
the hidden layer node j is: 

 

( )jj fz ν=                                               (3) 

 
A set of synaptic weights wj, j = 1, 2, …, k is ap-

plied to the connections between the hidden and the 
output layer. The nodes in the output layer serve only as 
summation units, which produce the final output of the 
network. Considering a one-output network (Figure 3), 
the overall output will be: 
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Figure 3: Typical structure of an RBF Networks 
 

3.2. Model training and validation 
 
3.2.1. Training of RBF networks 
From a design point of view, the training of RBF Net-
works is to find the number of hidden layer neurons N 
and the appropriate parameter set {yk, σ, wk} to map a 
given input vector to a desired output scalar efficiently 
with good accuracy and generalization. Many different 
approaches have been proposed in the literature over 
recent years for selecting these free parameters and op-
timizing the complexity of RBF networks. Normally, 
after the network structure parameter N is determined, 
the RBF networks are trained by using a two-phase ap-
proach, where the centres and width are computed first, 
and the output weights are calculated in the second 
phase. 

In the phase of selecting the locations of centres, 
three main strategies have been put forward. The first 
one is to randomly select a set of samples from training 
set and the positions of the centres are set according to 
these samples.  This approach can only produce reason-
able results when the training data are distributed in a 
representative manner. The second approach is to per-

form a pre-clustering on the training set, and the centres 
of the clusters are used as the centres of the RBF net-
work. Since this clustering is performed without the 
knowledge of the weights of the output nodes, it is like-
ly that the selection of the centres is sub-optimal with 
respect to the accuracy of the final result. The selection 
of the initial values of the centres is also a key problem. 
The third strategy is to use a gradient descent algorithm 
to determine the centres. Convergence to a global min-
imum cannot be guaranteed since the problem is nonli-
near with respect to the centres. Therefore, all these 
approaches have various shortcomings in selecting ap-
propriate centres. Since the practical signals are inevita-
bly disturbed by stochastic noise, training data cannot 
always represent all samples even if they are acquired 
from a wide range of amplitude and frequency. There-
fore, the pre-clustering is necessary either for the train-
ing data, or for the simplification of the networks (Drey-
fus, Martinez, Samuelides, Gordon, Badran, Thiria and 
Herault 2002;  Haykin 1994). 

When the centres are selected, a uniform width can 
be heuristically determined by the equation in the fol-

lowing section Md=σ , whered : the maximum 

distance between the chosen centres and M: is number 
of centres.  

Once the centres and width are fixed, the weights 
can be known very efficiently, since the computation is 
reduced to a linear or generalized linear model. There 
are also some approaches for output layer weights train-
ing. One approach, which is called generalized regres-
sion neural network (GRNN), assigns the target values 
as the output layer weights and the output of the net-
work is divided by the sum of the output of a hidden 
layer neuron. GRNN is effective when a large amount 
of training data is used and no new training data is far 
from them. The other approach is to use an iterative 
training technique such as gradient descent algorithm. 
In fact, from Equation (4), when the centers and width 
are determined, weights can be trained by solving the 
system of linear equations directly. After the final step 
of calculating the output layer weights is finished, all 
parameters of the RBF network have been determined. 

 
3.2.2. Evolving RBF networks 
The algorithm of gradient descent have been used to 
train RBF networks, which are called evolving RBF 
networks. In fact, we specially present the algorithm of 
training RBF networks.  

However, in the learning procedure of an RBF 
neural network, the determination of the hidden centres 
and the widths is of particular importance to the im-
provement of the performance of networks, and the 
proposed algorithm consists of Gradient descent (Du, 
Lam, and Zhang 2006; Fahlman and Lebiere 1991;  
Fahlman 1991; Lee and Sankar 2007, Venkateswarlu 
and Venkat 2005).  

This algorithm is used for both simple models. As 
for recurring patterns using the same instructions that 
algorithm, except that it adds the recurrence for the va-
riable in question (the temperature and humidity). 
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However, for the standardization of data, an uncer-
tainty of 10% was adopted, but the results found were 
not interesting. In a second time we took incertitude 
1%. Standardization of the equation is given as follows: 
 

( )
( ) ( )

1

11

min
0,99 0,01

max min

i i
i N

i ii Ni N

x x

x x
≤ ≤

≤ ≤≤ ≤

 −
 × +
 −
 

                       (5) 

 
As there are no methods that provide a way to 

correct the centres used, it adopts an estimate with the 
arithmetic average for all variables, then the weighting 
coefficients with “random” is that minimize total error 
of the model. The width of the Gaussian is defined by 
the maximum distance between the centres divided by 
the square root of the number of centres. In step (6) for 
the algorithm, a gradient descent is used to correcting 
the weight of which to minimize the error. 

The proposed Recurrent RBF neural network con-
siders the time as an internal representation (Du, Lam, 
and Zhang 2006, Lee and Sankar 2007; Venkateswarlu 
and Venkat 2005). The dynamic aspect is obtained by 
the use of an additional self-connection on the input 
neurons. The recurrent RBF network can thus take into 
account a certain past of the input signal. 

 
Algorithm 
Step learning 
1. Normalization of the database and Choice of cen-

tres   
2. Set the width of the Gaussian 

The estimator adopted is:  

M

d=σ
       

With    M is the number of centres 

    ji
Mji

ccd −=
≤≤ ,1

max  

3. Initializing weight 
4. Creating the matrix of distances.  

 
             

5. Calculate error. 
Calculate the error measure E during the learning 
 
6. Correcting weight used the method of gradient de-

scent 

       ( ) ( )[ ]Mii
i

iii ctfctf
t

d
EWW −−××−=+ L11 α   

With   Ei is the error at time i 
7. Return to step (4) until to finish learning data. 
 
Step test  

In this step, the same treatment for learning data is 
adopted and the calculation of the output used the 
following equation:  

 

 

 

 

 

Calculate the error measure for every example. 
 
 
4. RESULTS AND DISCUSSIONS 
Our work above shows that the inside temperature is the 
important parameter in the greenhouse and they influ-
ence most the culture under greenhouse (Ezzine, Lach-
hab, Eddahhak and Bouchikhi 2008). So we have cho-
sen these parameters in order to identify the climatic 
evolution under greenhouse using the RBF networks. In 
this section we present the results obtained for a model 
of temperature. 

It is important to avoid extrapolations, especially 
with non-linear, over-parameterized models such as 
neural networks. Reducing the number of inputs to the 
bare minimum is: therefore, advisable. This can be done 
by removing less-relevant and well-correlated inputs; in 
our case we have eliminated the lighting and CO2 con-
centration. When the least important variables cannot be 
readily identified, statistical reduction (compression) 
methods, such as regression linear model or bottleneck 
neural networks may be used to reduce the effective 
system’s dimension. These methods can be applied to 
the inputs as well as to the state variables. 

The model uses a simple RBF neural network con-
sists of four inputs and one output. And in the recurrent 
against the model consists of five inputs and one output. 

From the whole database, we have reserved data 
from different, but not too far, days to be used as an 
independent verification set. This prevents over-training 
and may help to identify outlying records. This tech-
nique is superior to, e.g., splitting the weather-
dependent data set into odd and even records (or groups 
of records), since then the two resulting sub-sets are 
likely to be statistically similar, although they do not 
share even a single record. 

In this section, we will present model temperature. 
In a first step we use a simple model using the RBF 
network.  

Figure 4 and 5 give the curves of adjustment of the 
inside temperature according to the found model in a 
step learning and test. We notice that the desired (meas-
ured temperature) and the simulated temperature’s 
evolve in the same direction and the recorded error is 
understood about between -0,5 °C and 0,5 °C. 

The search results are not satisfying the error esti-
mate. To address this problem we introduced the dy-
namic factor using the RBF recurrent network. The 
graphic representation for the inside temperature is a 
single day. This is done in order to have a clearer view 
on the networks used. 

The table 1, gives results of the minimal and max-
imal of the errors, the average errors and the standard 
deviations. 
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Figure 4: Learning of Simple Model of the temperature 
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Figure 5:  Test of Simple Model of the temperature. 

 
In the test phase, error keeps almost the same pace 

as that found in the phase of training. Hence our model 
is validating. Despite this improvement in non-linear 
modelling of the inside temperature in greenhouse, rela-
tive to that linear; the error is always important in the 
sense dispersion (important variance) (table 1). 

 

Table 1:  Results of the RBF and recurrent RBF models 
for the temperature under greenhouse 

 The Simple 
Model of 

the temper-
ature (°C) 

The 
Recurrent 

Model of the 
temperature 

(°C) 
Learning Mean error 

Max error 
Min error 
Std error 
variance 

0,23640 
1,47651 
0,00001 
0,29832 
0,08900 

0,23644 
0,56085 
1,44364E-05 
0,06403 
0,00410 

Test Mean error 
Max error 
Min error 
Std error 
variance 

0,28652 
1,45759 
0,00000 
0,31937 
0,10200 

0,34538 
0,40031 
0,00015 
0,05831 
0,00340 

 
So in order to improve the prediction we can go 

from a simple model to the recurrent model. With the 

training and testing data established, an evolving recur-
rent RBF network is used to create a mapping model 
that simulated the evolution of the temperature and it 
show the relationship between the inside humidity, out-
side humidity, outside temperature and command. 

Table 1 shows the results of the network training 
for the temperature under Greenhouse. The recurrent 
RBF Neuronal Networks gives better results than the 
simple model RBF with percentage 70,98 %.This model 
does not take account of the interaction between the 
inside temperature and its past which gives an error a bit 
important. So, to remedy this problem, the recurrent 
RBF networks model is used. 

In Figure 6 and 7, the identification of the tempera-
ture, where the learning phase data are taken from a 
period of three days, whereas a one day period is ex-
tracted for the test phase. The results illustrated in the 
figure 6 show the evolution of the experimentally ob-
served temperature inside the greenhouse and the one 
determined after training the network. 
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Figure 6: Learning of  the Recurrent Model of the 
temperature. 
 

The sequences are memorized by the Gaussian 
nodes and the temporal distances between the tempera-
ture at time t and their observation at time t-1 by the 
looped neurons. The recurrent RBF network has the 
advantage of the local generalization of the Gaussian 
node while the RBF networks are easier to use, but they 
have a significant error in comparison with that of re-
current RBF networks. 

The test phase is to validate the model developed 
in phase learning using a new database. The results of 
this phase are shown in figure 7. A fully connected re-
current RBF network with one hidden layer is selected 
to be trained using the training data for the forward 
model. The model is determined to have four input neu-
rons and one output neuron by trial and error. The four 
inputs to the model include current outside humidity 
Hot, outside temperature Tot, inside humidity Hit, the 
command and past inside temperature Tit-1, where t 
denotes the time variable. The output is the predicted 
inside temperature. This can be explained that to predict 
the inside temperature at time t, the inputs of the recur-
rent RBF network are taken t and the target temperature 
at time t-1. In order to compare the effectiveness of this 
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approach in training and testing the recurrent RBF net-
work, the Standard Square Error (SSE) between the true 
outputs and the network predictions are calculated for 
this approach are shown in Table 1. 
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Figure 7: Test of the Recurrent Model of the 
temperature. 
 

We can notice that the maximum error committed 
during the Learning is 0,4003 °C and the average error 
in the east of learning 0,23644 °C. The RRBF can so 
detect some degradation and gives some solutions to 
diagnose new failures.  

Based on these results, the error is acceptable giv-
en the field of variation in temperature, and we can say 
that the error is like a white noise, namely its average 
tends to 0. Then we compare the results achieved by the 
simple model and the recurrent model, a clear im-
provement of the error is observed. 

 
5. CONCLUSION 
This short review covered a few potentially useful neur-
al network applications for greenhouse environmental 
control. It should be emphasized that the neural network 
greenhouse modelling refers only to existing structures. 
These models cannot be used to design new greenhous-
es, since they lack explicit expressions for the various 
components and transfer coefficients. Changes in 
equipment will also require model modification. How-
ever, this model could later be fine-tuned to local condi-
tions and requirements, based on data collected on loca-
tion. 

The neural network model can also be useful as 
controllers, since they may be taught various control 
rules. Two examples are the simulating of a model-
based optimal (feed-forward) controller and a human 
optimizer (expert grower), who uses some feedback 
information from the state of the crop. 

A comparison of the measured and simulated re-
cursive model proves that the found model can envisage 
correctly well the inside temperature and humidity in 
the greenhouse. 
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