
DEVELOPING INTEGRATED PERFORMANCE MEASUREMENT SYSTEM - USING
MDA APPROACH

Souhail Sekkat(a), (b), (c) , Jean Luc Paris(a), Khalid Kouiss(a), Janah Saadi(c) , Laurant. Deshayes(d)

(a) LIMOS – IFMA Campus de Clermont-Ferrand/Les Cézeaux - BP 265 - 63175 Aubière Cedex, France.
(b) ERCSSP- ENSAM Marjane II Beni M’hammed, BP 4024, Meknes Alismailia, Meknes, Maroc.

(c) LAP - ENSEM Casablanca B.P. 8118, OASIS. Route d' EL JADIDA, Casablanca.
(d) MANBET TECHNOLOGY : 5 Avenue Abou Taeib Al Moutanabi Residence Walili Apt 13, Fes.

(a)paris@ifma.fr, kouiss@ifma.frail, (b)s_souhail@hotmail.com (c)janah1@menara.ma (d)laurent.deshayes@gmail.com

ABSTRACT
In an industrial context defined by more acute
competition, performance measurement becomes a
control tool. The Manufacturing Execution System
(MES) software achieves control and execution of
production functions, as Performances analysis.
However, to choose the adequate performance
indicators and to implement them is a difficult problem.
Indeed, the enterprises need methods to specify and to
install their Performance Measurement System (PMS).
In this paper, we propose a methodology of
performance indicators implementation. We use the
Component Oriented Programming with a Model-
Driven Architecture (MDA), to generate applications’
final code. This method facilitates the design of
Performances Measurement System and its
implementation.

Keywords: Manufacturing Execution Systems MES,
Performances Measurement Systems PMS, Component
Oriented Programming COP, Model-Driven
Architecture MDA.

1. INTRODUCTION
Nowadays, the level of integration determines the
effectiveness of modern technical systems. Application
of the system engineering results in that systems
become distributed, and consist of a number of
physically or logically distributed components that
constitute the system to reach the common goal.
Communication between such components is a crucial
issue.

The performances analysis is among the important
components of computer control system. The
development and the implementation of a Performances
Measurement System (PMS) is a difficult problem.
Indeed, to design and implement a Performances
Measurement System (PMS), we must properly model
identities, attributes and operations of individual objects
as well as the sequence of operations and data flow in a
shop floor control system. What will allow, thereafter,

the time follow-up of the key performance indicator
(KPI).

Therefore, in this paper, we present a shop floor
control model and its implementation using Object and
Component Oriented Approach.

Several researchers have applied Object-oriented
and Component-oriented concepts in implementing
manufacturing execution systems MES. For instance,
(Yang and al 2000) applied object-oriented
programming (OOP) to develop a CIM system. In
addition, a distributed automation and control system
has been implemented in (Krassi 2002). For system
integration a middleware CORBA were used. Another
work was addressed on applying COP methodology to
develop a controller, in robotic palletization area
(Chiron 2009).

Although various works related to the modeling
and implementation of shop floor controllers were
presented, the implementation of PMS was not
addressed by those researchers. MDA approach can be
used to support this issue. Basically, it focuses on:

1. Identifying objects and their related properties,
2. Building the relationships among objects,
3. Describing the data transformation within the

system.

The main body of this article is organised as

follows. In the next section, the methods of PMS
software design are presented and discussed. Then,
proven industrial technology used in the process of
application tool integration is presented. After then,
proposed approach for specification and implementation
of PMS is outlined. The article closes with a practical
example and drawing a conclusion.

2. THE DESIGN OF PERFORMANCE

MEASUREMENT SYSTEM (PMS)
The rapid progress of computer technologies brings
shop floor control functions into a new area. Many
advanced functions have been introduced as the results
of improving computing power. These functions include

Page 107

real time scheduling, networking, cell coordination and
Performance analysis (Halang and al 2006).

In this section, we will present the PMS software
and the different methods used for its design. First, we
are going to describe the Computer Integrated
Manufacturing (CIM) pyramid and to position the PMS
in this pyramid. Then we will define the Overall
Equipment Effectiveness (OEE). It is the PMS we will
implement. Finally we are going to describe the
methods used to develop shop floor control system.

2.1. CIM Pyramid
Since the functions of shop floor control have become
more complex than before, several control architecture
and models were proposed. One of the most famous
models is NIST AMRF (National Institute of Standard
and Technology / Advanced Manufacturing Research
Facility) Proposed by National Bureau of Standards.

The AMRF model is applying hierarchical control
architecture; it is composed of five-level hierarchy:
facility, shop, cell, workstation and Actuator/Sensor.
Each level has its specific functions.

The business functions such as; cost accounting,
aggregate planning are executed in the facility level. It
is done generally by ERP software. Shop level is
responsible for coordinating production tasks including
resource allocation and task assignment. The tool used
at this level is The Manufacturing Execution Systems
MES. Cell level is subject to sequence similar parts in
batch jobs and supervises supporting tasks such as
material handling and transportation. The supervision is
achieved, generally by SCADA software A workstation
level is responsible for monitoring the execution of
production tasks. It consists of a robot, a fabrication
station or a material storage buffer.

The Manufacturing Execution Systems MES
provide a module for performances Analysis. Within the
functions of this module, there is computation of
performance indicators and display of scorecards
functions (MESA, 2000). The PMS is based on the
computer controller systems for:

1. The data collection (starting time, break times,

completion time, products quality…),
2. The computation of performance indicators

and
3. The display of scorecards.

2.2. OEE Overall equipment effectiveness
The more utilized PMS, is the OEE Overall

equipment effectiveness measures, there are three
underlying metrics that provide understanding as to why
and where the OEE gaps exist.

These measurements are described below:

• Availability: The portion of the OEE Metric

represents the percentage of scheduled time
that the operation is available to operate. Often
referred to as Uptime.

• Performance: The portion of the OEE Metric
represents the speed at which the Work Center
runs as a percentage of its designed speed.

• Quality: The portion of the OEE Metric
represents the Good Units produced as a
percentage of the Total Units Started.
Commonly referred to as First Pass Yield.

OEE is computed as follows:

OEE = Availability x Performance x Quality (1)

To implement the PMS, we must integrate it within
the control system. Indeed, it should collect the data,
from the shop floor control and send the performance
indicators to the business information system.

2.3. The design of Integrated Production System

A design of an integrated production system is a
big project that includes several jobs; programmers,
automation engineer, mechanics… A design of shop
floor controller is achieved through several steps:

• Definition of needs
• Product and process Analysis
• System Specification
• Equipments installation
• Controller Implementation
• Operation and maintenance

The main process steps are the specification and

the implementation.
During the Specification, it is necessary to describe

functionalities of equipments (production system) and
the controller (information system). Thus, modeling
methods are used. Business process modeling is the
activity of representing a company processus, so that
the current process may be analyzed and improved.
BPM is typically performed by managers who are
seeking to improve process efficiency and quality. It
allows the construction of models of a determined part
of an enterprise.

The evolution of the complexity of information
systems, the worry of optimization of software
applications design drove the scientists to develop some
modeling methods. The classic modeling methods are
ones that describe the Information system and proceed
to separate treatment of data and processes. The object-
oriented methods are new approaches of development.
It considers a system like a set of objects in interactions
(every object achieves or undergoes some operations),
examples of these methods (UML, OMT) (Kettani and
al 1999). The methods dedicated to distribute systems
are those allowing the development of multi agents
systems (with distributed execution objects).

Implementation: It is a setting step, which consists
in the choice of the machines, control software’s, the
programming of supervisory control interfaces and
tests.

Page 108

Shop floor control must be integrated system.
Interoperability requirement is difficult to achieve.
Indeed, many companies selling industrial software
tools and hardware, such as distributed control systems,
SCADA (Supervisory Control And Data Acquisition)
packages, programmable controllers, etc., provided
external interfaces for interoperability but employed
proprietary protocols requiring custom software
development. Integration of applications meant
substantial development effort to provide adapter layers
so that applications could operate collaboratively and
share data.

3. APPLICATION TOOL INTEGRATION
To harmonize different vendors' solutions (non-
proprietary) for distinct information domains
accomplishing the engineering requirements, it is
common sense that the enterprise automation system
might rely upon a common architecture to enable open
standards interoperability.

The evolution of the Internet has played a major
role in the area of application interoperability by
providing an infrastructure that links applications,
businesses, and users. It has promoted the adoption of
standards, such as XML for data representation, and the
use of common software protocols, such as TCP/IP and
SOAP (Simple Object Access Protocol). These
advances combined with the adoption of industry
standards, such as OPC, by major equipment and
system vendors has given end-users the means to
greatly simplify the sharing of data at all levels of an
enterprise, from the production level up to the executive
level. Indeed, international non-profit organizations,
like OPC Foundation (OPC – OLE for Process Control)
and OMG (Object Management Group) cooperate
among themselves to enable the development of open
and consistent automation system architectures.
Examples of such efforts are OPC UA (Unified
Architecture) and CORBA (Common Object Request
Broker Architecture).

In this section we will present the two more used
standards for interoperability of industrial systems: the
OPC standard and the CORBA bus.

3.1. The OPC standard
The rising of OPC technology made the HMI software
manufacturers have to develop only a driver for
communication with devices, differently of the way
before, which each manufacturer had to develop
proprietary drivers for supporting its devices. In
industrial automation, companies like Rockwell
Automation, Simens … wrote their own HMI software
and a proprietary driver for each industrial device
including every PLC (Programmable Logic Controller)
brand in order to retrieve process data. The
standardization of these drivers was developed by a
group of manufactures that have improved the OPC
model due to them additions based on past experiences.
It is mentioned for example the navigation system of the

OPC tags through tree structure and its division by
sectors.

The OPC standards are based on Microsoft Object
Linking and Embedding (OLE), Component Object
Model (COM) and Distributed Component Object
Model (/DCOM) technologies and provide the
foundation for developing OPC compliant software. In
order to address the specific needs of the process
industry, the original OPC standards for process data
acquisition has been extended through the following
sets of specifications: OPC-DA (data access for real-
time data), OPC-HDA (historical data access), OPC-AE
(alarms and events), OPCXML, and OPC Batch (OPC
Task Force 1998).

Since 2003, OPC Foundation and a group of IHM
and device manufactures have been working in a joint
venture to define and implement a new OPC
Specification. This new Specification is the OPC UA.
The purpose of OPC UA is to provide enhancements for
existing and next generation OPC products in the areas
of security, reliability, and interoperability. OPC UA is
designed to unify existing OPC specifications into an
environment that will leverage Web-based technologies
and standards such as Web Services, WSDL (Web
Services Description Language), XML and SOAP
(Simple Object Access Protocol).

The OPC UA is based on SOA (Service Oriented
Architecture) through Web Service that transports XML
data, which provides the communication among
different software of different platforms, providing
interoperability. XML lets interoperability of different
software of different platforms to transfer information
using a common language. Since XML is a meta-
language, it is possible to create new languages to make
a standard talk. Thus, OPC UA is the key to improve
the transformation of simple data in knowledge, due to
the open high-level mechanism, open the doors to store
the information by an easier way for MES
(Manufacturing Execution System) and ERP (Enterprise
Resource Planning) applications.

3.2. CORBA-BASED AUTOMATION SYSTEMS
The Common Object Request Broker Architecture
(CORBA) is a widely recognized by the control
community object-oriented open-standard-based
middleware for distributed systems integration.
CORBA supports interoperability, portability and
reusability of systems’ components. There is a number
of CORBA implementations and mappings to various
programming languages that are available from
different vendors. Also, its real-time and fault-tolerant
specifications have been developed recently (Curtis,
Stone and Bradley 2009).

A CORBA system is based on client/server and
oriented object model. The different components of this
model are:

• The client application it is a program that

invokes the methods of the objects through the
CORBA bus.

Page 109

• The object interface (Stub) allows clients to
use objects without compile-time knowledge
of their interfaces. It is generated by the IDL
compiler to provide a "proxy" to an object to
make it appear local to the client.

• ORB (Object Request Broker) is the
communications system which passes requests
to objects, and results back to clients.

• Object Adapter: provides services to
implementations (e.g. registration,
management of object's lifetime).

• The object implantation is generated by the
IDL compiler to invoke the implementation
using a set of conventions. It is special ORB
functionality which allows invocation of
implementations without compile-time
knowledge of their interfaces.

• Implementation: code to implement the object.

These abstract notions result in technological

components provided by the CORBA norm.
CORBA component’s interface is described in a

neutral Interface Definition Language (IDL). CORBA
IDL is a declarative non-programming language; it does
not provide any implementation details. The methods
that are specified in IDL can be implemented with any
programming language such as C++ and Java using
rules defined by OMG. The Object Request Broker
(ORB) is an object bus that provides a transparent
communication, means for objects to send message to
and receive message from other objects.

The General Inter-ORB Protocol (GIOP) provides
interoperability (a set of message formats) between
ORB implementations from different vendors. The
GIOP can be mapped onto different telecommunication
protocols for transport protocol independence. Thus, the
Internet Inter-ORB Protocol (IIOP) is a mapping of
GIOP onto the TCP/IP protocol stack.

From the automation systems viewpoint, CORBA
is a layer for abstracting communications among
components of the system, and a means for systems
integration. Various components, which have different
functionality, hardware and software, but compatible
CORBA-interface, are plugged into the ORB but for
higher level of interoperability and integration.

Finally we conclude that the requirement for data
to be available across all levels within an enterprise is
increasing. The business information technology

markets have been addressing the challenges of
interoperability and application integration for many
years through Enterprise Application Integration (EAI).
The trend is towards distributed architectures with
increased interoperability among applications from
multiple vendors.

4. THE PROPOSED APPROACH
The proposed approach can be used to develop a
manufacturing execution system (MES). It is an
iterative approach; the technical details are differed
until the implementation step.

As a first step, we propose to model the system by
using UML language (Kettani and al 1999). We adopt
the use cases diagram to elaborate the functional model
of the system. The use cases identified are the different
activities proposed by the ISA S95 standard (ISA
2000):

• The product definitions and production

resources management
• The detailed production scheduling, production

dispatching and execution.
• The production data collection, production

tracking and production performance analysis.

As far as we are considered, we deal with big

interest with production data collection and
performances analysis activities.

The products, processes, workforce, and other
elements in manufacturing are modeled, in UML as
"objects" in computer based graphical diagrams. In the
static model, we use class diagram, which describes, the
major structure of objects in a system including the
identities, attributes and operations of individual object.

The staffs that exploit the production cell
(operators) as well as the facilities (machines) are
modeled by a class RESSOURCE “figure 1”. The
factory is subdivided in REGION that regroups the
facilities treating a products family. The raw materials,
Work in Progress and finished products are described
by a class MATIÈRE. The process is described by a
class OPERATION. The methods used to execute these
operations are described by the class GAMME. The
performance information of the different operations is
stocked in the data base RAPPORT.

Page 110

Matière

Produit fini Matière premièreProduit en cour

Gamme Opération

décrit

Stockage Transport Fabrication

Rapport

concerne

Evénement Indicateur

Génère

Ressourceest affecté à

Magasin Convoyeur Opérateur Machine

Région

Figure 1: Class Diagram of the ENSAM Cell PMS.

The dynamic model describes the functions of the

objects and their interfaces that they share with the
other objects. Thus, we propose the use of sequence
diagrams and state machine diagrams, which show the
sequence of events both from a product perspective and
from an information transaction viewpoint.

The script achieved by the SIP module of an MES
software is as follow:

1. The class Operation sends data collection

demand to the class Resource.
2. The class Resource collects the data and sends

back them in the RAPPORT class, the
collected data are the starting time and the
completion time of each operation as well as
the mistake messages of the machine.

3. If there is an abnormal situation, the collected
data will be sent back to the class Operation.

4. To analyze the performances, the RAPPORT
class will collect the following shop floor data.
The collected data will permit to analyze the
performances and to compute the performance
indicators.

5. The report of production will be produced and
will be sent to management system.

As a second step, we propose to adopt a

Component-oriented approach and use the MDA for the
mapping of the UML models to the information system.
Indeed, the proposed UML models are platform
independent (PIM). It is necessary, therefore, to select a
middleware platform that allow an interoperability of
the distributed system, and refine the engineering
models of the system in technical models, on describing
how the platform is used to accomplish the
interoperability requirements. In the context of MDA,
the technical models are also called Platform Specific
Models (PSM).

We propose to use Enterprise Application
Integration (EAI) architecture, to allow interoperability,
application integration and PMS implementation. (EAI)

is an integration framework composed of a collection of
technologies and services which form a middleware to
enable integration of systems and applications across
the enterprise. The middleware connects to applications
through a set of adapters, also referred to as connectors.
These are programs that know how to interact with an
underlying business application, using different
communication protocols. It acts as a workflow between
the applications. We propose an integrating
infrastructure based on computer standards, such as
XML (data representation technologies) that allows the
different heterogeneous applications to communicate by
sending and receiving messages.

The Integration Platform, is therefore centered on a
message server, it regroups the components that support
the interoperability of tools. It essentially provides both
data centralization and communication services that
allow tools to share data and communicate between
themselves. In addition to communication services, the
integration platform contains a user interface module
for indicators display. It hides all aspects of transport
protocols from the component that it interfaces.

As an implementation step, we propose to
elaborate, deployment diagram and component diagram.
Deployment diagram serves to model the hardware used
in system implementations, and the execution
environments and artifacts deployed on the hardware.
Component diagram depicts how a software system is
split up into components and shows the dependencies
among these components.

We must identify system components and affect
them with responsibilities. For this, we will firstly make
an external view representation, named black box view,
and we will then, retail the component internal behavior
by white box representation (Kouiss and al 2006).

The responsibilities of the KPI component are;
data collection (machines status, product quality,
execution time …), data verification, reaction when
anomalies occur. In addition, KPI such as equipment
utilization rate will be computed and displayed in
business information system window.

Page 111

5. PRACTICAL EXAMPLE
The proposed method is applied to the flexible
machining cell in ENSAM. We will develop a PMS for
its control. The system is organized around a belt
trolley which allows a routing of the part toward a CNC
milling machine “figure 2”. A jointed-arm robot is used
to load and unload parts for CNC machine.

• A 3 axes milling machine CNC MILL 55 with

FANUC 21 controller is used to produce parts.
• A 5 axes industrial Robot RV-2AJ with an air

gripper is used to load and unload of the CNC
machine. The robot controller is a RISC
processor, 64 bits, multitask and real time
operating system. Robots programming is done
by (Cosirop) software.

• A buffer with belt trolley, sensors and air
stoppers, takes charge of storing and routing
raw materials and finished parts. The belt
allows a routing of the part. It is moved by
electric motor. The storage system is
controlled by the robot controller.

Figure 2: the ENSAM machining Cell.

In the control architecture of the system, a SCADA

software (COSIMIR Contrôle) is installed in the top-
level computer. An Ethernet network is connecting
several machine controllers. The CNC machine is
equipped with a DNC link based on RS-232 and the
robot with Ethernet extension “figure 3”.

Figure 3 : Cellule flexible (partie commande).

The PMS must communicate with the SCADA
software COSIMIR, it must also communicate with a
MRP software.

Let us consider a work order sent by the MRP
Software to the cell controller COSIMIR. The cell
controller will select the production routine of the
considered part from the Routine File database. It will
check about the resources status. If all necessary
resources are available, it will determine adequate
material and start the tasks.

The strategy of integration was to provide a
common software infrastructure (Integration Platform)
that would allow a wide variety of application tools to

communicate and share data, while minimizing the
specific development for each tool. The heart of the
Integration platform is SCADA software COSIMIR
Control. It is a real-time, object-oriented development
environment.

It is necessary to ask the COSIMIR software to
collect the status machine during each process step.
Thus, we elaborate an UML component diagram. We
intend to implement the components in Visual C++. The
data files required by the system like work orders, the
routing, the workstation files, are stored in Access
database.

SWITCH
ETHERNET

Unité de
commande

Robot

DNC

MILL 55

 Application COSIMIR Control

Page 112

Each UML class diagram proposed at the
modelling step will be transformed in C++ code during
the implementation step. Each class attribute will be
declared like a variable. In addition, each class
operation will be described like a method that executes
the considered task.

6. CONCLUSION
The use of Object and Component approach, proven
industrial technology coupled with message oriented
middleware considerably eased the process of
application tool integration. it allowed a better
flexibility of the PMS.

Although the proposed model is focused on a CIM
system in the educational environment, several concepts
developed from this model still can be applied in the
shop floor controller utilized in other environment.

Applying the techniques of business application
interoperability to process applications implies that
many other issues must be addressed when considering
interoperability especially those related to safety and
performance.

GLOSSARY
CIM Computer Integrated Manufacturing
COP Component Oriented Programming
CORBA Common Object Request Broker Architecture
EAI Enterprise Application Integration
ERP Enterprise Resource Planning
HMI Human Machine Interface
KPI Key Performance Indicator
MDA Model-Driven Architecture
MES Manufacturing Execution System
OEE Overall equipment effectiveness
OOP Object Oriented Programming
OPC OLE for Process Control
PLC Programmable Logic Controller
PMS Performances Measurement Systems
SCADA Supervisory Control And Data Acquisition
SOAP Simple Object Access Protocol
UML Unified Modeling Language
XML eXtensible Markup Language

REFERENCES
Chiron, F., 2009. Contribution à la flexibilité et à la

rapidité de conception des systèmes automatisées
avec l’utilisation d’UML. Thèse de Doctorat en
Informatique ; université Blaise Pascal – Clermont

Curtis, D., Stone, C., Bradley, M., 2009. IIOP: OMG's
Internet Inter-ORB Protocol A Brief Description.
Object Management Group (OMG). Available
from: http://www.omg.org. [accessed 10 May
2010]

Halang, W. A., Sanz, R., Babuska, R., Roth, H., 2006.
Information and communication technology
embraces control. Status report prepared by the
IFAC: Coordinating Committee on Computers,
Cognition and Communication. Annual Reviews
in Control 30 31–400

ISA. 2000. ANSI/ISA 95.00 03-2000.
Enterprise/Control System Integration - Part 3:
Activity Models of Manufacturing Operations
Management. The Instrumentation, Systems, and
Automation Society.

Kettani. N., D. Mignet, P. Paré, C. Rosenthal-Sabroux,
1999. De Merise à UML. Editions Eyrolles.

Kouiss, K., Chiron, F., David, S., Thomas, M., 2006.
A Component based development of user
manufacturing systems. IDMME 2006. Grenoble
France.

Krassi. B. A., 2002. Distributed computing and
automation: Industrial applications. URL :
http://www.automationit.hut.fi/julkaisut/document
s/seminars/sem_s02/Krassi_paper.pdf.

MESA International. 2000. “Control definition and
MES to control data flow possibilities”. White
paper. N :3 pp :1-7. http://www.mesa.org.

OPC Task Force., 1998. OPC Overview. Version 1.0.
OPC Foundation. Available from: www.opc.org.
[accessed 10 May 2010]

Yang. C. O., Guan, T. Y., Lin, J. S., 2000. Developing a
computer shop floor control model for CIM
systems – using object modelling technique,
Computers in Industry 41. pp: 213-238.

Page 113

Page 114

