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ABSTRACT 
Air transport represents the fastest way of moving 
people and goods. For this reason, it is critical to the 
global economy and the welfare of society. The 
resilience of air traffic networks is, therefore, of great 
importance. In the past two decades, various events 
have shown that air transport is vulnerable to disruptive 
events, such as extreme weather, terrorist attacks, 
volcanic eruptions, earthquakes, and pandemic 
influenza. The severity of the impacts on passengers 
and economic activities, and overall losses to 
stakeholders and for society in general, would highly 
depend on the vulnerability and resilience of these 
networks. The current research seeks to develop an 
agent-based model to simulate and analyze the 
vulnerability and resilience of airline routes to airport 
disruptions. 
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1. INTRODUCTION 
Transport networks represent core resources and critical 
infrastructure and facilities that enable social and 
economic development around the globe. The 
transportation sector is growing globally over the next 
decade (Transport Canada 2015). Air transport is among 
the fastest growing in the transportation sector.  
Nevertheless, they may be vulnerable to natural, 
technological, and human made hazards. In order to 
improve supply chain reliability, transportation systems 
must become more agile and resilient to such threats 
(Transport Canada 2015). Despite the fact that some of 
these networks have built-in redundancies (i.e., 
alternative infrastructures) more sustainable and viable 
strategies call for effective management of existing 
infrastructure that is based on thorough understanding, 
modeling and optimization of the underlying 
complexity of network systems when disruptions occur 
(Chow, Szeto, Wang, and Waller 2015). 
For example, Barnhart and Smith (2012) reported that 
ice and snowstorms in recent winters left passengers 
stranded in airplanes for up to 11 hours and caused 
havoc in the affected airlines’ systems for several days, 
besides resulting in direct costs to airlines. They noted 

that such disruptions have visible and harmful impacts 
on passenger goodwill. 
The current research seeks to develop an agent-based 
model to capture and analyze the emergent dynamics 
generated in airline networks, in order to better assess 
the vulnerability and resilience of these systems. Risk 
and business continuity managers of both airlines and 
airports could utilize such a model to better understand 
the impacts of disruptions and to develop strategies and 
policies that could reduce vulnerability and enhance the 
resilience of airlines and airports.   
The model has been developed using AnyLogic 
simulation software 7.3 (AnyLogic 2016). We used 
AnyLogic’s GIS environment, which enables agents’ 
interactions in space and time. As a case study, the 
authors report on simulated disruption impacts on the 
most important hub within the simulated system, the 
Toronto Pearson International Airport.  
The rest of this paper is organized as follows: Section 2 
provides a brief review of the current research. Section 
3 describes the agent-based modeling (ABM) approach. 
Section 4 describes the case study. Section 5 provides 
details of the simulation. Section 6 presents the key 
results of the simulation followed by conclusions in 
section 7.   
 
2. STATE OF THE ART 
The network modeling approach enables an intuitive 
representation of several structural elements of air 
transportation systems. The major portion of previous 
work in this area has considered models of traffic, either 
in terms of aircraft or passengers (Wei, Chen, and Sun 
2014; Lordan, Sallan, Simo, and Gonzalez-Prieto 2014; 
Bratu and Barnhart 2005; Nicolaides, Cueto-
Felgueroso, Gonzalez, and Juanes 2012). 
Several aspects of the air traffic network have been 
studied. Initial works (Barrat, Barthelemy, Pastor-
Satorras, and  Vespignani 2004; Guimerà, Mossa,  
Turtschi, and Amaral 2005),  were focused on structural 
description of the air transport system (i.e., a 
topological description of the network structure). 
However, delay propagation dynamics can be also 
studied using this approach (Fleurquin, Ramasco, and 
Eguiluz 2013a; Fleurquin, Ramasco, and Eguiluz  2014; 
Fleurquin, Campanelli, Eguiluz, and Ramasco 2014). 
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Due to interconnectivity, the air transportation network 
is vulnerable to propagations (i.e., domino effects). 
Since the airlines operate on this network, their 
operations are also subject to propagation effects. A 
disruption in one flight or airport can quickly spread 
and have a cascading impact affecting other parts of the 
air transport network (Beatty, Hsu, Berry, and Rome 
1999; AhmadBeygi, Cohn, Guan, and Belobaba 2008).  
Several mechanisms allow the propagation of delays 
through the air transportation network, such as aircraft 
rotations, passengers and crew connections, or airport 
congestion. These factors considered in the models 
developed to reproduce delay propagation. 
Understanding how delays propagate in the airport 
network starting from primary events is thus of high 
economic relevance (Campanelli, Fleurquin, Eguíluz, 
Ramasco, Arranz, Etxebarria, and Ciruelos 2014). 
Although airlines deal consistently with operational 
disturbances (e.g., deviations in departures and arrivals 
due to traffic congestion at the airports or in the airspace 
sectors), they also face disruptions (i.e., high impact 
disturbances) that impact their pre-planned operations. 
For example, severe weather conditions, such as icing 
on a runway, can close an airport for several hours 
(Rosenberger, Johnson, and Nemhauser 2003). The 
influence of schedule adherence of aircraft rotation 
becomes more significant when the consequences of 
flight delays are investigated on a network scale (Wu 
and Caves 2002). Vulnerability and resilience of 
transport networks have been typically addressed by 
means of graph theory, primarily through topological 
studies. Since these studies consider static information 
only, they cannot include the dynamic behaviour of the 
network (travel demand, aircraft rotation, passenger and 
crew connections, and others), so they miss the 
emergent effects (e.g., delay propagation) that appear 
due to the influence of a failure on the rest of the 
elements within the system. Airlines could improve 
their performance in operations by considering the 
possibility of disruptions during the planning phase 
(Rosenberger, Johnson, and Nemhauser 2004).  
Various works concerning vulnerability of transport 
networks have been carried out. A very extensive 
survey of these publications is provided in (Mattsson 
and Jenelius 2015). However, very few of the reported 
studies are related to air transport. A recent study of 
resilience analysis for air traffic networks reported in 
(Dunn and Wilkinson 2016),  reveals that only static 
analysis of the networks (topological approach) has 
been applied. In the present work, the aim is to apply a 
systemic approach to cover the gap in the current 
literature, developing a dynamic model through ABM.  
In recent years, two agent-based models to study and 
forecast delay propagation in the USA and European 
networks were introduced (Fleurquin, Ramasco, and 
Eguiluz 2013a; Ciruelos, Arranz, Etxebarria, Peces 
Campanelli, Fleurquin, Eguiluz, and Ramasco 2015). 
However, both investigations focus only on operational 
delay effects (i.e. low impact disturbances).  
 

3. AGENT-BASED MODELING APPROACH 
ABM is chosen because the more widely used 
approaches (topological, based on graph networks) 
impose unrealistic restrictions and assumptions on the 
system being modeled under aggregate data 
considerations. In contrast, ABM can be used to 
conduct policy experiments to investigate the 
vulnerability and the resilience of airline routes, 
including the emergent effects due to dynamic 
behaviour on the system under analysis (Crooks and 
Wise 2013). In particular, ABM simulation allows:  
 
• virtual simulation of the consequences of decisions, 
• integration of multiple theories regarding the 

phenomenon under investigation, 
• representation of agents with multiple decision 

strategies, and 
• modeling of heterogeneous actors who can modify 

their behavior over time.  
 
In the last decade, ABM has been successfully applied 
to a variety of domains. Several research projects have 
demonstrated the potential of this technique to advance 
science, engineering, and policy analysis (Anderson, 
Chartuvedi and Cibulskis 2007; Collier and North 2012; 
Asakaura, Aoyama, and Watanabe 2011), which 
expands its applicability with the integration of 
geographical information systems (GIS) (Crooks and 
Wise 2013). 
 
4. CASE STUDY 
 This simulation was applied to a selection of Air 
Canada flights. Air Canada has major hubs in four 
Canadian cities (Toronto, Montreal, Vancouver and 
Calgary). Air Canada’s network currently provides 
service directly to 63 Canadian destinations, 56 
destinations in the United States, and 86 in Europe and 
other continents. Air Canada operates on 
average 1,500 scheduled flights each day (Figure 1) 
and, in 2015, carried more than 41 million passengers 
(AirCanada 2016). Air Canada is among the 20 largest 
airlines in the world. Air Canada’s Airbus aircraft that 
were incorporated into the present model are: 
  

• A320 family (37),  
• A321 family (14),  
• A319 family (12), and  
• A319 Air Canada Rouge family (7). 

 
Figure 1: Air Canada Routes Network (OpenFlights 
2016) 
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5. SIMULATION MODEL 
The simulation model is composed of four major 
components: 
 
• Map and visual interface, 
• Agents, 
• Input interface, and 
• Output interface. 
 
The map and visual interface shows the evolution of the 
simulations considering different traffic introduced in 
the input interface and simulation set up. The map and 
visual interface dynamically visualizes the real routes 
(obtained from Flight Radar 24 website) that are used 
by the aircrafts. It also allows the users to see the 
variations of the routes, when there is one or more 
airports disrupted. Besides, the map and visual interface 
shows the location of different airports in the model, 
considering an accurate geo-positioning of the airports. 
Figure 2 shows the map and visual interface that 
includes airports (for the route network under analysis) 
and aircrafts on their routes at a specific time.  
 

 
Figure 2: Simulation Model Map and Visual Interface 

 
In the present model, two different agents were 
implemented:  
 
• Destination (airport), and 
• Airplane. 
 
Figure 3 shows the state chart for the airplanes. The 
agent “Destination” represents the airports that are 
included in the model. These airports correspond to the 
origins and destinations for the aircraft (scheduled 
flights). Each airport contains different features and 
information such as the airport name, latitude and 
longitude, the length of the main runway, and one 
variable that represents the availability of the airport (if 
it is open or close due to some disruption). The current 
model has 29 airports already implemented: 12 
Canadian airports, 6 USA airports, one Mexican airport, 
and 11 Caribbean airports. 
The agent “Airplane” represents the aircraft fleet 
included in the flight schedules under simulation. It 
needs to consider each aircraft and its rotation. The 

aircraft rotation is considered as a set of legs for this 
aircraft in a specified time period.  
  

 
Figure 3: Airplane State Chart 

 
Each aircraft has to respect certain conditions before 
taking off from an airport of origin to its destination. 
The first condition is the take-off time. An aircraft can 
take off only at a specific time and that aircraft has to 
stay at least for a specified time in an airport (in the 
current model this time is 45 minutes, which represents 
the time to complete the turnaround process in the 
airport before taking off again). The second condition is 
the availability of the destination airport. If this 
condition is not satisfied, the aircraft cannot take off. In 
the simulation, this state is highlighted in the map and 
visual interface, where this aircraft turns yellow. This 
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color change means that either the origin or the 
destination airport is not available before taking off. On 
the other hand, if one aircraft is able to take off but 
during the flight the destination airport is not available 
(because of an internal or external disruption) the 
aircraft has to change its destination and the simulation 
shows the aircraft in red. This color signifies that the 
aircraft has been disrupted. In this case, the aircraft 
needs to go to another airport as follows: 
 
• Aircraft tries to reach the nearest destination from 

the current position. 
• Aircraft selects the nearest airport that has the 

minimum runway length needed for that aircraft.  

In selecting each of the above options, the Extended 
Twin Operations (ETOPS) conditions should be met.  
ETOPS describes the operation of twin engined aircraft 
over a route that contains a point further than one hour's 
flying time from an adequate airport at the approved 
one-engine inoperative cruise speed (Martins, Nerosky, 
Fernandez, and Senna 2007; Ballal and Zelina 2004). 
The purpose of the ETOPS conditions is to provide very 
high levels of safety while facilitating the use of 
twinjets on routes which were previously restricted to 
three- and four-engined aircraft.  
It is possible to set the ETOPS certification value as an 
additional parameter for each aircraft. In the current 
model, only three different ETOPS certifications are 
considered: 
  

• ETOPS 90 (this means that an aircraft can 
follow one route that is not far from the nearest 
airport more than 90 minutes),  

• ETOPS 120 (this means that an aircraft can 
follow one route that is not far from the nearest 
airport more than 120 minutes), and 

• ETOPS 180 ( this means that an aircraft can 
follow one route that is not far from the nearest 
airport more than 180 minutes). 

Therefore, when an aircraft changes its destination 
because of an airport disruption, this aircraft has to 
check not only if the nearest airport has an adequate 
length of runway but also if the time to reach this new 
airport is compliant with the aircraft’s ETOPS 
certification.  
There are different variables that represent the attributes 
of each aircraft. It is possible to check the state of each 
flight. The various states are: 
  

• departed when the aircraft takes off, 
• arrived when the aircraft lands, 
• diverted if the aircrafts is diverted to a new 

destination because of airport disruption,  
• cancelled if this flight is cancelled because the 

aircraft cannot take off from the originally 
scheduled airport because of airport disruption.  

 
Other attributes of aircraft are the origin and destination 
for all the aircraft rotation, the scheduled departure time 
and the scheduled arrival time (taken from Flight Radar 
24 website) for each flight, the real arrival time for 
each flight, the delay for each flight, the total delay for 
one aircraft (calculated as the sum of flight delays). 
There is also a scheduled flight time for each flight. In 
addition, there are specific information about each 
aircraft such as aircraftID (serial number), FlightCode, 
type of Airbus and number of seats.  
The input interface allows the user to set up different 
parameters.  For instance, the user can decide the 
closure of an airport by writing the name of the airport 
in the edit box. The user can also decide to change the 
time frame for the disruption through a slider created in 
this part of the model. Moreover, the user is able to set a 
disruption area by drawing a circle or polygon (this is 
more useful in case of certain hazards that impact large 
areas such as hurricanes, volcanic eruptions, etc.).  
It is also possible to add different new aircraft in the 
model through an external database file. In this 
database, it is possible to add different schedules and 
aircraft attributes such as departure time, arrival time, 
flight time, origin and destination names, aircraftID, 
flight code, number of seats, type of airbus, minimum 
length of runway for landing, and ETOPS certification. 
Figure 4 shows the interface for the Input Section where 
the users can set up different parameters. 
 

 
Figure 4: Interface for the Input Section 

 
The interface for Output Section shows the results that 
can be obtained after running the simulation. As default, 
the model provides the following indicators: 
 

• Planes Chart is a Time Plot with the number 
of airplanes in a network before completing 
their rotation. 
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• Planes Disrupted is an indicator showing the 
number of the aircraft disrupted at any given 
time; according to the current model, an 
aircraft is considered disrupted if it has at least 
one flight delay of more than 15 minutes. 

• Flights Disrupted shows the number of flights 
disrupted based on the time; in particular a 
flight is considered disrupted if its delay is 
more than 15 minutes because of an airport’s 
clouser. 

• Flights Diverted shows the number of flights 
diverted at any given time; a flight is diverted 
if it cannot reach its scheduled destination but 
it’s already on flight; for these reasons this 
aircraft has to change its destination. 

• Flights Cancelled shows the number of flights 
cancelled at any given time; a flight is 
cancelled if a previews leg is diverted and it is 
impossible for this aircraft take off from the 
scheduled airport. 

• Passengers Disrupted shows the number of 
passengers disrupted at any given time; a 
passenger is disrupted if his/her flight is 
disrupted or  diverted. We consider an average 
of 80% occupancy for each flight. 

• Total Delay shows the amount of delays 
resulting from an airport closure after one day 
of simulation. 

 
Figure 5 shows the indicators of the model in terms of 
number of aircrafts in one specific time frame, Plane 
Disrupted, Passenger chart, number of flights disrupted, 
diverted and cancelled, and Total Delay. 
 

 
Figure 5: Interface for the Output Section 

 
The presented model has been validated in two steps. 
First by means for an exhaustive Structured 
walkthrough and secondly by several Data relationship 
correctness revisions. Both techniques are commonly 
used in model verification and validation (Sargent 
2013). 

 

6. SIMULATION RESULTS 
The capability of the model to simulate the impacts of a 
disruption on a predefined network allows one to 
compare Airline Disruption in different airports at the 
same time. It is useful to identify the most and the least 
vulnerable routes, aircrafts or even airports.  
Table 1 reports the results of various disruption 
scenarios (based on the duration of disruptions) for the 
Toronto airport. It shows total number of aircrafts, 
flights, and passengers disrupted in each scenario, as 
well as the total amount of delay. Figure 6 and 7 show 
the number of aircrafts and the number of flights 
disrupted for each disruption scenario. 
 
Table 1: Aircraft, Flights and Passengers Disrupted and 
Total Delay based on Different Simulation Experiments 

Toronto (start at 00:00) 

Duration 
of 

closure 
(hours) 

# of 
Aircraft 

Disrupted 

# of 
Flights 

Disrupted 

# of 
Passengers 
Disrupted 

Total 
Delay 

[hours] 

3 h 3 3 416  5.25 

6 h 5 13 1808  27.80 

9 h 31 92 12746  181.43 

12 h 41 143 20004  550.38 

15 h 48 164 23300 1030.50 

18 h 51 172 24548 1541.80 

21 h 55 179 25540 2074.80 

24 h 56 181 25828 2613.30 

 
Figures 6 and 7 exhibit behaviours of vulnerability 
indicators. In particular, it is possible to notice how the 
simulated network is time sensitive, due to workload 
variation among the flight schedules (Figures 8 and 9).  
 

 
Figure 6: Numbers of Aircraft and Flights Disrupted 
under each Disruption Scenario 
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Figure 7: Number of Disrupted Passengers under each 
Disruption Scenario 
 

 
Figure 8: Number of Simulated Air Canada Scheduled 
Departures per Hour from Toronto Pearson Airport  
 

 
Figure 9: Number of Simulated Air Canada Scheduled 
Arrivals per Hour from Toronto Pearson Airport 
 
7. CONCLUSIONS 
The main goal of this study was to apply ABM to 
develop a support tool for the analysis of airport 
disruptions on airline route networks. In this paper, a 
specific airline network has been analyzed. The network 
includes 29 airports in Canada, USA, Mexico and the 
Caribbean and 70 aircraft which are categorized into 
four Air Canada Airbus families (A321, A320, A319, 
A319 Air Canada Rouge). Each aircraft has a specified 
number of legs and the current model includes 255 legs 
considering non-bidirectional routes. Based on these 
data and information, the authors have developed a 
simulation model that is able to generate relevant 

indicators about the impacts of an airport disruption on 
the network. 
The simulation model allows a comprehensive and 
dynamic visualization of the main elements during the 
simulation (by means of the animation interface), with 
an easy to use input section (for parameters variation) 
and with an output section to show the simulation 
results. The model provides important information 
about Aircraft Disrupted, Flights Disrupted, Flights 
Diverted, Flights Cancelled, Passengers Disrupted, and 
Total Delay. 
The present work provides a useful tool to assess the 
impacts of disruptive events on air traffic networks, 
providing insights about the most vulnerable areas and 
elements within the network under a systemic approach. 
Resilience measures could be estimated and verification 
of the possible improvements on the network’s 
performance could be tested due to new configurations 
or new contingency strategies.  
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