
TRAFIC CONTROL AND QUEUES MANAGEMENT FOR A SINGLE INTERSECTION

Fadi Motawej, Rachid Bouyekhf, Abdellah EL Moudni
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ABSTRACT
It is by now well known that, the traffic signal control is the most
effective measure for reducing traffic congestion in an intersection.
Traffic congestion arises when arrival rate exceeds capacity in
the intersection. The most undesirable symptom of this kind
of instability is an unbounded accumulation of vehicles in the
system. Our contribution in this paper is to show that, for a
single intersection, congestion can be prevented by using a state
feedback controller having an appropriate positive structure. It is
shown that two main objectives are achieved with the proposed
controller: firstly, when traffic flow is not in excess, the queuing
of automobiles cannot exceed intersection capacity. Secondly,
in order to fit physically reasonable signalization, the controller
respects the boundary conditions. Example is worked out to
illustrate the results.

Keywords: Traffic lights control, Single intersection, State feed-
back control.

1. INTRODUCTION
As the number of vehicles and the need for transportation
grow, cities around the world face serious road traffic con-
gestion problems. In general there exist different methods
to tackle the traffic congestion problem. The most effective
measures in the battle against traffic congestion seem to
be a better control of traffic through traffic management.
Traffic light control can be used to manage the traffic flow
in urban environments by providing a smooth circulation of
the traffic. The purpose of traffic lights is to provide safe
and efficient interaction of vehicles within the intersection.

In the past 40 years, great effort has been made in the
area of signal timing optimization techniques (Gazis 1974,
Green 1968, Kaltenbach and Koivo 1974, Dans and Gazis
1976, Michalopoulos and Stephanopolos 1978, Wey 2000,
Barisone, Giglio, Minciardi and Poggi 2002, Abu-Lebdeh
and Benekohal 2000, Girianna and Benekohal 2000). Most
of these control strategies are based on a preprogrammed
periodic cyclic rhythm. These approaches are easy to im-
plement but may be not efficient and flexible because they
do not take into account traffic changes.

Michalopoulos and Stephanopolos ( Michalopoulos and
Stephanopolos 1978) were probably the first to propose a
two-stage timing method. The method attempts to find an
optimal switch-over point during the over-saturated period
to interchange the timing of the approaches. Their model

is a continuous type and does not address the problem
of cycle length optimizing. Recently, Tang-Hsien and Lin
(Tang-Hsien and Lin 2000), have studied a discrete delay
type model, involvingbang-banglike control, to improve
Michalopoulos and Stephanopolos model. Thebang-bang
control operates alternatively and sequentially with a given
only minimal and maximal green time boundaries. How-
ever, there is a limited evolution of this control strategy be-
cause thebang-bangcontrol does not consider the deviation
of a system from its nominal behavior caused by deviation
of system components and parameters from their nominal
performance characteristics. Another notable work in this
area is the one presented by Schutter and Moor (Schutter
and Moor 1998) in which the authors have shown how an
optimal traffic light switching scheme for an over-saturated
intersection of two streets can be determined. In general,
this leads to a minimization problem over solutions set of
an extended linear complementarity problem. However, it
is well-known that the linear complementarity problem is
NP-hard. Hence, as claimed by authors, this approach is not
feasible if the number of switching cycles is large.

In conclusion, all these works are based mainly on an
open loop and rolling horizon techniques. However, due
to the substantial changes in the traffic characteristics at
different times of the day, control strategies should be such
that the signal takes into account the effects of the abrupt
change in any period. In fact, the feedback control method
may be the best means to achieve this aim. This is the
objective of the paper.

Our contribution in this paper is to show that congestion
can be prevented by using a state feedback controller
having an appropriate positive structure. More precisely, we
propose a state feedback control scheme able to achieve the
objective of congestion avoidance and to satisfy a queue
length of vehicles that does not exceed the intersection
capacity.

2. SYSTEM DESCRIPTION AND MODELING
We consider here an isolated two-phase intersection with
controllable traffic lights on each corner (Figure 1). It is
supposed that there are two traffic flows of vehicles to be
served (movements 1 and 2). To be able to present the
model, a certain number of definitions are necessary.
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Fig. 1. Four-leg intersection with two-phase signal control.

Lost time L: time when an intersection is not effectively
used by any approach. Lost time occurs during a part of
the change interval and at the beginning of each green due
to start-up delay. It is defined byL = l1 + l2, where l1
represents the startup lost time andl2 the clearance lost
time.

Effective green timege: time actually available for move-
ment. It excludes start-up delay that occurs at the beginning
of the phase as well as any lost time that might occur near
the end of the phase. It is defined by

ge = g + y − L,

whereg is the green time interval,y represents the amber
interval. The effective green timege2

on phase II is deter-
mined from the effective green timesge1

on phase I by the
relation

ge1
+ ge2

= c. (1)

wherec is the cycle length. Notice that it makes no sense
to speak of negativegei

. Therefore, equation (1) leads to
constraints on the pair of control variables(gei

, c), that is

0 ≤ gei
≤ c; c > 0.

In other words, the effective green time can be at most equal
to the length of the cycle. However, certain boundary points
may not fit physically reasonable signalization settings. In
particular,ge1

= 0 corresponds to no effective green time
for phase I,ge1

= c corresponds to no effective green
time for phase II. Therefore, it is important to select tow
boundary valuesgmin andgmax so that

gmin ≤ gei
≤ gmax (2)

The values ofgmin and gmax must be well selected. For
instance, too short effective green lights are impractical
and too long effective green lights are unacceptable to
the stopped drivers of the other approach. Hence, anygei

satisfying this constraint leads to a viable signalization
control strategy.

Saturation flow rates: the discharge process of the
vehicles in the queue is controlled by reaction times and
desired acceleration rates of drivers as well as acceleration
rates of vehicles ahead. At the beginning of the green
interval, the discharge rate at stop lane starts to increase. As
the queuing vehicles have reached a constant speed at stop
line, the discharge rate has reached its maximum, called the
saturation flow rate. More precisely, the saturation flow rate

is defined as the maximum number of vehicles being able
to use the corridor without interruption during the effective
green timege. The saturation flow rate may vary from
cycle to cycle, but an average value can be used for given
conditions.

Let us now write down a discrete model that describes
the evolution of the queue lengths. This will then yield the
equations that give the relation of the queue lengths between
cycle k and k + 1. Let us denoteI = {1, 2} and define
xi : queue length of movementi ∈ I,
qi : input flow rate of movementi ∈ I,
si : saturated flow rate of movementi ∈ I,
gei

: effective green time of phasei ∈ I
where in generalqi < si. The fundamental idea of the

described traffic model design technique is based on the
traffic flow conservation principle. It means that the queue
at timek + 1 is equal to the sum of the previous queue at
time k and the number of arrivalsEi(k) minus the number
of departuresDi(k) from the lanei.

The number of arrivalsEi(k) is given by the input flow
rateqi of movementi and the cycle lengthc. The quantity
Ei(k) can be written asEi(k) = qi c(k). The maximal
number of passing vehiclesDi(k) is given by the saturation
flow si and the effective green timegei

. The quantityDi(k)
can be written asDi(k) = si gei

(k).
Now, let xi(k+1) be a queue length of approachi when

the cyclek is terminated, then the relation of the queue
lengths between cyclek and k + 1 can be represented by
the following equation:

xi(k + 1) = xi(k) + Ei(k) − Di(k) (3)

Hence, equation (3) becomes:

x1(k + 1) = x1(k) + q1c − s1ge1
(k)

x2(k + 1) = x2(k) + q2c − s2ge2
(k)

Sincege1
+ ge2

= c, it follows

x1(k + 1) = x1(k)+(q1 − s1)c+ s1ge2
(k)

x2(k + 1) = x2(k) + q2c − s2ge2
(k)

The above equations can be equivalently restated as a state
space expression

x(k + 1) = x(k) + Bu(k) + L (4)

wherex(k) is the state vector,u(k) = ge2
(k) is the control

variable, and

B =

(

s1

−s2

)

=

(

b1 > 0
b2 < 0

)

; L=

(

(q1 − s1)c
q2c

)

=

(

ℓ1 < 0
ℓ2 > 0

)

Notice that, it makes no sense to speak of negative queue.
Hence, if x0 describes queue at timek = 0 then x(k) ≥
0 for all k ∈ N. Therefore, the system (4) has physical
meaning only ifx belongs to the region of admissible states
Ωx = {x ∈ R

n/x ≥ 0}.

3. CONTROL PROBLEM FORMULATION
The control problem is formulated as follows. We consider
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the system (4) with a maximal capacity of each lanex∗

1

and x∗

2. Then, congestion may occur in the system if
the queue length of each lane exceeds its capacity. The
most undesirable symptom of this kind of instability is an
unbounded accumulation of vehicles in the system.

The control objective is then to find a state feedback
controller that respects the constraint (2) and is able to
satisfy

0 ≤ x(k) ≤ x∗, ∀k ≥ 0, ∀ 0 ≤ x0 ≤ x∗ (5)

Motivated by (Rami, Tadeo, and Benzaouia 2007), the
following proposition gives an answer to this problem.

Proposition 1: Consider system(4) with parameters
x∗ > 0, gmin > 0 and gmax > 0. Suppose that1 +
b1b2
x∗

i

≥ 0. Then, if there exists a positive scalarα with

α ≥ max(−ℓ1
b1

; −ℓ2
b2

) such that

B(b1 + b2 + α) + L ≤ 0 (6)

b1 + α ≤ gmax (7)

b2 + α ≥ gmin (8)

then there exists a positive controlu(k) = QT x(k) + α
such that0 ≤ x(k) ≤ x∗ for all 0 ≤ x0 ≤ x∗ and gmin ≤
u(k) ≤ gmax.
Proof: Define the vectorQT = [ b2

x∗

1

, b1
x∗

2

] and observe that

since1 + b1b2
x∗

i

≥ 0, it foll ows I + BQT ≥ 0. Furthermore,

α ≥ max(−ℓ1
b1

; −ℓ2
b2

) implies Bα + L ≥ 0. Now, under the
state feedback controlu = QT x+α the closed-loop system
becomes

x(k + 1) = (I + BQT )x(k) + Bα + L (9)

SinceI + BQT ≥ 0 andBα + L ≥ 0 , it is easy to show
that x(k) ≥ 0 for all x0 ≥ 0. With this in mind, observe
that b1 + b2 = QT x∗, hence (6) implies

B(b1 + b2 + α) + L = BQT x∗ + Bα + L < 0. (10)

This and the fact thatI + BQT ≥ 0 andx0 ≤ x∗ imply

x(1) = (I + BQT )x0 + Bα + L

≤ (I + BQT )x∗ + Bα + L

= x∗ + BQT x∗ + Bα + L ≤ x∗

it follows

x(2) = (I + BQT )x(1) + Bα + L

≤ (I + BQT )x∗ + Bα + L

= x∗ + BQT x∗ + Bα + L ≤ x∗

By induction it can be shown that

x(k) = (I + BQT )x(k − 1) + Bα + L

≤ (I + BQT )x∗ + Bα + L

= x∗ + BQT x∗ + Bα + L ≤ x∗

Hence, the first objective (5) of the control is achieved with
the proposed controller. Now, observe that

u(k) = QT x(k) + α =
b2

x∗

1

x1 +
b1

x∗

2

x2 + α

Since0 ≤ x1 ≤ x∗

1
, 0 ≤ x2 ≤ x∗

2
, b1 > 0 andb2 < 0 then

b2 + α ≤ u(k) ≤ b1 + α

Hence, (7) and (8) imply

gmin ≤ u(k) ≤ gmax

which completes the proof.
It follows immediately from Proposition 1 that, for an ar-

bitrarily selected positiveα > max(−ℓ1
b1

; −ℓ2
b2

) that satisfies
constraints (6), (7) and (8), the feedback controls defined
by u(k) = QT x(k) + α exhaust the class of control laws
u which maintain the queue length of each lane less than
its capacity. Hence, Proposition 1 gives explicit and non-
unique solution of the congestion control.

Remark 1:As we can see, the control lawu(k) =
QT x(k)+α is positive and its input data are the estimated
values of the queues level during each cyclek. Hence,
the control policy evaluates the green light for each traffic
cycle following the calculation process of vehicles stored in
the intersection. The real-time availability ofx(k) can be
measured by a traffic detector installed at the correspond-
ing lanes. This situation allows us to use effectively the
available information on the system to perform closed loop
control of the traffic signals in real time.

The performance of the proposed control law is illustrated
in the simulation studies of two-phase intersection. Figure
2 represents the evolution of the queue lengthsx1 and
x2 stored in the system within6000 cycles. One can im-
mediately observe that the application of feedback control
u(k) = QT x(k) + α prevents the queue lengths reaching
the lanes capacities and hence avoids the congestion. This
simulation is carried out by holding account the following
data:s1 = 0.2veh/s; s2 = 0.2veh/s; q1 = 0.1veh/s; q2 =
0.1veh/s; c = 160s; umax = 120s; umin = 30s; x∗

1
=

50veh; x∗

2 = 45veh. According to these parameters, we
have 1 + b1b2

x∗

1

= 0.9992 ≥ 0, 1 + b1b2
x∗

1

= 0.9991 ≥ 0,

QT = (−0.0041, 0.0044) and the scalarα is found to be
80.
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Fig. 2. Queue lengths evolution system
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In the following section, we address the case where the
cycle length is time varying and it is considered as a second
control variable. The importance of this comes from the fact
that it gives us a degree of freedom and a flexibility for the
control strategy, because its variation will take into account
the effects of the abrupt change in real traffic situation.

4. CASE WHERE THE CYCLE LENGTH IS TIME
VARYING
In this case equation (3) becomes:

x1(k + 1) = x1(k)+(q1 − s1)c(k)+ s1ge2
(k)

x2(k + 1) = x2(k) + q2c(k) − s2ge2
(k)

The above equations can be equivalently restated as a state
space expression

x(k + 1) = x(k) + Bu(k) (11)

wherex(k) is the state vector,u(k) = (c(k), ge2
(k))T is

the control variable, and

B =

(

q1 − s1 s1

q2 −s2

)

Furthermore, the system is to be analyzed under the fol-
lowing constraint

(

cmin

gmin

)

≤

(

c(k)
ge2

(k)

)

≤

(

cmax

gmax

)

which is equivalent to

0 < umin ≤ u ≤ umax. (12)

As in the preceding section, the control objective is then
to find a state feedback controller that respects the constraint
(12) and is able to satisfy

0 ≤ x(k) ≤ x∗, ∀k ≥ 0, ∀ 0 ≤ x0 ≤ x∗

This control problem is the same as the one described
in section II except that the control variable in this case
is depending on effective green timege2

(k) and the cycle
lengthc(k). This situation leads us towards a square matrix
B. Thus, the feedback control law derived in section II does
not work in this context because the control is not a scalar.
To overcome this inherent difficulty the following lemma
will be useful.

Lemma 1: Consider a linear system of the form:

x(k + 1) = x(k) + Bv(k) + L (13)

with x∗ > 0 andv∗ > 0, if there exist three positive vectors
y1, y2, α ∈ R

2 such that

B(y1

i + y2

i + α) + L ≤ 0 (14)

Bα + L ≥ 0 (15)

y1 + y2 + α ≤ v∗ (16)

1 + bi

yi

x∗

i

≥ 0 (17)

bi

yj

x∗

j

≥ 0, for i 6= j (18)

where bi is the i row of the matrixB, then there exists a
positive controlv(k) = Qx(k)+α such that0 ≤ x(k) ≤ x∗

and 0 ≤ v(k) ≤ v∗ for all 0 ≤ x0 ≤ x∗ .
Proof: Define the matrixQ = [ 1

x∗

1

y1, 1

x∗

2

y2] and observe
that (17) and (18) implyI + BQ ≥ 0. Now, under the
state feedback controlv = Qx + α the closed-loop system
becomes

x(k + 1) = (I + BQ)x(k) + Bα + L (19)

SinceI + BQ ≥ 0 andBα + L ≥ 0 in view of (15), it is
easy to show thatxk ≥ 0 for all x0 ≥ 0. With this in mind,
observe thaty1 + y2 = Qx∗, hence (14) and (19) imply

B(y1 + y2 + α) + L = BQx∗ + Bα + L ≤ 0. (20)

This and the fact thatI + BQ ≥ 0 andx0 ≤ x∗ imply

x(1) = (I + BQ)x0 + Bα + L

≤ (I + BQ)x∗ + Bα + L

= x∗ + BQx∗ + Bα + L

≤ x∗

it follows

x(2) = (I + BQ)x(1) + Bα + L

≤ (I + BQ)x∗ + Bα + L

= x∗ + BQx∗ + Bα + L

≤ x∗

By induction it can be shown that

x(k)=(I+BQ)x(k − 1)+Bα+L

≤ (I+BQ)x∗+Bα+L

= x∗+BQx∗+Bα + L

≤ x∗

Hence, the first objective of the control is achieved with the
proposed controller. Now, since0 ≤ x(k) ≤ x∗ andQ > 0,
then0 ≤ u(k) = Qx(k)+α ≤ Qx∗+α = y1+y2+α ≤ v∗

in view of (16), which completes the proof.
Now, the congestion control problem of system (11) can

be solved by putting u = v + umin. In this case the
constraints (12) yield0 ≤ v ≤ umax − umin = v∗ and
system (11) becomes

x(k + 1) = x(k) + Bv(k) + L (21)

where L = Bumin, which is the same as equation (13).
Hence, if all conditions of Lemma 1 are verified then the
control u = v + umin = Qx + α + umin respects the
constraint (12) and achieves the following objective:

0 ≤ x(k) ≤ x∗, ∀k ≥ 0, ∀ 0 ≤ x0 ≤ x∗.

The performance of the proposed control law is illustrated
in the simulation studies of two-phase intersection. Figure
3 is obtained with the following data:s1 = 0.6veh/s; s2 =
0.4veh/s; q1 = 0.3veh/s; q2 = 0.2veh/s; cmax =
160s; cmin = 120s; gmax = 96s; gmin = 30s; x∗

1 =
80veh; x∗

2
= 70veh. According to these parameters,
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we have found y1 = (18.2789, 5.0991)T , y2 =
(7.6539, 7.8673)T , α = (6.5315, 33.2657)T .

As in the preceding section, one can conclude that the
application of feedback controlu(k) = QT x(k)+α+umin

prevents the queue lengths reaching the lanes capacities and
hence avoids the congestion.
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Fig. 3. Queue lengths evolution system

5. CONCLUSION
In this paper, it was shown that congestion in a single inter-
section can be prevented by using a state feedback controller
having an appropriate positive structure. We have shown
that two main objectives are achieved with the proposed
controller: firstly, when traffic flow is not in excess, the
queuing of automobiles cannot exceed intersection capacity.
Secondly, in order to fit physically reasonable signalization,
the controller respects the boundary conditions.

Upon application of the control strategy described in this
paper, the process model is used on-line. Great computa-
tional effort is therefore desirable in this context. However,
the rapid development of the numerical performance of
computer hardware makes computationally extensive con-
trol concepts, such as on-line application, more and more
feasible and also reasonable in terms of cost.
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