
VARIABLE NEIGHBORHOOD SEARCH FOR THE BLOCK RELOCATION PROBLEM

Shunji Tanaka

Institute for Liberal Arts and Sciences, Kyoto University

tanaka@kuee.kyoto-u.ac.jp

ABSTRACT

In container yards, containers are stacked in several

tiers due to space limitation. In order to retrieve a

container from a container yard, it is necessary to

relocate containers stacked on it. The aim of the block

relocation problem, which is also known as the

container relocation problem, is to minimize the number

of relocations required for retrieving containers

according to a specified order. This study will propose a

variable neighborhood search algorithm for the problem

and its effectiveness will be examined by numerical

experiments.

Keywords: container terminal, block relocation

problem, variable neighborhood search

1. INTRODUCTION

Container terminals in ports play an important role as a

temporary storage for container transshipment between

maritime and land transports. Containers in a container

terminal are stacked in container yards to reduce space

requirements. The containers compose multiple bays in

a container yard, and each bay consists of several

stacks. Containers are retrieved by a gantry crane that

travels between bays and within a bay (Fig. 1). Since

only containers on the top of stacks are accessible from

the crane, those above the target container should be

relocated to other stacks before it is retrieved. This

relocation should complete within a bay because the

crane travel from one bay to another is time-consuming

compared to that within a bay. The purpose of the block

relocation problem, which is also known as the

container relocation problem, is to minimize the number

of relocations necessary to retrieve all containers in a

bay according to a specified retrieval order.

Formally, the problem considered in this study is

described as follows.

Suppose a container bay composed of S stacks

whose maximum height (the maximum number of tiers)

is restricted to T . Blocks (containers) are stored in tiers

and the number of blocks in stack i is given by

)(TNi  . The total number of blocks is denoted by

 


S

i iNN
1

. The block in the j th tier of stack i from

the bottom is referred to as block),(ji . Each block

),(ji is given a distinct integer priority ijP

)1(NPij  where a smaller value means a higher

priority (an earlier retrieval order). Figure 2 illustrates

an example of a block layout with 4S and 4T .

The number in each block denotes the priority ijP .

The following two operations are available for

retrieving all the blocks from the bay according to their

priorities:

1. Relocation

A block on the top of a stack is moved to the

top of another stack whose height is less than

T .

2. Retrieval

A block with the highest priority is retrieved

from the bay if it is on the top of a stack.

crane

bay

stack

tier

Figure 1: Containers in Container Yard

Figure 2: An Example of Block Layout

(4S , 4T , 331  NN , 12 N , 44 N)

stack

tier

T

1 4 11 10

5 2 3

8 9 7

6

1 2 3 4

1

2

3

4

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2014
ISBN 978-88-97999-39-3; Bruzzone, Del Rio Vilas, Longo, Merkuryev, Piera Eds

170

mailto:tanaka@kuee.kyoto-u.ac.jp

The objective of the block relocation problem is to

find an optimal sequence of these two operations that

minimizes the number of operations required. In

practice, the objective function of the block relocation

problem is the number of relocation operations because

the number of retrieval operations is identical to the

number of blocks and hence is constant.

There are two types of problem settings for the

block relocation problem. In the restricted problem, the

relocatable blocks are restricted to the one on the top of

the stack that includes the block retrieved next, i.e. the

block with the highest priority. In the layout of Fig. 2,

block (1, 3) is the unique relocatable block because

block (1, 1) has the highest priority and should be

retrieved next. On the other hand, such a restriction is

not imposed on relocatable blocks in the unrestricted

problem. Hence, blocks (1, 3), (2, 1), (3, 3), and (4, 4)

are all relocatable in this problem. This study will

consider the restricted problem. In the following, the

highest priority of the blocks in stack i , namely,

ij
Nj

i PQ
i


1
min is referred to as the priority of stack i .

There have been several studies on heuristic

algorithms for the block relocation problem (eg. Caserta

and Voβ 2009; Caserta and Voβ 2011; Forster and

Bortfeldt 2012; Petering and Hussein 2013; Jin et al.

2013). However, to the best of the author's knowledge,

algorithms based on local search have not been studied

extensively so far. The purpose of this study is to

construct a local search algorithm and to examine its

effectiveness by numerical experiments.

2. PROPOSED ALGORITHM

The proposed algorithm is a variant of the variable

neighborhood search (Mladenović and Hansen 1997;

Hansen et al. 2010). The constructive greedy heuristics

by Caserta et al., 2011 is utilized for both computing the

initial solution and representing solutions.

2.1. Constructive Heuristics

Suppose that the relocatable block in the current block

layout is block),(ji)minarg(kk Qi  .This heuristics

relocates block),(ji to stack *k determined as

follows:

1. If there exists a stack whose height is less than

T and whose priority is lower (larger) than ijP ,

k
QPTN

Qk
kijk 


,

* minarg .

2. Otherwise, k
TN

Qk
k 

 maxarg*
.

In the block layout in Fig. 2, the relocatable block

(1, 3) is relocated to stack 2 according to the first

condition.

2.2. Solution Representation

In the proposed algorithm, a solution is represented by

destination stacks of relocatable blocks, which form a

)1()1( TN matrix)(ijxX  . Each element ijx is

associated with a relocatable block as follows. Suppose

that all the blocks with priorities higher than i have

already been retrieved and that the block with priority

i is block),(lk)(iPkl  . Since this block is to be

retrieved next, the blocks above it should be relocated to

other stacks, whose destination stacks are determined by

ijx . More specifically, the destination stack of the j th

block),(jlk  is determined by ijx .

Instead of encoding the destination stack directly,

the proposed method encodes into ijx the relative

position of the destination stack in order to take

advantage of the constructive heuristics. More

specifically, the candidate destination stacks (the stacks

other than stack k whose heights are less than T) are

sorted in the increasing order of their priorities, and the

positions of the destination stacks are denoted by their

differences from that of the stack determined by the

constructive heuristics. In the block layout of Fig. 2, for

example, the block to be retrieved next is block (1, 1)

and the relocatable block is (1, 3), which is associated

with 12x . The candidates for its destination stack are

stacks 2 and 3 whose priorities are 4 and 2, respectively.

Therefore, 3, 2 is the sorted sequence of stacks. Since

the destination stack determined by the constructive

heuristics is stack 2, 12x should be either -1 or 0, which

means that the destination stack is stack 3 or stack 2,

respectively. Obviously, a zero solution matrix in this

encoding always represents the solution by the

constructive heuristics. Therefore, it will be easy to

search around the heuristic solution intensively under

this encoding method.

2.3. Variable Neighborhood Search

Based on the representation of a solution explained in

the preceding subsection, a variable neighborhood

search algorithm is applied. The initial solution is

computed by applying a local search from the solution

obtained by the constructive heuristics. The

neighborhood of the incumbent solution in the local

search is defined by those generated by changing the

value of an element of the solution matrix. The

incumbent solution is updated by the first improvement

rule: it is updated immediately when a better solution is

found in the neighborhood.

Next, the incumbent solution is perturbed

randomly. The following three types of perturbations

are employed in turns:

1. Insertion/Deletion

An element is inserted into or deleted from a

row of the solution matrix with an equal

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2014
ISBN 978-88-97999-39-3; Bruzzone, Del Rio Vilas, Longo, Merkuryev, Piera Eds

171

probability of 0.5. In the case of insertion, an

element with zero is inserted.

2. Modification

The value of an element ijx is changed

randomly.

3. Interchange

Values of two elements
1ijx and

2ijx in the

same row are interchanged.

One of these perturbations is applied to randomly

chosen rows and/or positions. Then, the local search is

started again from this new incumbent solution. After

these are repeated for some number of iterations, the

incumbent solution is replaced by the current best

solution, and then it is perturbed so that the local search

can be started again from it.

It is possible that no destination stack exists for

some value of ijx . In this case, the feasibility of a

solution is ensured by modulo operation.

The pseudocode of the proposed algorithm is

summarized in Fig. 3. InsertionDeletion(X , p) in line

8 perturbs the solution matrix X by the insertion and

deletion operations, and p specifies the total number of

insertion and deletion operations applied, which is

given by  8/Np . Similarly, Modification(X , p) and

Interchange(X , p) apply the modification and

interchange operations, respectively, and the total

numbers of operations applied are  16/Np and

 4/Np , respectively. After these perturbations are

applied 9nrepeat times, the incumbent solution is

replaced by the best solution in line 23. If the best

solution is not updated successively for 8 times,

nrepeat is increased by 1, whose maximum value is

restricted to 6.

All the parameters in the algorithm were

determined by preliminary experiments.

3. NUMERICAL EXPERIMENTS

The proposed algorithm was applied to the 12500

benchmark instances by Zhu et al. (2012). The

algorithm was coded in C and the experiments were

conducted on a desktop computer with an Intel Core i7-

2700K CPU (3.5GHz) by changing the maximum

number of iterations (maxiter) from 100 to 5000. To

examine the effectiveness of the algorithm, the results

are compared with optimal or best solutions obtained by

the exact algorithms (Zhu et al. 2012; Tanaka and Takii

2014).

Table 1 summarizes the results. T and S denote

the maximum height of stacks and the number of stacks,

respectively, and n denotes the number of instances.

“obj” and “time” are the average objective value and the

average CPU time in seconds, respectively. In addition,

“best” denotes the average objective value of optimal or

best solutions found by the exact algorithms (Zhu et al.

2012; Tanaka and Takii 2014) as well as the proposed

algorithm, and “heur” the average objective value of the

constructive heuristics in 2.1, “ini” the average

objective value of the initial solution (the solution

obtained by applying the local search from the solution

shown in “heur”. Boldface in the “obj” columns means

that all the solutions yield the best objective values. The

average CPU time for the initial solution is omitted

because it was less than 0.01s. From this table, we can

observe that the proposed algorithm is able to find good

solutions quickly. Indeed, the best solutions for 85

instances among 180 unsolved instances by the exact

algorithms were updated by the proposed algorithm.

4. CONCLUSION

This study proposed a variable neighborhood search

algorithm for the block relocation problem. Numerical

experiments showed that the algorithm is able to find

good solution in a short time. We will be able to

improve the performance of the local search in more

sophisticated frameworks such as the tabu search

algorithm, but it is left for future research. Extending

the algorithm for the unrestricted problem is also left for

future research.

1: Obtain an initial solution matrix incumbentX .

2: incumbentbest XX  , 1i .

3: 1nrepeat  , 0notupdated  .

4: while True do

5: for 1j to nrepeat do

6: for 1k to 9 do

7: case  3/k of

8: 1: InsertionDeletion(incumbentX , k)

9: 2: Modification(incumbentX , 3k)

10: 3: Interchange(incumbentX , 6k)

11: endcase

12: Apply the local search from incumbentX .

13: if incumbentX is better than bestX then

14: incumbentbest XX 

15: 1notupdated 

16: endif

17: if maxiteri then

18: Output bestX and terminate.

19: endif

20: 1 ii

21: endfor

22: endfor

23: bestincumbent XX 

24: 1notupdatednotupdated 

25: if 8notupdated  then

26: 0notupdated 

27)6 ,1nrepeatmax(nrepeat 

28: endif

29: endwhile

Figure 3: Pseudocode of the Algorithm

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2014
ISBN 978-88-97999-39-3; Bruzzone, Del Rio Vilas, Longo, Merkuryev, Piera Eds

172

Table 1: Computational Results for the Instances by Zhu et al. (2012)

REFERENCES

Caserta, M., Voβ, S., 2009. Corridor selection and fine

tuning for the corridor method, Lecture Notes in

Computer Science, 5851: 163–175.

Caserta, M., Voβ, S., Sniedovich, M., 2011. Applying

the corridor method to a blocks relocation

problem, OR Spectrum, 33: 915–929.

Forster, F., Bortfeldt, A., 2012. A tree search procedure

for the container relocation problem, Computers &

Operations Research, 39: 299–309.

Petering, M.E.H., Hussein, M.I., 2013. A new mixed

integer problem and extended look-ahead heuristic

algorithm for the block relocation problem,

European Journal of Operational Research, 231:

120–130.

Jin, B., Lim, A., Zhu, W., 2013. A greedy look-ahead

heuristic for the container relocation problem,

Lecture Notes in Computer Science, 7906: 181–

190.

Mladenović, N., Hansen, P., 1997. Variable

neighborhood search, Computers & Operations

Research, 24: 1097–1100.

Hansen, P., Mladenović, N., Pérez, J.A.M., 2010.

Variable neighborhood search: methods and

applications, Annals of Operations Research, 175:

367–407.

Caserta, M., Schwarze, S., Voβ, S., 2012. A

mathematical formulation and complexity

considerations for the blocks relocation problem,

European Journal of Operational Research, 219:

96–104.

Zhu, W., Qin, H., Lim, A., Zhang, H., 2012. Iterative

deepening A
*
 algorithms for the container

relocation problem, IEEE Transactions on

Automation Science and Engineering, 9: 710–722.

Tanaka, S., Takii, K., 2014. A faster branch-and-bound

algorithm for the block relocation problem, to be

presented at 2014 IEEE International Conference

on Automation Science and Engineering, August

18-22, Taipei (Taiwan).

T S n best heur ini
 100 500 1000 5000

 obj time obj time obj time obj time

3 6 300 6.64 6.71 6.64 6.64 0.00 6.64 0.01 6.64 0.02 6.64 0.06

 7 300 7.77 7.85 7.78 7.77 0.00 7.77 0.02 7.77 0.02 7.77 0.09

 8 300 8.93 9.01 8.93 8.93 0.01 8.93 0.02 8.93 0.03 8.93 0.14

 9 300 10.37 10.46 10.37 10.37 0.01 10.37 0.03 10.37 0.04 10.37 0.20

 10 300 11.59 11.73 11.60 11.59 0.01 11.59 0.03 11.59 0.06 11.59 0.27

4 6 400 12.51 12.91 12.57 12.51 0.01 12.51 0.02 12.51 0.03 12.51 0.13

 7 400 14.50 14.96 14.57 14.51 0.01 14.50 0.03 14.50 0.05 14.50 0.21

 8 400 16.72 17.35 16.83 16.73 0.01 16.72 0.04 16.72 0.07 16.72 0.32

 9 400 18.46 18.98 18.53 18.46 0.02 18.46 0.05 18.46 0.10 18.46 0.49

 10 400 20.54 21.21 20.69 20.55 0.02 20.54 0.07 20.54 0.14 20.54 0.71

5 6 500 19.01 20.24 19.26 19.04 0.01 19.01 0.03 19.01 0.05 19.01 0.25

 7 500 22.52 24.01 22.86 22.56 0.01 22.53 0.05 22.52 0.09 22.52 0.41

 8 500 25.73 27.45 26.10 25.78 0.02 25.73 0.07 25.73 0.14 25.73 0.68

 9 500 28.31 30.16 28.81 28.38 0.02 28.33 0.10 28.31 0.20 28.31 0.99

 10 500 31.45 33.44 31.98 31.53 0.03 31.47 0.14 31.45 0.28 31.45 1.43

6 6 600 26.96 29.68 27.67 27.09 0.01 26.98 0.05 26.98 0.09 26.96 0.45

 7 600 31.00 34.27 31.91 31.16 0.02 31.04 0.08 31.02 0.15 31.01 0.76

 8 600 35.31 38.89 36.30 35.54 0.03 35.38 0.12 35.34 0.24 35.32 1.20

 9 600 39.52 43.49 40.70 39.82 0.04 39.62 0.18 39.58 0.36 39.54 1.85

 10 600 43.31 47.80 44.66 43.68 0.05 43.46 0.25 43.40 0.51 43.34 2.62

7 6 700 35.45 40.29 36.94 35.83 0.02 35.56 0.08 35.51 0.15 35.46 0.74

 7 700 41.10 46.94 42.92 41.58 0.03 41.30 0.12 41.24 0.24 41.17 1.23

 8 700 46.25 52.80 48.33 46.87 0.04 46.51 0.20 46.43 0.40 46.33 2.06

 9 700 51.93 59.16 54.33 52.64 0.06 52.26 0.29 52.17 0.59 52.05 3.04

 10 700 57.04 65.14 59.72 57.91 0.08 57.49 0.43 57.37 0.86 57.19 4.49

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2014
ISBN 978-88-97999-39-3; Bruzzone, Del Rio Vilas, Longo, Merkuryev, Piera Eds

173

