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ABSTRACT 

The rise of offshore wind energy production poses a 
complex resource allocation problem with respect to 
operation and maintenance (O&M) of offshore wind 
farms: O&M tasks need be performed by teams of spe-
cialists, subject to limited availability of qualifications, 
means of transport and appropriate weather conditions. 
Among others, NP-complete problems like shortest re-
turn routing (“Travelling Salesman”) and job scheduling 
are embedded into the challenge of determining O&M 
schedules, which in real-world wind farm operation is 
often still conducted by hand. In this work, we address 
this problem by proposing a heuristic approach based 
on a “compatibility rating”, attempting to anticipatorily 
allocate tasks to teams such that the remaining tasks not 
yet allocated can still be conducted efficiently, e.g. by a 
different team. This means of decision support relies on 
simulation to evaluate the feasibility of the schedules 
generated. 
 
Keywords: scheduling, simulation, offshore wind farms, 
decision support system 

 
1. INTRODUCTION 

One of the most important and risky undertakings of 
today’s Germany is the energy transition. It is expected 
that by the year 2050 up to 80 percent of Germany’s en-
ergy supply may be provided by renewable sources 
(BMWi 2015). Offshore wind energy, as one of the 
generously available sources of renewable energy in the 
North of Germany, has become a key part of energy 
transition, without which the targets of this venture can-
not be met (WAB 2017). Since average wind speed off 
the coast is significantly higher than on land, offshore 
power plants can generate more electricity at a steadier 
rate and almost every hour of the year (BMWi 2015). 

Furthermore, achieving an ecologically and economical-
ly successful transition requires a reliable and reasona-
bly priced energy (BMWi 2015). Specifically for the 
case of offshore wind energy, reducing the costs of op-
eration and maintenance (O&M) of the wind farms are 
particularly seen as a challenge in this area. Operating 
experiences of existing offshore wind farms show that 
the share of operating costs over the service life is rela-
tively high. Likewise, the costs of produced electricity 

have not yet reached the level of the onshore wind 
(Greiner, Appel, Joschko, Renz and Albers 2015).  

Constructing wind farms further away from the shore 
can on the one hand increase the turbine performance 
and hence the financial revenue (Prognos AG and The 
Fichtner Group 2013). But on the other hand the dis-
tance of the offshore wind farm from the port extends 
its influence over the specific operating and mainte-
nance costs (BMWi 2015). Giant turbines and their 
foundations have to endure the harsh conditions of the 
high seas. Repair and maintenance of turbines located 
far away from the coast is a tough challenge for the op-
erators. Highly trained personnel and modern transport 
infrastructure have to come together in order to success-
fully provide maintenance services.  

In fact the level of expertise in operating and mainte-
nance of offshore wind farms can reduce up to 
19 percent of the specific annual operating costs 
(BMWi 2015). Such expertise is unfortunately not al-
ways documented or verified (Mostajeran, Joschko, 
Göbel, Page, Eckardt and Renz 2016). Having a rela-
tively low level of experience can result in an unpre-
dictable loss. 

The use of Decision Support Systems (DDS) in this 
context can potentially reduce the pressure on authori-
ties and save the ultimate costs. However, existing sys-
tems are still very limited for the area of offshore wind 
farms. The results of a questionnaire (Pahlke 2007) sent 
to 350 institutions related to development of offshore 
wind farms in the North sea region suggest that the de-
mand to use DDS specially for planning is very high 
(73.9%).  

The individuals who are in charge of making planning 
decisions have to not only deal with the complexity of 
the resource planning problem but also make their deci-
sions efficiently in a limited time. A typical wind farm 
has up to 80 turbines (BMWi 2015). Aggregating the 
O&M of several wind farms would enable more re-
source-efficient work, but also increase the planning 
complexity. Therefore, a sustainable decision support 
algorithm should scale well with the size of given tur-
bine and resource clusters. 

This paper proposes a research prototype to support de-
cision makers during the O&M phase of offshore wind 
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farms, particularly for the purpose of resource planning 
using simulation technology. It has to be emphasised 
that simulation cannot autonomously find the optimal 
result, but rather compare given proposals for the solu-
tion. In this work, we show how to generate promising 
O&M plans to select the best solution by means of an 
adjusted simulation component. This objective is ac-
complished in three main steps (compare Figure 1):  

 

1. Identifying and collecting essential input data 
(Data Model) 

2. Generating feasible  resource and action plans 
(Scheduling) 

3. Assessing and suggesting the best plans (Simu-
lation) 

 

The following sections describe each step and our ap-
proach in more detail. 

 

 

Figure 1: Main steps of the proposed Decision Support 
System 

 

2. DATA MODEL 

The first step in developing a DDS is to identify all rel-
evant data entities and their relationships. In general, 
not every data entity required for optimisation purposes 
is very well-known in industry. There are often data 
gaps and identifying them has to be initially done in op-
timisation and simulation projects.  

In the offshore wind farm context, many entities play 
important roles and engage in complicated relation-
ships. We identified the most important data entities 
relevant for resource planning and their relationships. 
Furthermore, data gaps and their potential sources of 

information were identified. While the original version 
of the identified data model was too comprehensive for 
the purpose of this paper, a simplified version is given 
in Figure 2.  

The O&M of offshore wind farms are normally con-
trolled from service stations on land. For example, the 
service station of the Riffgat wind farm in North Sea is 
15 kilometres away on the island of Borkum. Despite 
Riffgat, which is relatively close to the shore, other off-
shore wind farms are located further away (e.g. BARD 
Offshore I for around 100 km) from the coast. Addi-
tionally, each service station can potentially manage 
more than one wind farm.  

Activities representing the O&M tasks that have to be 
conducted on the site are the most influential entities in 
this context. Their type, duration, priority, location and 
qualifications form the basis of planning and resource 
allocation. Taking into consideration that activities are 
rarely unique and often repeat themselves in the case of 
more or less homogeneous wind turbines (WTs) in an 
offshore wind farm, identifying reusable types of activi-
ties makes sense. Consequently, common characteristics 
of each type of activity, most importantly the duration, 
can be gathered from empirical data. Naturally, due to 
the sea conditions, the precise duration of an activity 
cannot be predicted reliably. However, expected fluctu-
ations can be estimated from empirical data, and conse-
quently reproduced in stochastic simulation experiments 
(see section 5). 

 

 
Figure 2: Simplified Input Data Model 

 
The most important resources required for O&M activi-
ties are the personnel in charge of service and the means 
of transportation. Also the availability, i.e. the dates on 
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which they are available for service, plays a crucial role 
for planning. The same applies to speed, capacity, and 
type of each means of transport. 

Moreover, there are typically different companies in-
volved in operating and maintenance of each wind farm, 
each of which brings its own resources and activities. 
Therefore, a dedicated entity for each company seems 
reasonable. This entity is also connected with personnel 
and activities. 

Finally, qualifications and certificates are of significant 
importance for the entire decision making process since 
they bear a direct relationship to almost every other en-
tity in the data model. For example, a safety briefing 
may be mandatory for just entering a wind farm. Activi-
ties may demand a certain level of expertise (e.g. indus-
trial climber, electrician qualification). Apart from the 
activities, using a means of transportation (e.g. helicop-
ter) may also require specific skills from passengers 
(e.g. hoist training). Only personnel who possess all re-
lated qualifications may be assigned to a task and enter 
the means of transport. 

During the course of several sessions with O&M practi-
tioners, we presented our data model and received their 
assurance that our designed model is valid.  

 

3. OPTIMISATION CHALLENGES 
The next step after identification and collection of the 
necessary data is to generate feasible O&M plans. This 
is a challenging task, as the number of determining fac-
tors is relatively large. It consists of several complex 
partial problems, which can also impact on one another.  

 

3.1. General 

For resource planning, the first step is to check whether 
the marine weather is safe to conduct any mission on 
the site. After that, the requirements (e.g. qualifications) 
and characteristics (e.g. priority, typical duration, etc.) 
of the pending tasks can be considered. The pending 
tasks are the ones which are already known but not yet 
executed. 

Figure 3 illustrates the distribution of a sample of pend-
ing tasks within a wind farm, which we use as an exam-
ple in this paper. Having the triangles as WTs, our sam-
ple wind farm represents 30 homogeneous WTs, which 
are arranged in 3 lanes. Each WT is identified with a 
number, starting from the most upper left tringle as 
WT1 and ending to the lowest right triangle as WT30. 
In Figure 3, the distribution of the tasks are shown with 
the help of a heat map. In addition to their location, the 
intensity of the heat represents the number and duration 
of the tasks. 

The available and qualified personnel for performing 
these tasks can in the next step be arranged into small 
teams. According to the location and duration of the 
tasks, the order of sending and picking up the teams by 

available and suitable transport devices could form the 
last step that finalizes the schedule. 

An automated resource planner should at the same time 
consider all these factors. But the complexity of this 
problem is so enormous (NP-equivalent) that simply 
evaluating all combinations and finding the best solu-
tion (Brute-force algorithm) is not an option for real-
world instances. Therefore, only a heuristic optimiza-
tion algorithm can account for all partial problems at the 
same time and generate time and cost efficient yet not 
necessarily optimal resource plans. Moreover, the com-
plexity of such algorithm, the quality of the outcomes 
and the difficulty of implementation have to be exam-
ined.  

 

 

Figure 3: Heat-map of sample pending tasks. The inten-
sity of the heat represents the number and duration of 
the tasks. 

 
3.2. Weather 

The weather conditions off the coast on the one hand 
give economic viability to offshore wind farms, but on 
the other hand challenge the personnel to maintain the 
turbines. Due to safety regulations, dropping off per-
sonnel at the turbines is only allowed when the weather 
and sea conditions are compliant to safety measures.  

Therefore, an automated resource planner should also 
account for the weather forecast in order to provide fea-
sible suggestions. Given perfect weather conditions, the 
time windows may also depend on legal regulations or 
availability of sunlight. 

For evaluation purposes, historical data instead of a 
weather forecast can be used. Another approach is de-
scribed in (Joschko, Widok and Page 2013). They 
proposed a software tool for simulation of the processes 
of O&M, which includes stochastic marine weather 
generator. It supplies a simulation tool with realistic 
weather data, which are generated by analysing the his-
toric weather data and containing their distributions.  

 

3.3. Team Building 

The planned activities in offshore wind farms are as-
signed not to single individuals, but rather to small 
teams of personnel. Although the size of such teams can 
be different for different types of activities, their mini-
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mum size has been determined as three by the security 
policies of many wind farms.   

An important criterion for building these teams is the 
qualifications of their members. Since performing each 
task demands certain qualifications, the potential per-
formers of the tasks can be arranged in the associated 
teams, only if they hold the required qualifications. 
Building teams of available personnel is a challenging 
task since each person may possess quite different qual-
ifications, which gives rise to combinatorial explosion 
of possible team combinations. Assuming a team size of 
t and availability of n persons, equation (1) shows the 
number of possible team combinations. For instance, 
building teams of the size of 3 from 24 personnel, when 
each of them has a unique qualification and hence can-
not be replaced by others, results in nine trillion combi-
nations (2). 

 

team combinations =  
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= 9.161.680.528.000  (2) 

 

In practice, the problem is often less drastic, since a lot 
of personnel have the same set of qualifications. In ad-
dition, some offshore wind farm operators may delegate 
a pre-selection of tasks to sub-contractors. Thus, the 
planner has a pre-selected set of teams in terms of the 
sub-contractors’ staff. 

Assigning the planned tasks to qualified personnel is 
similar to the knapsack problem in combinatorial opti-
mization, having the duration and priority of tasks as 
respectively weight and value criteria. Preliminarily, we 
implemented a greedy algorithm for solving this prob-
lem. For this purpose, the tasks were ordered by their 
priority. Starting from the highly prioritized tasks and 
considering their required qualifications, the qualified 
personnel were arranged in teams and assigned to the 
tasks. This process was repeated until the duration of all 
tasks assigned to each team does not exceed their work-
ing time limit, e.g. an offshore wind farm working day. 

 

3.4. Transport Routing 

After having the teams assigned to the activities, the 
best route for traveling to and returning from the wind 
farm should be calculated. Similar to the classic Travel-
ing Salesman Problem (TSP), this partial problem deals 
with the shortest path with maximum gain. Since the 
movements of the transport device within the wind farm 
has direct relationship with the costs of transportation, 
i.e. consuming time and fuel, finding the best route for 
the transport device can save this part of the O&M 
costs.   

Considering a wind farm as a Euclidean graph with 
WTs (only those which require service activities) as its 
nodes and the port as the start node, the distance be-
tween each WT can be seen as the weighted edges of 
the graph. However, the influence of the weather, like 
wind speed and direction, can potentially cause different 
weights for different directions of the edges, resulting in 
an asymmetric TSP, in which the distance from node A 
to B can be unequal to the distance from B to A. Be-
sides, there are many other sea conditions and depend-
encies to different types of ships, which were not con-
sidered in detail for this work. A project which goes 
more into detail is described in (Quandt, Beinke, Ait-
Alla and Freitag 2017). 

The marine weather can be also a reason for choosing 
between different types of transport devices (e.g. heli-
copter or ship), impacting on traveling costs. For in-
stance, travelling with a helicopter is on the one hand 
much faster, but on the other hand much more expen-
sive than any ship. They have also a smaller capacity 
than ships. Observe that also multiple travels for a mis-
sion are possible, for example if apart from the team, 
bulky materials need be transferred. 

The main difference between the classic TSP and our 
offshore wind farm scenario under investigation is that 
we require each node being visited usually twice, name-
ly for drop-off and pick-up of the team, subject to con-
ducting planned activities in-between. 

Therefore, a TSP solver for offshore wind farm scenario 
suggested by (Korff 2015) was used for this part of the 
problem. In the first place and before running the algo-
rithm, some preparations have to be done. First, due to 
the weather influence, the Euclidean graph of the wind 
farm has to be mapped into an asymmetric graph. After 
that, the nodes which have to be visited, i.e. the location 
of the maintenance tasks, have to be identified. Finally, 
calculation of the best route is done only on a partial 
graph of the entire wind farm graph, from which irrele-
vant nodes were omitted. After dropping off all the 
teams on their working sites, the algorithm listens on 
the pick-up calls from the teams. As soon as a team is 
ready to be picked up, the TSP includes their locations 
into its graph and re-calculates the best path. This con-
tinues until all teams are picked up. Only then will the 
journey back to the harbour begin (Korff 2015).   

 

 

Figure 4: A sample transport route 
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Figure 4 shows a sample route for a ship within our 
wind farm example. In addition, Table 1 lists and ex-
plains every step of this route in detail.  

 
Table 1: The steps of a sample transport route 
Step Location Action 

1 Harbour Pick up Team1 and Team2 

2 WT21 Drop Team1 

3 WT20 Drop Team2 

4 WT21 Pick up Team1 

5 WT1 Drop Team1 

6 WT20 Pick up Team2 

7 WT2 Drop Team2 

8 WT1 Pick up Team1 

9 WT2 Pick up Team2 

10 Harbour Drop Team1 and Team2 

 
4. HEURISTIC APPROACH 

The problems described in the previous sections are al-
ready very complex themselves.  However, the more 
fundamental problem is that all these sub-problems 
have an impact on each other, which makes it nearly 
impossible to find an optimal solution at all.  

The planner has to regard different priorities, qualifica-
tions, time durations, means of transport and tasks 
needed on different sites. In order to solve this matter, 
we developed a compatibility rating for O&M activities, 
which considers all the relevant characteristics at the 
same time. Through this, it is possible to compare how 
similar activities are to be grouped into clusters (see 
section 4.2).  

 
4.1. Compatibility rating 

We propose a compatibility rating defined as weighted 
average of a tuple of aspects. Each aspect describes how 
far apart activities are in one respective dimension. 

For example, in the case of locations, being “apart” uses 
a natural definition: If two activities are planned for the 
same turbine, the return value is 1, representing the ide-
al case. If they are located diametrically opposite in the 
wind farm, the return value is 0, indicating the worst 
case. Everything in-between is linearly interpolated. 
When we compare two clusters of activities, we consult 
the geometrical centre of the geo-coordinates of each 
turbine. We call this the Location Aspect.  

All other aspects are non-spatial. The Qualification As-
pect describes how similar the demands for qualifica-
tions are. If there are two sets of qualifications (Qc1, 
Qc2) required for two sets of activities (C1, C2), the “dis-
tance” d between these demands can be evaluated as 

ratio of qualifications shared per union of all qualifica-
tions required as shown in equation (3): 

 

d = |Qc1∩Qc2| / |Qc1∪Qc2| (3) 

 

The Priority Aspect suggests that important tasks have 
to be preferred. This does not mean that one task is 
strictly to be performed before another, but rather that 
for economic, safety or environmental reasons this order 
is recommended. The priority has to be manually set by 
the human planner, e.g. on a discrete scale like [very 
low, low, medium, high, very high]. We normalize this 
scale to a continuous value between [0,1]. Then, we 
evaluate the average of the tasks to be compared as the 
return value for the Priority Aspect. As a result, higher 
priority tasks will receive a higher compatibility rating 
than lower priority tasks, which is completely inde-
pendent from the similarity of the tasks. 

We can add any further aspects, which return continu-
ous values between [0,1] when two activity clusters are 
given as input parameters. For each aspect a factor has 
to be provided for evaluating a weighted average.  

In addition to continuous aspects, further Boolean 
“knock-out” criteria may describe whether two acti-
vities are compatible. There may, for example, be activ-
ities which have to be processed by a specific company, 
but this company must not process other types of tasks. 
The return value indicates whether two given sets of ac-
tivities may be processed by the same company (Com-
pany Aspect). Some tasks require specific type of ships, 
e.g. a jack-up barge, some do not (Transportation As-
pect). Our Goal is to develop clusters for given time 
slots, which must not be exceeded. The Duration Aspect 
returns true, if two given activity clusters could be pro-
cessed together in time, and false if not. 

 

 

Figure 5: Conceptual process of the calculation of the 
compatibility rating as BPMN diagram 

 
When a set of knock-out criteria and a set of tuples (As-
pect, Weight) are defined, the overall result value for 
the compatibility rating is calculated as follows (com-
pare Figure 5): 
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1. if any knock-out-aspect is true, return 0.0 

2. evaluate each continuous aspect 

3. return weighted average of continuous aspects 

 

Adding aspects or changing the weighting factors for 
the continuous aspects will lead to a different return 
value. 

  

4.2. Clustering 
As mentioned before, a permanent waiting queue holds 
the O&M activities that need be performed. We there-
fore can create a matrix (see Figure 6), which shows the 
compatibility ratings as described in the last section for 
all tuples of activities. Figure 6 shows activities on four 
different WTs. Every cell shows the rating for the activ-
ities listed in the respective column and row titles. On 
this basis, we can form clusters of tasks. One cluster 
applies to being executed by one team and within one 
day. Thus, the maximum size of a cluster corresponds to 
the given time window (section 3.2). 

A very simple clustering algorithm puts the two items 
which have the highest ranking together in one cluster 
(flagged with a ‘C’ in Figure 6). After that, the matrix 
has to be partially re-evaluated, since two items have 
been removed and a new item was added, representing 
the items aggregated into a cluster of tasks. Then, again 
the two best fitting items (single tasks or clusters of 
tasks) will be merged. The algorithm stops, when there 
are no ratings left which are higher than zero, indicating 
no further aggregation being possible. In a typical case, 
such a limit will be due to the Duration Aspect.  

 

 

Figure 6: Screenshot of GUI showing compatibility ma-
trix 

 
However, such an approach is only optimal in the very 
short term. In Figure 6, the best compatibility rating 
0.47 is given for the tuple (WT1, WT2). But using the 
pre-assumption that the time slot given by weather con-
ditions allows only clusters with up to two activities, 
and the activities WT1 and WT2 would be merged, 

there will remain no adequate partner for activities at 
WT20 and WT21, because their compatibility rating is 
very low at 0.12. 

Our clustering algorithms focuses on overall gain, 
which has an efficient utilization of calculation time but 
finds a more ‘long-term’ satisfying solution. We applied 
the concept of “opportunity cost” from economics when 
we implemented a heuristic algorithm, which calculates 
the resulting loss when an item does not get its favoura-
ble partner task. 

First, the compatibility ratings for each activity are 
stored in a sorted list, so that the best partner is the first 
item and the worst is the last. Then, we calculate the 
difference (∆) between compatibility ratings of the first 
and the second item, between the first and the third item 
and so on and store results into a new sorted list. Every 
entry quantifies a lower bound to the loss incurred in 
case not being allocated to its best partner, to none of its 
best two partners, to none of its best three partners and 
so on. 

Now, we establish the weighted average of these ∆-
values, while the weighting factor for every ∆ can be 
calculated with a selection of formulas. Let n be the 
number of list items to be regarded (begin counting at 
the second best partner which is compared to the best 
partner), and p is the position in the sorted list of ∆, we 
use equation (4) for a simple linear approach of deter-
mining weighing factors wp for every ∆p.  

 

$% =  & ' 1 ( ) / ∑ k-
./0  (4) 

 

Table 2 shows the linear weighting factors for the case 
of 4 potential partners, compared to 5 potential partners 
in Table 3. 

Another approach is a recursive algorithm, see Equation 
(5). The procedure requires to set a descent factor f. In 
table 1 and 2, f = 0.6 was chosen. The weighting factor 
for the first ∆ is f, the rest r1 is 1–f. The weighting factor 
for the second ∆ is r1f. There still remains a rest r2 of 
(1–f) (1–f). At the end, a rest of (1–f)n resides, which has 
to be distributed proportional to the already calculated 
factors.  

 

$% = 121 ( 13%4021 ' 21 ( 13-) (5) 

 

As it is shown in the tables, the recursive algorithm 
places more weight on the first ∆, while the linear algo-
rithm places more weight on the last ∆. Thus, the linear 
approach will tend to avoid worst case scenarios earlier 
than the recursive approach. Additionally, the recursive 
approach offers an additional degree of freedom in 
terms of the possibility of adjusting the impact of the 
first ∆ by changing the value for f. 
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Table 2: Weighting factors for opportunity rating 
regarding the best five partners (n=4) 

 p linear recursive 
∆1(1st, 2nd) 1 40 % 61.5 % 
∆2(1st, 3rd) 2 30 % 24.6 % 
∆3(1st, 4th) 3 20 % 9.8 % 
∆4(1st, 5th) 4 10 % 3.9 % 

 
Table 3: Weighting factors for opportunity rating 

regarding the best six partners (n=5) 
 p linear recursive 

∆1(1st, 2nd) 1 33.3 % 60.6 % 
∆2(1st, 3rd) 2 26.7 % 24.2 % 
∆3(1st, 4th) 3 20.0 % 9.6 % 
∆4(1st, 5th) 4 13.3 % 3.8 % 
∆5(1st, 6th) 5 6.7 % 2.5 % 

 

Now having a matrix containing compatibility ratings 
for activity tuples (respectively tuples of activity clus-
ters) and one opportunity rating for each activity (re-
spectively activity cluster), the algorithm proceeds as 
follows: 

 

1. The activity with the highest opportunity rating 
(highest potential loss) is selected. 

2. This activity is merged with its best partner 
due to the compatibility rating. 

3. The matrix has to be re-evaluated, and after-
wards the algorithm starts at step one again, 
until there are no ratings left, which are bigger 
than zero. 

4. The result is a set of clusters, within which all 
activities are potentially appropriate of being 
processed by one team and in one day. 

 

In Figure 6, the worst opportunity rating applies to 
WT21. Therefore WT21 gets its best partner WT1 first 
(flagged with an O), although the best partner for WT1 
would be WT2. This approach finds a more ‘long-term’ 
efficient solution than the solution described at the be-
ginning of this section, because the remaining activities 
at WT2 and WT20 have a compatibility rating of 0.21, 
which is significantly better than the rating of 0.12 for 
WT20 and WT21. 

Once we have clustered all the O&M activities in the 
waiting queue, we can run the team building algorithm 
from section 3.3 on these clusters rather than running it 
on the whole waiting queue. Thus, the possible search 
space becomes very much smaller, because activities 
with similar needs for qualifications tend to lie in the 
same cluster. At the same time, we have a better basis 
for transport routing described in section 3.4, because 
activities located spatially close to each other, tend to lie 
in the same cluster, too. Figure 7 shows four tasks, 
scheduled in 2 clusters. The first cluster contains the 

tasks, located at WT1 and WT21 and assigned to 
Team1. Cluster 2 contains the assigned tasks of Team2 
located at WT2 and WT20. 

 

 

Figure 7: Scheduled tasks in two clusters: C1 (WT1 & 
WT21) for Team1 and C2 (WT2 & WT20) for Team2 

 
Changing the parameters for the compatibility rating 
will result in different clusters, which is an appropriate 
method to get alternative proposals for solutions for dai-
ly plans. On that basis, we are able to compute a large 
set of promising solutions in a short time without hav-
ing to iterate the whole solution space. 

 

5. SIMULATION 

Once we have generated a set of promising day plans in 
reasonable time, each plan will be analysed in detail. 
The goal is to identify the best performing plans and to 
sort out the worse plans, so that a reasonable amount of 
plans remain for the human decision maker. 

For calculating key performance indicators of interest, 
we use stochastic, event-discrete simulation. The main 
indicators to be provided as a basis for decision are: 

 

• Success probability of each task in a plan 

• Resource utilization and costs 

• Generated wind energy (or opportunity costs 
for stagnant turbines) 

• Identification of the critical path 

 

Durations of tasks depend on external influences, which 
are abstracted with help of stochastic distributions. The 
critical path is the chain of transport and O&M activi-
ties, which has no time buffers. If a delay occurs, the 
whole day plan is deferred. The available time window 
depends on the weather conditions (see 3.2). Because all 
teams must leave the turbines within that time windows, 
it may happen that some tasks have to be aborted. The 
‘success probability’ quantifies the probability that a 
task can be completed in time. This does not indicate 
whether the task was completed successfully in tech-
nical manner. Another point of interest for the planner is 
the utilization of resources, i.e. personnel and means of 
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transport should use offshore time efficiently to process 
tasks. The last indicator relates to the actual objective of 
wind farm operation: generating energy. Energy pro-
ductions depends on the wind speed and the  turbine 
properties cut-in speed, cut-off speed and rated power 
(Byon, Perez, Ding and Ntaimo 2011). For our objec-
tives, generated power is less interesting than the power 
which was not generated, because a turbine was not 
ready for operation. Minimising these opportunity costs 
is the main goal of O&M optimisation. 

Some works have already been successful in the simula-
tion of offshore wind farms’ O&M processes. (Lange, 
Rinne and Haasis 2012) describes how different logistic 
strategies can be compared already in the planning pro-
cess. (Joschko, Widok and Page 2013) describes how 
operative O&M processes can be described abstractly as 
BPMN-Models and simulated in order to identify criti-
cal system parts. These works inspired us to focus on in 
short-term planning – independently from the long-term 
strategy of choice.  

As always, we have to determine our requirements first 
and identify the relevant area of the O&M system af-
terwards to find a suitable approach for implementing 
the simulation model. The system to be mapped into a 
model was introduced in the previous sections. Relevant 
entities are the same for the simulation component: 
means of transports, teams, activities and wind turbines. 
Some, but not all entities’ attributes are furthermore 
needed for simulation experiments. E.g. we can abstract 
from people’s qualifications, because we already have a 
plan fixed in time, describing which team is responsible 
for which O&M activity without need to double-check 
this. In contrast, the duration of an activity and the 
speed of a ship or helicopter are relevant for simulation, 
because we now take a deeper look at the time-
dependent behaviour of entities and their concurrent ex-
ecution of tasks. 

There are no dynamic entities which enter or leave the 
system. Only static entities exist, which are announced 
before starting the simulation experiment. They may 
interact with each other, which could be interpreted as 
'dynamic behaviour'. However, this only implies wait-
ing in queues for transports and all other activities based 
on shared resources. But also these tasks are already an-
nounced before the simulation run. 

Thus, it was not necessary to use a scheduler or an 
event-list, which is typically for dynamic, event-discrete 
simulation. A more basic and much faster approach fits 
our needs: A task is built up of a start-event and an end-
event. Durations of tasks (time-spans between start- and 
end-events) are samples from different stochastic distri-
butions, as well as in event-discrete simulation. First, 
we announce all tasks with their stochastic parameters. 
Afterwards, instead of scheduling such tasks on con-
crete time instants on an event-list, it suffices to deter-
mine their execution order, so that each task has a de-
fined set of references to its predecessors and succes-
sors. 

Hereby, we need only one method call, which contains 
recursive (pending a potentially even more efficient it-
erative implementation) method calls for every task to 
calculate the start- and the end-points of all tasks in a 
day plan, depending on stochastic samples. The critical 
path, which has no time buffer, is identified. 

Because we don't need any list operations or dynamic 
objects' instantiations, a lot of computing power is 
saved compared to dynamic simulation. In our first ap-
proach, which still used a scheduler and an event list, 
we computed 100,000 experiments in about 13 minutes 
on a single standard PC. The elaborated generation of 
reports also played a role here. But since any compo-
nent not strictly required was removed, the transition to 
the model logic described above, we are now able to 
compute 1,000,000 experiments in 1.5 seconds. Since 
the simulation is stochastic, we have to repeat experi-
ments for every scenario to get reliable results. But even 
if we require 100 to 1000 experiments for every scenar-
io, we are still able to compare more than 1000 day 
plans in less than two seconds for a wind park of medi-
um size. 

As simulation engine we have used DESMO-J, which is 
an open-source, discrete event simulation framework 
developed at the University of Hamburg. It offers sev-
eral ready-to-use components for developing simulation 
applications in the object-oriented languages Java or 
C#. DESMO-J provides an experimentation framework, 
abstract model components, waiting queues, stochastic 
distributions, as well as several statistic data collectors 
for quantifying the dynamic system behaviour. (Göbel, 
Joschko, Koors and Page 2013). 

Every time a model is implemented with DESMO-J by 
deriving entities and events from DESMO-J classes, a 
‘domain-specific application’ is written. In this case, 
however, we have made adjustments to the library itself. 
DESMO-J offers a lot of technical simulation compo-
nents, like a scheduler or an event-list which are com-
monly needed for dynamic simulation, or optional add-
ons like a 2D animation module. As described above, 
we deactivated most of these components, which was 
quite straightforward due to the clear structure of the 
freely available DESMO-J source code. We just used 
selected components like queues, stochastic and statistic 
classes.  

 

6. RESULTS 

Finally, the proposed solutions of all partial problems 
were integrated in one working research prototype, 
which is a .Net based application, implemented in the 
C# programming language. Moreover, the input as well 
as output data models were used to create a database on 
a Microsoft SQL Server, whose tables were employed 
to automatically generate one-to-one Classes in C# us-
ing Entity Framework technology. 

Besides, our heuristic algorithm is able to generate 
many alternative resource plans, which are compared 
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using discrete event simulation. Thus, the best plans can 
be automatically preselected. These suggested plans are 
displayed in the form of a Gantt chart. Figure 8 shows a 
generated sample plan. For any selected date, several 
alternative plans can be accessed, each of which con-
sists of multiple lanes for each team and transport de-
vice. 
 

 

Figure 8: Suggested day plan 

 
The lane of each transport device shows the suggested 
route for traveling to and returning from WTs. The bars 
with an upward or downward arrow show respectively 
the boarding and de-boarding of the teams and the ones 
with an arrow to the right show the movements of the 
transport device within the wind farm. These move-
ments are also reflected in the lanes of teams. The team 
lanes show also the tasks, which are assigned to them. 

Each plan is rated by the costs and execution probabil-
ity. These information can be seen below each Gantt 
chart. Tabs allow users to display the automatically pre-
selected plan proposals. The number of proposals 
should be small enough to be quickly overlooked by a 
human being. At the end, each plan is only a suggestion 
and can be modified by the human planner. The modi-
fied plan will be evaluated using simulation and stored 
as a new alternative plan for the day. 

 

7. DISCUSSION 

Resource planning during O&M of offshore wind farms 
is a very complex problem. However, our research pro-
totype, as an automated resource planner, supports the 
decision makers by dividing the problem into partial 
problems and conquering its complexity.  

Our novel heuristic algorithm considers various aspects 
of developing a valid resource plan. These aspects in-
clude the availability of the personnel and means of 
transportation, the priority, duration, location of the per-
formance, and required qualifications of the activities. 
The proposed algorithm considers all these aspects and 
groups the activities into clusters. The clusters do not 
necessarily contain the most similar activities, but rather 
those which give an overall best result (regarding the 
cost and execution time). The qualified personnel are 
then arranged into teams and the best route for the 
transport device is calculated. 

The results are presented in the form of several Gantt 
charts which represent the generated plans for the day. 
Each plan is additionally rated by means of discrete 
event simulation technique.  

 

8. FUTURE WORK 

In future we still need to conduct scheduling and simu-
lation runs based on real historical data from our project 
partners for the purpose of validation. In scheduling, an 
extremely large spanning tree of resource plans shall 
intentionally be generated, which are then simulated in 
a multi-day experiment. This will enable us to find suit-
able factors for the weighting in the compatibility rat-
ing. As a result, the scheduling algorithm will be able to 
work more efficiently by requiring a much smaller 
spanning tree in real-life situations. 

Besides, we would like to evaluate different algorithms 
for the partial algorithms of our heuristics algorithms, 
i.e. team building, task allocation, and transport routing. 

Finally, it is of our interest to evaluate our research pro-
totype in the service station of an offshore wind farm. 
Therefore, parallel to the human resource planner, our 
prototype will receive the input data, such as the 
planned tasks for the day, available personnel, etc. The 
quality of the suggested plans can then be evaluated in 
practice and with real data. This requires a live connec-
tion for weather forecasting to determine the available 
time windows. 

As by the conditions of the research project grant, our 
implementation is intended as prototype and cannot be 
developed further into a commercial product by our re-
search group. Of course, commercial software develop-
ers are free to contact us if they are interested in more 
details about our research results to provide a valuable 
supportive tool for O&M of offshore wind farms. 

 

9. CONCLUSION 

This paper described various aspects of resource plan-
ning during the O&M of offshore wind farms. Consid-
ering the immense complexity of the problem, a heuris-
tic approach is necessary for generating time and cost 
efficient resource plans. We introduced a compatibility 
rating as core element of our heuristic algorithm. Lastly, 
with the help of discrete event simulation, our approach 
can be examined using artificial as well as real-world 
data.  

Data management and saving useful pieces of infor-
mation can make a huge difference in the quality of op-
timisation algorithms. More specifically, collecting im-
portant information about activities and their types can 
make their common characteristics, such as typical du-
ration, clear for the planner. Having mobile solutions 
(e.g. documentation apps on tablets) can probably make 
the documentation and collection of data easier for the 
users on-site. It is important to mention that the sooner 
the authorities start collecting such data, the better the 
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quality of the data provided for an optimisation algo-
rithm can get.  

Ultimately, due to the stochastic nature of on-site plan 
execution under stochastic conditions (e.g. weather), the 
heuristic algorithm to identify alternative plans in a live 
operation had to augmented with simulation technology 
for evaluation. 
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