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ABSTRACT 
The paper concerns a capillar third generation car 
sharing system for urban pedestrian environments. The 
following specific services are provided: instant access, 
open ended reservation and one way trips; vehicles can 
be accessed not only at stations, but also along the 
roads. All these features provide users with high 
flexibility, but create a problem of uneven distribution 
of vehicles. Therefore, relocations of vehicles must be 
performed. Different relocation procedures exist in 
literature. In this paper, a management scheme is 
proposed where vehicles automatically relocate and 
reach the users positions, thanks to their degree of 
automation. In order to provide transport managers with 
a useful tool to test the proposed system in different 
realities, an object-oriented simulator has been 
developed. An optimization algorithm has also been 
developed for assessing the fleet dimension and the 
transport system parameters. The proposed car sharing 
system has been simulated for Genoa historical city 
centre, Italy. 

 
Keywords: third generation car sharing, capillarity, 
object oriented micro simulation, optimization 

 
1. INTRODUCTION 
The paper concerns a new generation car sharing system 
for urban pedestrian environments, which involves a 
fleet of automated personal vehicles, called PICAV. 
PICAV vehicles are specifically designed for areas 
where usual public transport services cannot operate 
because of the width and slope of the infrastructures, 
uneven pavements and interactions with high pedestrian 
flows. Some details on characteristics and performances 
of PICAV vehicles are reported in Cepolina and 
Cepolina (2014a). 

New generation car sharing systems overcome 
some restrictions of traditional car sharing (first 
generation) where members need to book cars 
beforehand and the time the car will be dropped off 
should be specified (fixed-period reservation); besides, 
cars must be returned to the same station where they 
were picked up (two-way trips).  

New generation car sharing systems are aimed at 
providing users a higher degree of flexibility, and in 
particular the following specific services: 

 instant access: users can access directly to an 
available vehicle, without the need to make a 
reservation;  

 open-ended reservation: users can keep the 
PICAV vehicle as long as needed; 

 one way trips: users can drop the vehicle off at 
any station.   

The main problem of these systems is that they 
may quickly become imbalanced with respect to the 
number of vehicles at the stations. Due to uneven 
demand, some stations during the day may end up with 
an excess of vehicles whereas other stations may end up 
with none.  

New generation car sharing systems often resolve 
the balancement problem through operator based 
relocation. But operator based relocation has shown to 
be extremely expensive in terms of staff and 
management costs, therefore some systems have turned 
out into a failure, while others only remained pilot 
projects and have never been settled on a wide scale. A 
full description of the main characteristics, advantages 
and problems of new generation car sharing systems has 
been provided in Cepolina and Farina (2012b) and 
Cepolina et al. (2014b). 

The third generation of car sharing systems aims to 
add capillarity to the new generation car sharing 
systems. The capillarity of the system, i.e. the 
possibility of having shared vehicles available at several 
points of the area, ideally at any point, improves the 
quality of the service provided to users. In this scenario 
vehicles can be accessed and returned not only at 
stations but also along the roads.  

Several third generation car sharing systems, such 
as Car2go, DriveNow and Greenwheels, have been 
planned, and some of them have also been applied on 
the field. Users have an interactive map where they can 
reserve, with short advance, the vehicle closest to their 
position. This however can create some impedance to 
users because they may have to travel also for long to 
reach the closest available vehicle. In these systems, a 
large number of vehicles and a balanced demand are 
required, in order to keep limited the user waiting times.  
 
2. THE PROPOSED RELOCATION STRATEGY 
A trip by PICAV vehicle may have, as origin or 
destination, either a station or any position along the 
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roads within the intervention area. When in the origin of 
the user’s trip there are no available PICAV vehicles, a 
PICAV reaches the user position in a fully automatic 
way. 

In the proposed transport system, relocations are 
required: 

1. In the stations, when the number of vehicles 
available at stations is below the low critical 
threshold. This criterion is adopted to prevent 
user waiting times. In this case, the request for 
a vehicle could be addressed: 
(a) firstly to the stations where the number of 

vehicles is above the low buffer threshold. 
Among the stations to which the vehicle 
request could be addressed, the providing 
station is selected according to two 
criteria: the closest station (shortest time 
criterion) and the station having the 
highest number of vehicles (inventory 
balancing). The shortest time criterion 
relates mainly to service levels, while the 
inventory balancing mainly focuses on 
cost efficiency. Therefore, an appropriate 
choice of relocation technique should be 
made according to the current system 
situation: in periods of low usage, the 
most appropriate relocation technique is 
by inventory balancing while in periods of 
high usage, then the shortest time 
technique performs best. 

(b) secondly, to the available vehicles parked 
along the road. In this last case, the nearest 
vehicle automatically relocates towards 
the station in shortage. 

2. Not in the stations, when a user calls for a 
vehicle. In this case, the criterion is to limit the 
user waiting times along the roads as much as 
possible. The system manager assigns to the 
user the available vehicle nearest to the user’s 
position. If the nearest vehicle is in a station, it 
can be provided only if the number of vehicles 
available in the station is greater than the low 
critical threshold of the station. 

At the end of their trip, the user can leave the vehicle at 
any position along the roads within the intervention 
area. When a vehicle is returned, if the level of battery 
charge is below the minimum charge level, the vehicle 
automatically reaches the nearest station to recharge the 
battery. As soon as it reaches the minimum charge 
level, it becomes available and if not required, continues 
the charging process. 
 An object oriented micro simulator of the proposed 
transport system has been developed. The simulator is 
described in detail in section 3. 
 An optimization algorithm has been developed to 
optimize the proposed transport system’s performances. 
The optimization algorithm is described in section 4. 
 

3. THE MICRO SIMULATION OF THE 
PROPOSED TRANSPORT SYSTEM 

The micro simulator receives in input: a simulation time 
period, a road network, a PICAV fleet, the PICAV 
transport demand and the parameters related to the 
relocation strategies (the low critical and the low buffer 
thresholds). The simulator allows to track the second-
by-second activity of each user, as well as the second-
by-second activity of each PICAV vehicle.  
 The micro simulator provides in output the user 
waiting times twi (i is the ith user) and the relocation 
times trj (j is the jth relocation). 

The proposed transport system has been modelled 
according to an object-oriented logic. The language 
chosen for writing the code is Python 2.5. 
 
3.1. Input data 
The micro simulator input data are: the simulation time 
period, the road network, the transport demand, the 
PICAV fleet characteristics, the relocation strategy 
parameters. All these inputs are deterministic. The only 
stochastic input is the transport demand, as it concerns 
the user arrival time instant. 
 
3.1.1. The simulation time period 
The simulation time period starts when the car sharing 
system opens to users and ends when the last user 
returns the PICAV. In the following we refer to a daily 
simulation time period. The simulation time period 
could be characterised by peak and off peak phases: for 
each phase, an average pedestrian density k in the 
pedestrian area, from which the PICAV vehicles speed 
depends, and a PICAV transport demand, should be 
specified.  
 
3.1.2. The road network 
The road network includes stations, provided with 
charging stations, and the roads in which PICAV 
vehicles are allowed to travel. The road network has 
been defined using OpenStreetMap. 
 Stations have been represented through nodes. Each 
road is divided into sections and each section has been 
modeled again by a node. 
 Between each pair of nodes, we take into account 
only one path, which could be the shortest one or the 
one which contains a high concentration of shops, 
museums and other attractions. The overall length and 
the average upslope for each of the paths were 
charaterised using GoogleMaps (Cepolina et al. 2011a). 
These data are necessary to determine the battery 
discharging law: in particular the quantity of discharge 
is assessed from the average upslope, as it contributes 
heavily to the resistances to motion encountered by the 
PICAV vehicle. If the path is instead descending the 
recovery in battery charge is so slight that it is 
neglected, therefore for each path the downslope parts 
are considered as flat in the calculation of the average 
upslope. The overall length of a path is required in order 
to determine the trip duration. 
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 The path lengths and the average upslope are 
assessed through a routing algorithm written in 
javascript, which interacts with OpenStreetMap. These 
data are given as input in the simulator in the form of 
two matrixes. The matrixes are squared and the number 
of rows (or columns) equals the number of nodes in the 
network. In the first matrix, the cell ij represents the 
path length between the origin node i and the 
destination node j. In the second matrix, the cell ij 
represents the average upslope of the path between the 
origin node i and the destination node j.  
 The minimum charge level is calculated as a 
function of the average upslope and of the length of the 
most battery consuming path in the road network. 
 The vehicle speed is assessed from the pedestrian 
density according to the following model: 

 
PICAV user driven: v = - 1.45 k + 1.58 (1) 

 
PICAV automatically driven, relocation trip: 

 
    v = - 1.45 k + 1.38  (2) 
 
where k is the pedestrian density expressed in 
pedestrians per square meters; v is the PICAV vehicle 
speed expressed in m/s. The model for assessing the 
vehicle speed from the pedestrian density is described in 
detail in Cepolina et al. (2011b). The model has been 
implemented in the micro simulator.  
 
3.1.3. The transport demand 
The transport demand refers to a given phase of the 
simulation time period and it is given to the simulator in 
the form of an OD matrix. Each row refers to a node of 
origin, and each column to a node of destination. Each 
cell gives the hourly number of trips from the node the 
row refers to, to the node the column refers to.  

We consider two trip typologies: a direct trip, or a 
sequence of shorter trips (multitask trip) where one 
accomplishes a number of short tasks that require short 
term parking along the street, before finally returning 
the vehicle. In both cases what is of interest for the 
proposed study is the overall duration of the trip. Given 
an origin, a destination, the path between them, and an 
average pedestrian density, the trip duration changes 
according to the trip typology. 

Therefore each OD matrix refers to a given phase 
of the simulation time period and to a trip typology. In 
the simulation PICAV users are generated with the 
following characteristics: the origin of their trip by 
PICAV, the destination, the time at which they appear 
in the origin and the trip typology. These data are 
assessed according to the OD matrixes. The time at 
which a user appears in their origin is randomly 
generated: if X users have to be generated between 8 
and 9 a.m. in a given origin, X casual numbers are 
extracted within the given time interval and these casual 
numbers are the exact arrival instants of the X users in 
the origin. 
 

3.1.4. The PICAV fleet characteristics 
The PICAV fleet characteristics are: the fleet 
dimension, the number of PICAV vehicles at each 
station at the beginning of the simulation time period, 
the battery capacity, the battery charging and 
discharging laws. 

A lithium-ion battery has been selected by 
MAZEL, the partner of the project consortium dealing 
with the electric engine and battery development.  The 
battery is composed of 15 blocks connected in parallel, 
each composed of 27 cells connected in serial, and 
provides 202Ah and 48V DC.  

The battery charging technique is the opportunity 
charging. The term opportunity charging refers to the 
charging of the batteries wherever and whenever power 
is available. The minimum charge level is the quantity 
of charge necessary to the vehicle to perform the 
longest trip or relocation journey. Every time a PICAV 
is returned in a station, a check on its charging level is 
performed.  If  the vehicle has a level of charge which is 
more than minimum charge level, it is available to users 
and to relocations, otherwise it starts the charging 
process. 
 
3.1.5. The relocation strategy parameters 
The relocation strategy parameters are described by two 
vectors. Their dimension equals the number of stations 
in the area, the value of each vector component is the 
station’s low critical threshold for the first vector and 
the station’s low buffer threshold for the second vector. 

A high value of low critical threshold gives rise to a 
high number of required relocations and to low waiting 
times, if the fleet is consistent and therefore there are 
vehicles available for relocation.  

The low buffer threshold is greater than the low 
critical threshold. If the low buffer threshold is much 
greater than the low critical threshold, the number of 
satisfied requests for relocations is low because often no 
stations can provide the vehicles required: this results in 
an increase of the users waiting times.  

If the low buffer threshold is slightly greater than 
the low critical threshold, the number of satisfied 
requests for relocations is high; on the other hand, it 
may occur that at a given time instant a station provides 
a vehicle and at a following time instant the same 
station is in shortage of vehicles. This results in an 
increase in the number of required relocations.  

As a result, it is necessary to optimize the low 
critical and low buffer thresholds values for each 
scenario under study. 
 
3.2. Output data 
 
3.2.1. Level of Service (LOS) 
LOS measurement are assessed based on the statistical 
distribution of users waiting times. Castangia and Guala 
(2011) proposed a new LOS measurement scale (shown 
in table 1) using as reference the 50th, 90th and 95th  
percentiles of waiting time. The LOS measurement 
scale ranges from LOS from A (perfect service) to F 
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(completely poor service). All the constraints on the 
three percentiles of users waiting times should be met to 
achieve a given LOS. LOS measurements could be 
assessed for each station or for the overall area, 
referring specifically to the waiting time of users.   
 
Table 1: The LOS assessed according to the percentiles 
of users waiting time expressed in seconds 

Waiting time (minutes) not greater than: 
LOS 

50th percentile 90th percentile 95th percentile
A 0.5 1 1.5 
B 1 2 3 
C 1.5 3 5 
D 2.5 5 8 
E 4 8 10 
F worse worse worse 

 
3.2.2. Efficiency 
An explicit expression to assess the transport system 
efficiency does not exist. However, according to Barth 
and Todd (1999) and Kek et al. (2006), we assess the 
efficiency according to the following variables: 

 fleet dimension; 
 number of required relocation trips; 
 percentage of vehicles available, with 

reference to the total fleet dimension, at each 
simulated time instant. 

The values of the first two variables are assessed offline 
at the end of the simulation; the value of the last 
variable is assessed online, i.e. during the simulation 
run.  
 
3.3. Stochastic effects 
As the input data are stochastic regarding the users 
arrival times, the output data, in terms of users waiting 
times and relocation time, are stochastic as well. 
According with the criteria given in Law and Kelton 
(1991), 30 runs of the microscopic simulator resulted 
sufficient to reduce these stochastic effects. 
 
4. THE OPTIMIZATION OF THE PROPOSED 

TRANSPORT SYSTEM 
An optimization algorithm has been developed to 
optimize the proposed transport system’s performances. 
More in detail, it optimizes:  

 the low critical thresholds,  
 the low buffer thresholds,  
 the fleet dimension and its distribution among 

stations at the beginning of the simulation 
time.  

 
4.1. The cost function 
The cost function f  to minimize is composed of: 

 the user cost, given by the total users waiting 
time  in a simulation day 

 the operator cost, given by the daily 
amortization cost of the fleet and by the daily 
cost of relocation. 

 

The cost function has the following expression: 
 

     
1 1

(1 ) 1

3 6 5(1 ) 1

lt m n

v v w w i r rjlt
i j

r r
f n c c t c t

r  

 
    

  
s s s

  (3) 
Where: 

 s is an array which has three components: 
 the overall fleet dimension; 
 the low critical threshold, taken the same 

in all stations; 
 the low buffer threshold, taken the same in 

all stations; 
 m is the number of users; n is the number of 

relocations that have taken place in the 
simulated day; 

 nv is the fleet dimension and cv is the purchase 
cost of each vehicle; 

 r is the discount rate and lt is the vehicle 
lifetime; 

 cw is the cost of each minute of users waiting 
time and twi is the user i’s waiting time; 

 cr is the cost of each minute of relocation and 
trj is the relocation time;  

 j is the jth relocation; i is the i th user. 
We have decided to consider only the total fleet 
dimension, and not its distribution among stations at the 
beginning of the simulation time, because this last 
aspect is not relevant as it is compensated by the 
relocation. Therefore, at the beginning of the simulator, 
the same number of vehicles is assigned to all stations. 
 We have taken an unique value for all stations 
regarding low critical and low buffer thresholds as the 
cost function is not very sensitive if different values are 
taken. This highly simplifies the procedure as a low 
number of variables is necessary. 
 The three components of the vector s are 
determined through a micro simulator. 
 The problem constraints are the following: 

 
50%

90%
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4 0

( ) 8 0

10 0

w

w

w
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g t
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s     (4) 

 
Where tw

50%, tw
90%, tw

95% are the 50th, 90th and 95th 
percentiles of users waiting times. 
 These constraints are imposed in order to avoid the 
system to incur into LOS F. However, the results have 
shown that the constraints are automatically satisfied by 
minimizing the cost function. 
 We transform the constrained minimization 
problem into a single unconstrained problem using 
penalty functions. The constraints are placed into a new 
objective function  h s via a penalty parameter ̂ > 0 

in a way which penalises any violation of the 
constraints:  

 

       2
ˆ m ax 0,i ih f g       s s s     (5) 
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where: g i  is the i th constraint.  
 Since there is no analytical expression for h (s), we 
cannot exclude the need to deal with a multi-peak 
function and the risk of reaching a local minimum, 
without being able to find the global minimum, is high 
(Cepolina and Farina 2012a). To combat this issue and 
the fact that the search space is extremely large, 
Simulated Annealing (SA) has been chosen to solve the 
minimization problem.  
At each iteration of the SA algorithm the cost function 
h(s) is evaluated through the micro simulator.  

The procedure for solving the minimisation 
problem through the Simulated Annealing is described 
in the following section.  
 
4.2. The solution algorithm 
The chosen solution algorithm is based on Simulated 
Annealing (SA).   
 The Simulated Annealing (SA) scheme is a 
stochastic method currently very popular for difficult 
optimization problems. The term Simulated Annealing 
is motivated by an analogy to annealing in solids 
searching for minimal energy states. This procedure 
starts with the metal at a liquid state and at a very high 
temperature. In this state the atoms are quite free in 
their movements. The temperature of the metal is then 
slowly lowered. If the metal is cooled slowly enough, 
the atoms are able to reach the most stable orientation. 
This slow cooling process is known as annealing and so 
the method is known as Simulated Annealing. 

The method is an iterative process that searches 
from a single point moving in its neighbourhood and 
allows sometimes to accept worse solutions. This is 
meant to avoid to get stuck in a local minimum in the 
optimization procedure. Worse solutions are accepted 
according to a probability, which depends on a 
parameter, i.e. the temperature, which decreases with 
the number of steps. 

The algorithm evolves through an iterative cycle, in 
which the search space is explored. This search depends 
on a control parameter called temperature T which 
decreases as the number of the iteration of the cycle 
increases. In each iteration, a new point sn is reached 
from so, according to the transition rule. At the new 
point, the value of the cost function  h(s)  is checked.  

Since the cost function does not have an explicit 
formula, at each step of the Simulated Annealing 
algorithm, the microscopic simulator is recalled to 
calculate the users waiting times and the relocation 
times from which the cost function value depends.  
 
The updating happens according to: 
a) if    s( ) ( )h hns so

o

n substitutes so, i.e.  so : = sn 

b) if   s( ) ( )h hns s n will become the current 

solution so with a probability given by: 
 

( ) ( )
exp   

h h
p

T

 
 

n os s

This is the core of Simulated Annealing and is known 
as the Metropolis algorithm. T is the value of the 
temperature for the current cycle (Laarhoven and Aarts 
1987). Given that  0,1r  is a pseudo random number, 

the updating  happens according to the following: 
if  r   p  the new solution s n  substitutes so, 
if  r > p  the new solution s n is rejected and therefore 
so will not be updated. 
 Therefore the algorithm needs the definition of the 
cooling schedule, the local search and the starting and 
stopping conditions. 
 
4.2.1. The cooling schedule  
The cooling schedule is defined by the initial 
temperature, the law of its decrease and the final 
temperature. The starting temperature has been 
determined according to Laarhoven and Aarts (1987). 

An initial acceptance ratio p0 of the worse solution, 
e.g. 0.5, is fixed at the first step of the algorithm. From 
this point, the initial temperature T0 is determined from 
the acceptance ratio p0 in this way, according to 
Laarhoven and Aarts (1987):  

 

0
0

( ) ( )
0.5 exp  

h h
p

T

 
   

 
n os s

  (7) 

 
The choice of the initial acceptance ratio has the 
purpose of performing a quite good exploration of the 
search space without slowing down too much the 
algorithm.  

As in Cepolina (2005), the geometric temperature 
reduction function has been used:

k1k TT    where  

and  are the temperatures in two consecutive 

iterations of the algorithm. Typically, 0.

kT

1kT 

7 0.95  . In 
order to have a good exploration of the search space but 
not a too slow algorithm,   has been assumed equal to 
0.9. The final temperature scheme of the cooling 
schedule is replaced by a stopping condition. The 
algorithm is stopped when 100 iterations without 
accepting any more new solutions is reached, according 
to the stopping criteria given in Laarhoven and Aarts 
(1987). 
 
4.2.2. The transition rule 
The transition rule regards the exploration of the search 
space: from a given vector so, a new vector sn is 
selected in the neighbourhood of so.  

The transition rule is probabilistic: it passes from so 
to s n changing only one component of the vector so. 
The algorithm randomly determines the component of 
the vector to modify. In our case, each component has 
the same probability to be selected. The algorithm also 
determines whether to increase or decrease the chosen 
component: it is increased with a probability of 50% 
and it is decreased with the same probability. More 
specifically, the first component of so, i.e. the fleet 
dimension, if selected, is increased or decreased by m, 
where m is the number of stations in the intervention 


   (6) 
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area. The second and the third component of so, the low 
critical and low buffer thresholds, if selected, are 
increased or decreased by 1. Moreover, the algorithm 
avoids the situation where, in a given iteration, the 
vector component to change is the same as the one that 
has been changed in the previous iteration. In this way, 
it is guaranteed that the new vector sn is taken in the 
neighbourhood of the previous vector so. Keeping the 
neighbourhood that small allows to reach faster the 
optimum solution but, on the other hand, it cuts down 
the possibility of great improvements. 
 
5. APPLICATION ON THE FIELD 
The proposed transport system, together with the 
simulation and optimization methodology, has been 
applied to the case study of the historical city centre of 
Genoa, Italy. The historical city centre of Genoa has an 
area of about 1.13 km2. This area is one of the most 
populated in Europe and the population density is equal 
19,000 inhabitants/km2. Also the density of commercial 
activities is high in this area. The proposed car-sharing 
system successfully integrates with conventional public 
transport, which cannot operate in the study area 
because of the narrowness and slope of roads. We 
consider as simulation time period the PICAV service 
during a reference working day: the service starts at 8 
a.m. and ends at midnight. From the data collected in 
the field (Cepolina et al. 2011a), an off-peak phase in 
the morning (starting at 8 a.m. until 4 p.m.) and a peak 
phase in the afternoon (from 4 p.m. to 8 p.m.) were 
identified. From 8 p.m. to midnight no PICAV trips 
start. 

The localizations of bus stops and underground 
stations were identified from Genoa public transport 
website (www.amt.genova.it). We have identified as 
well the localization of hotels, museum, offices, schools 
and commercial activities (food shops, clothes shops, 
handicraft shops and other shops) from the internet and 
from surveys performed in the field (Cepolina et al. 
2013a). We designed 7 stations, all of which are on the 
border of the area, placed in correspondence of the main 
public transport stops. Each road has been divided into 
50 m long sections and therefore 120 units resulted. The 
characteristics of the intervention area and the position 
of stations are shown in figure 1.  

We assume that 1% of people that currently enter 
the historical city centre by foot will use the PICAV 
car-sharing systems. From surveys performed on the 
field (Cepolina et al. 2011a), it has been assessed that, 
in Genoa historical city centre, the pedestrian density in 
the afternoon (i.e. peak) period is on the average 1.45 
times the density in the morning (i.e. off-peak) period. 
The peak transport demand is therefore assumed almost 
1.45 times the off-peak demand. The overall PICAV 
travel demand in the reference time period is 1644 trips.  

Trips having an origin or destination on the area 
border, are assumed to have had an origin or destination 
at a station; whereas trips having an origin or 
destination inside the area, are assumed to have had an 
origin or destination at a road section. 

 

 
Figure 1: The intervention area and the stations 
positions (above). Longitudinal profile of the path 
between stations 4 and 6 (below). 
 
About 100 people waiting for the bus on the area border 
have been interviewed (Cepolina et al. 2013a), in order 
to know the characteristics of the trips performed in the 
historical city centre. From the collected data, the 
duration of a multitask trip was found to be about 5 
times the length of a similar direct trip.  

The minimum charge level has been assumed equal 
to 10%, since this is the quantity of charge necessary to 
perform the longest trip, among the ones simulated in 
the area of study. 

The optimization procedure has provided the 
optimum fleet dimension and the low critical and low 
buffer thresholds. The optimum fleet dimension is equal 
to 77 vehicles. 
 This fleet dimension seems reasonable, since it is in 
accordance with the outcomes from Barth and Todd’s 
research (1999). Barth and Todd found that, for all the 
various travel demand cases they analysed, the best 
number of vehicles ranged from 3 vehicles per 100 trips 
to 6 vehicles per 100 trips. We have 1644 trips per day 
therefore, according to these authors, the fleet 
dimension should range between 49 and 98 vehicles. 
The fleet has been assumed equally distributed among 
the stations at the beginning of the time period, as the 
different demand at the various stations is compensated 
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through automatic relocation. The low critical 
thresholds were set to 2 and the low buffer thresholds to 
3 vehicles for each station: these values have been 
determined again through optimization. The relocation 
technique used in the simulator is the shortest time.  

The total value of the cost function is 485.61 €; the 
cost of users waiting time is 117.37 €, the cost of the 
fleet is 337.83 € and the cost of relocation is equal to 
30.41 €. 
The performance of the proposed car sharing system for 
the case study of Genoa has been assessed. 
 The trend of the cost function and its components 
with respect to: fleet dimension, low critical thresholds 
and low buffer thresholds, is represented in figures 2,3 
and 4 respectively. The values reported are averaged 
over 30 simulator runs. 
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Figure 2: The trend of the cost function and its 
components (cost of waiting, cost of relocation and cost 
of the fleet) against the fleet dimension. 
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Figure 3: The trend of the cost function and its 
components (cost of waiting, cost of relocation and cost 
of the fleet) against the low critical thresholds. 
 

In Figure 5 the number of PICAVs in each state is 
plotted against time. This figure refers to only one 
simulation run. The states taken into account are: 

 available, 
 occupied by users, 
 required but not available because in charge, 
 relocating, 
 redirected because there is not free space in the 

destination station (FPT occurrences). 
Time is expressed in hours, starting from 8 a.m. to 

midnight, when the last user returns the PICAV unit. 

The diagram in Figure 5 shows that the selected 
charging technique (opportunity charging) is suitable 
for the case of study, since the vehicles’ charge levels 
always remain above the minimum.  
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Figure 4: The trend of the cost function and its 
components (cost of waiting, cost of relocation and cost 
of the fleet) against the low buffer thresholds. 
 

 
Figure 5: Number of vehicles in each state against time 

 

 
Figure 6: Distribution of users waiting time 

 
If we consider the vehicles available to users which 

are occupied or available at stations, in the PICAV 
transport system, in the peak phase, about the 96% of 
the fleet results available to users and about 4% is 
therefore relocating. This means that the simulated 
relocation strategy works quite well for the case of 
study, since the number of vehicles subtracted to users 
for relocation is low. 
 The distribution of users waiting times is shown in 
figure 6. The reported values are averaged over 30 
simulation runs. The average waiting time is equal to 
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0.72 minutes, and, according to the percentile values, 
the level of service is C. 
 
6. CONCLUSIONS 
The paper concerns a third generation car sharing 
system for urban areas. It is based on a fleet of 
intelligent vehicles which can be rented for short term 
periods (usually a couple of hours) and are shared 
through the day by different users. Vehicles can be 
accessed not only at stations, but also at any point of the 
intervention area. It is worth to underline that capillarity 
(i.e. the possibility that vehicles are available also along 
the roads) is a very good way to better satisfy user 
demand. 
 The car-sharing system has been planned and 
modelled in order to guarantee open ended reservation, 
instant access and one way trips. In the proposed 
system, a fully vehicle based relocation strategy is 
adopted, because the level of automation of PICAV 
vehicles allows them to move in an automatic way.  

In order to plan such a vehicle sharing system for a 
given pedestrian area, an optimization procedure is 
presented in the paper which allows to assess the 
relocation strategy parameters that minimize the system 
cost, both in terms of level of service provided to users 
(that depends on waiting times) and the efficiency from 
the management point of view (that depends on 
relocation time and fleet dimension). 

Since there is not an explicit expression for the 
cost function, the distribution of users waiting times and 
the total amount of time spent by vehicles in relocation, 
from which system cost depends, are assessed by 
microscopic simulation. The microscopic simulator 
follows an object oriented logic. The simulator follows 
each user and each vehicle within the simulation period, 
and gives the actual users waiting times and the 
relocation time.  

As illustrative problem, the proposed transport 
system has been planned for the historical city centre of 
Genoa, Italy. The results of the simulation clearly show 
the effectiveness of the proposed car sharing system, 
because, with low staff costs, it allows users a high 
level of satisfaction. The model has been validated 
through a comparison of the simulation output data with 
those available in the body of knowledge. 

Existing systems, such as Car2Go, DriveNow and 
Greenwheels, exploit the benefits of capillarity to avoid 
relocations. Actually, because of the widespread of 
vehicles, it is quite easy that the user finds an available 
vehicle quite close to his position. However, these 
systems do not work in cases of unbalanced demand 
and small cities. For example, if car sharing systems are 
used for trips to/from work, in the morning peak hour, it 
may happen that at a certain moment people who want 
to go to work cannot find anymore available vehicles. In 
this case, the only alternative is the automatic 
relocation. 
 As stated in Cepolina and Farina (2013b), the 
automatic relocation of PICAV vehicles still cannot be 
applied on the field because of legal problems in case of 

accident. To reduce the impact of automatically driven 
vehicles, also at legal level, it could be explored 
relocation by platooning. The operator drives the first 
vehicle of a platoon and the other vehicles follow the 
leader through automatic distancing. This relocation 
technique, however, increases the staff costs, as some 
operators to perform the relocation are needed. 
Moreover, because of the high level of capillarity, 
therefore vehicles should be redistributed all over the 
area, the relocation trips may be highly time consuming, 
therefore the staff needed is huge. 
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