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ABSTRACT 
Containers transferred to a sea port are stacked and stored 
in container yards of a container terminal. In order to 
retrieve a container on which other containers are stacked 
by a crane, these interfering containers should be 
relocated to some places beforehand, where they may 
cause further relocations. The aim of the block 
(container) relocation problem is to retrieve all blocks in 
a specified order with such unproductive relocation being 
minimized.  Most of existing studies on this problem aim 
to minimize the total number of relocations. However, it 
is more desirable from a practical point of view to 
consider actual crane operation time. In this research, we 
propose a branch-and-bound algorithm for the block 
relocation problem to minimize total crane operation 
time. Its effectiveness is examined by computational 
experiments. 

 
Keywords: container terminal, block relocation 
problem, branch-and-bound algorithm, total crane 
operation time 
 

 
1. INTRODUCTION 
Container transport plays an important role in the global 
logistics system. Containers transferred to a sea port by 
vessels or trucks are stored temporarily in a container 
terminal. Due to limitation of space, they are in general 
piled up in container yards as Figure 1. Containers are 
then transferred to their next destinations from there. 
Since this order is determined by their departure time, 
destinations, weight, contents and so on, it in general 
does not coincide with the stacked order. Therefore, 
relocation or reshuffling inevitably occurs to retrieve a 
container stacked in a lower tier by a crane. Such 
relocated containers may interfere another container if 
they are stacked on it, meaning that a careful and 
intelligent decision of relocations can improve the 
throughput of container handling in a container terminal. 
For the purpose of reducing unproductive relocations, the 
container relocation problem, which is also known as the 
block relocation problem, has been studied in the 
literature. Its objective is to retrieve stacked containers 
(blocks) in a specified order with the least effort. For the 

 
 

Figure 1: Container Yard 
 

 
 

 Figure 2:  Blocks in the Target Bay 
 
sake of generality, this problem is referred to as the block 
relocation problem (BRP), and a container as a block 
accordingly. Most of previous studies on this problem 
aim to minimize the total number of relocations. To the 
best of the authors’ knowledge, studies that try to 
minimize crane operation time are limited in spite of its 
practical importance. Lee and Lee (2010) proposed a 
heuristic algorithm for the BRP where horizontal travel 
time of a block is considered. Ünlüyurt and Aydın (2012) 
also treated the BRP with horizontal travel time, and 
proposed a branch-and-bound algorithm as well as 
heuristic ones. Lin et al. (2015) further considered 
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vertical travel time and constructed a heuristic algorithm. 
They also treated a crane capable of handling multiple 
blocks at a time. Recently, Schwarze and Voß (2016) 
solved the problem with horizontal and vertical travel 
time using the ILP (integer linear programming) 
formulation by Zehendner et al. (2015), which was 
originally proposed to minimize the total number of 
relocations. However, the size of instances that can be 
solved to optimality is still restrictive. The purpose of this 
study is to construct an efficient branch-and-bound 
algorithm for the BRP to minimize total crane operation 
time where not only horizontal travel time but also 
vertical travel time is taken into account. For this purpose, 
we will propose dominance properties for suppression of 
unnecessary nodes and two types of lower bound of the 
objective value for bounding. The effectiveness of the 
algorithm will be demonstrated by numerical 
experiments. 
 
 
2. PROBLEM DESCRIPTION 
In this section, we will provide an explicit description of 
the BRP considered in this study. Suppose that blocks 
(containers) are stored in a container yard as illustrated 
in Figure 1. A single row of blocks is called a bay, and a 
bay is composed of stacks where blocks are piled up 
vertically. A gantry crane is used to move blocks. Since 
the travel time of the crane across bays is time-
consuming, we concentrate on a single bay and consider 
retrieving all blocks therein (Figure. 2). 
The stacks in the bay are numbered as stack 1, stack 2, 
stack �. � blocks of the same size are stored in the bay, 
which are numbered as block 1, block 2, …, block �. 
Due to the height of the crane, the maximum number of 
blocks in each stack is limited to �. The slot in the ℎ-th 
tier of stack �  is denoted by (�, ℎ), where the ground 
level is ℎ = 0. We are to retrieve all the blocks from the 
bay in the ascending order of block numbers. To do this, 
the blocks should be moved onto the bed of a truck at 
(0, ℎ���) one by one. The crane can access only topmost 
blocks, so that the crane performs the following two 
operations. 
 

 Relocation: A block on the top of a stack is 
moved to the top of another stack that does not 
reach the height limit. 

 Retrieval: The block with the smallest number 
(target block) is moved to the bed of the truck if 
it is on the top of a stack. 

 
Our objective is to minimize the total crane operation 
time. Here, we make the following assumption. 
 

Only blocks above the target block can be relocated.  
 
The BRP with this assumption is often referred to as the 
restricted BRP in the literature. 
When the crane relocates a block, it moves the spreader 
horizontally to the stack where the block is placed. Next, 
it winds the spreader down onto the block, and grasps the 

Table 1: Crane Operation Time 

���[s] The block grasp time 

���[s] The block release time 

�� [s/stack] The trolley speed for horizontal move 

��� [s/tier] The hoisting speed (unloaded) 

���[s/tier] The hoisting speed (loaded) 
 
block. Then the crane winds them up together, moves 
them horizontally to the destination stack, winds them 
down, and releases the block. We assume that the 
spreader can move horizontally only along the ℎ���–th 
tier. In addition, the initial position of the spreader is 
assumed to be (0, ℎ���). The detailed crane operation 
time is summarized in Table 1. It follows from Table 1 
that when the initial position of the spreader is (0, ℎ���), 
the time necessary for retrieving a block from (�, ℎ) is 
given by 
 

 ��  +  2��� +  �� (2ℎ���  −  ℎ − ℎ���),     (1) 

where  �� =  ��� +  ���  and   �� =  ��� +  ��� . If, before 

retrieving the block from (�, ℎ) , �  blocks on it are 

relocated from (�, ℎ + �)  to (��
�, ℎ�

�) , (� = 1, 2, … , �) , 
respectively, the total crane operation time becomes: 
 

�� + 2��� + ��(2ℎ��� − ℎ − ℎ���)

+ ���� + 2�����
� − ��

�

���

+ ���2ℎ��� − ℎ�
� − ℎ − ���.      (2) 

 
Suppose that block �  (� = 1, 2, … , �) is retrieved from 
(��, ℎ�) , which causes �  relocations from (��

�, ℎ�
� )  to 

���
�, ℎ�

��  (� = 1, 2, … , �) . Noting that every block is 
relocated from the stack where the current target block is 
placed as in (2), we can see that the total crane operation 
time is given by 
 

���� + 2�����
� − ��

�� + ���2ℎ��� − ℎ�
� − ℎ�

���

�

���

 

+ �{ ��  +  2����  +  �� (2ℎ���  −  ℎ� − ℎ���)}

�

���

.    (3) 

 
This equation provides the objective function of the BRP 
that should be minimized. If we ignore the horizontal and 
vertical travel times by setting �� = �� = 0, (3) reduces 
to ��(� + �), so that the problem becomes equivalent to 
the problem of minimizing � , the total number of 
relocations. 
 
 
3. BRANCH-AND-BOUND ALGORITHM 
To solve the BRP explained in the preceding section to 
optimality, we apply a branch-and-bound algorithm. 
Since a solution of the BRP can be expressed by a 
sequence of relocations by assuming that blocks are 
retrieved as soon as they become retrievable, the 
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algorithm searches for an optimal sequence of 
relocations. Subproblems are generated by fixing the 
sequence from the start one by one. Thus, a node at depth 
�  in the search tree represents a bay configuration 
obtained by applying �  relocations (and retrieving as 
many blocks as possible). The search tree is traversed in 
the depth-first manner. The initial solution is calculated 
by a constructive heuristic PR4 by Zhu et al. (2012) for 
simplicity, although it aims to minimize the total number 
of relocations. 
 
 
4. DOMINANCE OF COLUMNS 
We will derive two dominance properties, which are 
employed to suppress generation of unnecessary nodes in 
the search tree of the branch-and-bound algorithm. A 
(partial) sequence of relocations is said to dominate 
another sequence of relocations if the former yields at 
least as good a solution as the latter. Here, we show that 
the same bay configuration is obtained by two sequences 
of relocations under some conditions. Then, the one with 
a longer crane operation time is dominated by the other, 
so that the former can be forbidden in the search tree.  

Let us denote by �� the bay configuration obtained by 
retrieving as many blocks as possible from the initial 
configuration without any relocation. Let us also denote 

by a triplet ��, ��, ��� the relocation of block � from stack 

�� to stack ��. In the following, we prove two theorems 
that provide conditions for a sequence of relocations 

���, ��
�, ��

�� , ���, ��
�, ��

��, … , ���, ��
�, ��

��  to be dominated 

by another sequence when applied to ��. Throughout this 
section, the bay configuration obtained by applying 

���, ��
�, ��

��, … , ���, ��
�, ��

��  to ��  (and retrieving all 

retrievable blocks) is denoted by �� . Furthermore, the 
number of blocks and the smallest block number in stack 
�  of a bay configuration �  are denoted by ��(�)  and 
��(�), respectively. The stack where the target block is 
placed is referred to as the target stack: it is given by 
argmin

�����
��(�). 

 

4.1. Transitivity of two relocations 
The first dominance property concerns transitivity of two 
relocations. If some block is relocated from stack �� to 
stack ��  and then stack ��  to stack �� , these two 
relocations can be combined into one relocation from 
stack ��  to stack ��  without increasing the total crane 
operation time (Figure 3) as long as it does not affect 
block retrieval. 

Theorem 1  

The sequence ���, ��
�, ��

��, ���, ��
�, ��

��, … , ���, ��
�, ��

�� for 

�� is dominated by a sequence ���, ��
�, ��

��, ���, ��
�, ��

��,

… , �����, ����
� , ����

� �, if all the following conditions are 
satisfied: 

1. �� = ��. 

2. ���
�, ��

�� ⋂  ���
�, ��

�, … , ����
� , ����

� � = ∅. 

3. ���
�(��) = ���

�(����). 

 
 
 
 
 
 

   ��
�          ��

�                       ��
�    ��

�               ��
�                ��

�   
    (a)Transitive Relocations     (b) Combined Relocation 

Figure 3: Combining Two Transitive Relocations 
 into One 

 
Proof. Condition 2 ensures that no block is relocated 

from or to stack ��
�  by the sequence ���, ��

�, ��
��, … ,

�����, ����
� , ����

� �.  Moreover, condition 1 implies that 

block �� is not retrieved by this sequence, so that ��
� = ��

� 
holds. Furthermore, stack ��

�  is not the target block in 
��, ��, … , ���� because no block is relocated from there 
by this sequence. It follows that this stack becomes the 
target block for the first time after relocation 

�����, ����
� , ����

� � . Now, assume that block ��  is 

relocated from ��
� not to stack ��

� but to stack ��
�. From 

conditions 2 and 3, it does not make block �� interfere 

any retrieval from stack ��
�. Let us denote by ����� the 

block configuration obtained by sequence ���, ��
�, ��

�� , 

���, ��
�, ��

��, … , �����, ����
� , ����

� �  for �� . Then, the 

differences between ���� and ����� are: 
(a) block �� is on the top of stack ��

� in ����, while 
it is on the top of stack ��

� , unless it is already 

retrieved in �����, 
(b) some block may be retrieved from stack ��

� in 

�����, which may cause further retrieval. 

The retrieval from stack ��
� in (b), which is interfered by 

block ��  in ���� , should be after relocation 

�����, ����
� , ����

� � because this stack does not become the 
target stack until then. Therefore, this retrieval should 
also be enabled by relocating block �� to stack ��

� in ����. 
In other words, the block should be retrieved in ��. If, as 

in (a), block �� is already retrieved in �����, it should be 

caused by the retrieval from ��
� in (b) because otherwise, 

block �� should already be retrieved also in ����. Hence, 
relocating it from ��

�  in ���� makes it retrievable. From 

these observations, �����  and ��  are exactly the same. 
Since it is obvious that the crane operation time of 

sequence ���, ��
�, ��

�� , ���, ��
�, ��

��, … , ���, ��
�, ��

��  is not 

shorter than that of sequence ���, ��
�, ��

�� , ���, ��
�, ��

��,

… , �����, ����
� , ����

� � , the former is dominated by the 
latter. 
 
4.2. Dominance on retrieval 
The second dominance properties covers the situation 
when a block is retrieved regardless of which stack it is 
relocated to. In such a case, the destination stack with a 
shorter crane operation time is preferred (Figure 4). 
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Theorem 2 

The sequence ���, ��
�, ��

��, ���, ��
�, ��

��, … , ���, ��
�, ��

�� for 

�� is dominated by a sequence ���, ��
�, ��

��
�, ���, ��

�, ��
��,

… , ���, ��
�, ��

��, if all the following conditions are  
satisfied: 
 

1. �� ∈ ���� ⋀  �� ∉ ��. 

2. ���
�, ��

��
� ⋂  ���

�, ��
�, ��

�, … , ��
� , ��

�� = ∅. 

3. �
��

�� (��) > ��. 

4. �
��

�� (��) < �. 

5. �
��

�� (��) ≥ ���
�(��). 

6. ��
��

< ��
�. 

 
Proof. From condition 1, block �� is retrieved after the 
relocation of block ��. Block �� stays on the top of stack 
��

�  in ��, … , ����  from condition 2. Since conditions 2 

and 3 claim that stack ��
��

 is unchanged before block �� 
is retrieved, this block does not interfere any retrieval 

even if it is relocated not to ��
�  but to ��

��
, whose 

feasibility is guaranteed by condition 4. In addition, this 
relocation does not enable any retrieval from stack ��

� 
before that of block ��  because block ��  is retrieved 

before the blocks in stack ��
�  in ��  from condition 1, 

meaning that it never interferes their retrieval. Therefore, 

sequence ���, ��
�, ��

��
� , ���, ��

�, ��
��, … , ���, ��

�, ��
��  yields 

exactly the same configuration as �� . The total crane 
operation time of this sequence is not longer than that of 

sequence ���, ��
�, ��

�� , ���, ��
�, ��

��, … , ���, ��
�, ��

��  due to 

conditions 5 and 6: stack ��
��

 is nearer from the truck than 

stack ��
�, and the former is at least as tall as the latter. 

 
 
5. LOWER BOUND COMPUTATION 
In this section, we will propose two types of lower bound 
of the objective value, which are employed in the branch-
and-bound algorithm. Hereafter, a block below which a 
block with a smaller number is placed is referred to as a 
blocking block. Every blocking block should be 
relocated at least once. 

 

5.1. LB-A 
Let us consider a bay configuration � where n blocks are 
placed at (��, ℎ�), (��, ℎ�), … , (��, ℎ�). If all these blocks 
can be retrieved without any relocations, the total crane 
operation time is, as the second term of (3), given by 

�{�� + 2���� + ��(2ℎ��� − ℎ� − ℎ���)}.     (4)

�

���

 

If the block placed at (��, ℎ�) is relocated to (s�
�, ℎ�

�) from 
where it is retrieved, the increase of the total crane 
operation time from (4) is: 

 
�� + 2��(|��

� − ��| + ��
� − ��) + 2��(ℎ��� − ℎ�

�).  (5) 

 
 
 
 
 
 
 

          truck             ��
�  ��

�            truck      ��
��

  ��
� 

(a) Longer Operation Time    (b) Shorter Operation Time 
Figure 4: Difference of Retrieval due to 

 Preceding Relocation 
 

The second term of (5) takes a minimum value 0 at s�
� <

�� if  s� > 1, and 4�� at s�
� = 2 if  s� = 1. The minimum 

of the third term is achieved by relocating the block to 
the tallest stack and is given by 2��(ℎ��� − ℎ���), where 
ℎ��� = max

�����
��(�)��

��(�). Taking into account the increase 

of the stack height from ℎ���  to ℎ��� + 1  after this 
relocation, we obtain the following lower bound of the 
total crane operation time for �: 

�{

�

���

�� + 2���� + ��(2ℎ��� − ℎ� − ℎ���)} + ���� 

+ �[�� + ��{ℎ��� − max (ℎ��� + � − 1, � − 1)}]. (6)

�

���

 

Here, � denotes the total number of relocations and �� 
that from stack 1. We choose ��  as the number of 
blocking blocks in stack 1, and � as a lower bound of the 
total number of relocations. We refer to this lower bound 
as LB-A1 and LB-A2 when �  is chosen as the total 
number of blocking blocks (the lower bound by Kim and 
Hong (2006)), and the lower bound by Tanaka and Takii 
(2016), respectively.   

 

5.2. LB-B 
To derive another lower bound LB-B, we start from (5) 
as LB-A, which provides the increase of the total crane 
operation time caused by a relocation. Unlike LB-A, we 
further take into consideration the situation when this 
block becomes a blocking block again and thus should be 
relocated once more. Let (��

��, ℎ�
��) be the destination slot 

of this relocation. Then, the total crane operation time 
further increases by 

�� + 2��(|��
�� − ��

�| + ��
�� − ��

�) + 2��(ℎ��� − ℎ�
��). (7) 

A lower bound of this increase is computed as that of (5) 
in LB-A, except for that ℎ�

�� is chosen simply as � − 1. 
Thus it is given by �� + 2��(ℎ��� − � + 1)  if ��

� ≠ 1 , 
and �� + 4�� + 2��(ℎ��� − � + 1)  if ��

� = 1 . In 
summary, a lower bound of the increase caused by 
relocating a block is provided as follows. 

1. If the block does not become a blocking block: 
(5). 
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Table 2: Three Types of Crane Specification 
in the Literature 

Setting ��[s] ��[s/stack] ��[s/stack] 

1 30 1.2 0 

2 5 1 0 

3 0 1.2 7.77 

1 (Lee and Lee, 2010) 
2 (Ünlüyurt and Aydın, 2012) 
3 (Lin et al, 2015) 

 
2. If the block becomes a blocking block after the 

relocation: 
 

If ��
� ≠ 1, 

2�� + 2��(|��
� − ��| + ��

� − ��) 
+2��(2ℎ��� − ℎ�

� − � + 1).   (8) 
If ��

� = 1, 
2�� + 2��(|��

� − ��| + ��
� − �� + 2) 

+2��(2ℎ��� − ℎ�
� − � + 1).   (9) 

 
To obtain LB-B for �, we compute this lower bound for 
every blocking block and add them to (4). Inspired by the 
lower bound of the total number of relocations proposed 
by Zhu et al. (2012), the destination stack s�

� in (5), (8) 
and (9) is determined in the following manner. First, we 
relocate the topmost block above the target block, and its 
destination is determined so as to minimize the lower 
bound of the increase given by (5), (8) or (9). It is done 
by computing (5), (8) or (9) for every candidate stack 
whose height is less than �. Then, this block is removed 
from the bay, and the destination stack of the second 
topmost block (the topmost block in the current bay 
configuration) is determined in the same way. After the 
destination stacks of all blocking blocks above the target 
block are determined, the target block itself is removed 
as well, and the new target block in the current bay 
configuration is identified. Then, the destination stacks 
of blocking blocks above it are determined. This 
procedure is repeated until the destination stacks of all 
blocking blocks are determined. With regard to the 
height ℎ�

� of the destination stack, we should consider the 
influence of removed blocking blocks that in practice are 
relocated to some stacks. Let � be the number of blocks 
removed so far in the above procedure (it includes 
removed target blocks). Without loss of generality, the 
target block is block 1 in �, and block � in the current 
block configuration. Then, the number of ignored blocks 
is given by � − (� − 1). Therefore, ℎ�

� is assumed to be 
the current height of the destination stack plus � −
(� − 1) (the maximum is � − 1). 
 
 
6. COMPUTATIONAL EXPERIMENTS 
We applied the proposed algorithm to the set of 
benchmark instances used in Caserta et al. (2011) in 
order to examine its effectiveness. This benchmark set is 
composed of 40 randomly generated instances for each 
combination of � and �, where � is the number of blocks 

Table 3: Computational Results under Setting 1 

 

Table 4: Computational Results under Setting 2 

� � 
LB-A1 LB-A2 LB-B 

opt time[s] opt time Opt time 

3 3 40 0.00 40 0.00 40 0.00 
 4 40 0.00 40 0.00 40 0.00 
 5 40 0.00 40 0.00 40 0.00 
 6 40 0.00 40 0.00 40 0.00 
 7 40 0.00 40 0.00 40 0.00 
 8 40 0.00 40 0.01 40 0.00 

4 4 40 0.00 40 0.00 40 0.00 
 5 40 0.00 40 0.01 40 0.00 
 6 40 0.03 40 0.06 40 0.01 
 7 40 0.42 40 0.91 40 0.04 

5 4 40 0.00 40 0.00 40 0.00 
 5 40 0.38 40 0.35 40 0.04 
 6 40 16.49 40 29.35 40 0.71 
 7 37 128.17 36 67.49 40 64.49 
 8 27 225.70 25 332.92 38 65.95 
 9 14 538.09 14 675.19 26 106.93 
 10 6 511.48 4 304.39 14 366.22 

 
in each stack (the total number of blocks is ��). The 
stack height limit �  was set to � + 2 . As the 
specification of the crane, we considered three settings in 
the literature, which are summarized in Table 2. In every 
setting, ℎ���  and ℎ���  were chosen as ℎ��� = � and 
ℎ��� = 0.5 , respectively. The computation was 
conducted using a desktop computer with an Intel Core  
i7-6700K CPU (4.00GHz) and 64GB RAM. The time 
limit for one instance was set to 1800s. 

� � 
LB-A1 LB-A2 LB-B 

opt time[s] opt time Opt Time 

3 3 40 0.00 40 0.00 40 0.00 
 4 40 0.00 40 0.00 40 0.00 
 5 40 0.00 40 0.00 40 0.00 
 6 40 0.00 40 0.00 40 0.00 
 7 40 0.00 40 0.00 40 0.00 
 8 40 0.00 40 0.00 40 0.00 

4 4 40 0.00 40 0.00 40 0.00 
 5 40 0.00 40 0.00 40 0.00 
 6 40 0.01 40 0.01 40 0.00 
 7 40 0.05 40 0.05 40 0.02 

5 4 40 0.00 40 0.00 40 0.00 
 5 40 0.14 40 0.01 40 0.02 
 6 40 1.88 40 0.28 40 0.39 
 7 40 49.31 40 11.73 40 9.28 
 8 37 74.64 39 56.11 39 34.01 
 9 29 302.03 32 404.13 37 141.73 
 10 20 511.13 16 203.59 27 220.53 
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Table 5: Computational Results under Setting 3 

� � 
LB-A1 LB-A2 LB-B 

opt time[s] opt Time Opt Time 

3 3 40 0.00 40 0.00 40 0.00 
 4 40 0.00 40 0.00 40 0.00 
 5 40 0.01 40 0.01 40 0.00 
 6 40 0.69 40 2.20 40 0.34 
 7 40 2.73 40 8.21 40 1.13 
 8 40 60.64 39 105.65 40 21.26 

4 4 40 0.01 40 0.02 40 0.01 
 5 40 1.80 40 5.46 40 1.29 
 6 39 170.40 33 134.64 40 88.36 
 7 17 430.01 11 498.18 22 402.28 

5 4 40 0.59 40 1.77 40 0.51 
 5 29 234.27 25 344.92 31 210.05 
 6 4 863.87 2 1507.20 4 515.74 

 

The computational results are summarized in Tables 3-5 
for settings 1-3, respectively. In the tables, ‘opt’ denotes 
the number of instances out of 40 solved to optimality 
within the time limit, and ‘time’ the average CPU time in 
seconds over instances solved to optimality. 
LB-A2 is not smaller than LB-A1 because the lower 
bound of the total number of relocations by Tanaka and 
Takii (2016) used in LB-A2 always dominates the total 
number of blocking blocks used in LB-A1. On the other 
hand, the former takes a longer computation time than 
the latter. Therefore, it depends on the crane specification 
which lower bound yields a better result. 
Indeed, the algorithm with LB-A2 is faster than that with 
LB-A1 under setting 1, whereas the converse is true 
under settings 2 and 3. It will be because the impact of 
the number of relocations on the objective value is 
smaller in setting 1 than in settings 2 and 3. Among the 
three types of lower bound, LB-B yields the best results 
under all the settings. Although it requires a longer 
computation time than LB-A1, its tightness seems to 
contribute to improving the efficiency of the algorithm 
further. 
Schwarze and Voß, (2016) solved the same instances 
under settings 1 and 3 using an ILP formulation for the 
BRP to minimize the total number of relocations in 
Zehendner et al. (2015). Although a direct comparison is 
not possible due to differences in CPUs (their CPU is 
slower than ours), they failed in solving to optimality 
within a time limit of 3,600s in a multi-thread 
environment, six instances with (�, �) = (5, 5)  under 
setting 1, and three instances and one instance with 
(�, �) = (4, 6) and (5, 4), respectively, under setting 3. 
Because all these instances were solved to optimality by 
the proposed algorithm with LB-B, it seems that our 
algorithm outperforms their approach.  
Next, we examine the effect of the crane specifications 
on a solution. Figure 5 provides optimal solutions of the 
same instance under different settings. In this example, 

   
(a) Setting 1 and 2 

 

 
(b) Setting 3 

Figure 5: An Example of Solutions under Different 
Crane Specification 

 
settings 1 and 2 yield the same solution (a), whereas a  
difficult solution (b) is obtained under setting 3. We 
should also note that solution (a) also minimizes the total 
number of relocations. We can observe from this figure 
that in solution (b), the right most two stacks are more 
likely to be used, although they are far from the truck. It 
is due to the fact that the hoisting time (vertical travel 
time) is relatively large compared to the trolley time 
(horizontal travel time) under setting 3, so that taller 
stacks are preferred in order to reduce the hoisting time. 
In solution (b), the total number of relocations increases 
by 2 from the optimal value. However, it does not affect 
the total crane operation time directly because �� = 0 is 
assumed under setting 3. 
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7. CONCLUSION 
In this study we proposed a branch-and-bound algorithm 
for the block relocation problem to minimize the total 
crane operation time. For this purpose, we proposed 
dominance properties and two types of lower bound. 
Numerical experiments showed that the algorithm is 
capable of solving benchmark instances efficiently 
although its performance depends highly on the crane 
specification. In the three types of settings considered in 
this study, the crane travel speed (trolley speed and 
hoisting speed) linearly depends on the travel distance. 
However, it is not the case in practice due to acceleration 
and deceleration. Hence it will be necessary to extend the 
proposed lower bounds for such situations. In real-world 
container yards, it is often the case that 5 or 6 containers 
are piled up in each stack. Since instances of this size is 
still hard to solve for the proposed algorithm, 
constructing good heuristic algorithms is also an 
important future research topic.  
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