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ABSTRACT 

In container yards, containers are stacked in several 

tiers due to space limitation. In order to retrieve a 

container from a container yard, it is necessary to 

relocate containers stacked on it. The aim of the block 

relocation problem, which is also known as the 

container relocation problem, is to minimize the number 

of relocations required for retrieving containers 

according to a specified order. This study will propose a 

variable neighborhood search algorithm for the problem 

and its effectiveness will be examined by numerical 

experiments. 
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1. INTRODUCTION 

Container terminals in ports play an important role as a 

temporary storage for container transshipment between 

maritime and land transports. Containers in a container 

terminal are stacked in container yards to reduce space 

requirements. The containers compose multiple bays in 

a container yard, and each bay consists of several 

stacks. Containers are retrieved by a gantry crane that 

travels between bays and within a bay (Fig. 1). Since 

only containers on the top of stacks are accessible from 

the crane, those above the target container should be 

relocated to other stacks before it is retrieved. This 

relocation should complete within a bay because the 

crane travel from one bay to another is time-consuming 

compared to that within a bay. The purpose of the block 

relocation problem, which is also known as the 

container relocation problem, is to minimize the number 

of relocations necessary to retrieve all containers in a 

bay according to a specified retrieval order. 

Formally, the problem considered in this study is 

described as follows.  

Suppose a container bay composed of S  stacks 

whose maximum height (the maximum number of tiers) 

is restricted to T . Blocks (containers) are stored in tiers 

and the number of blocks in stack i  is given by 

)( TNi  . The total number of blocks is denoted by 

 


S

i iNN
1

. The block in the j th tier of stack i  from 

the bottom is referred to as block ),( ji . Each block 

),( ji  is given a distinct integer priority ijP  

)1( NPij   where a smaller value means a higher 

priority (an earlier retrieval order). Figure 2 illustrates 

an example of a block layout with 4S  and 4T . 

The number in each block denotes the priority ijP . 

The following two operations are available for 

retrieving all the blocks from the bay according to their 

priorities: 

 

1. Relocation 

A block on the top of a stack is moved to the 

top of another stack whose height is less than 

T . 

2. Retrieval 

A block with the highest priority is retrieved 

from the bay if it is on the top of a stack. 
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Figure 1: Containers in Container Yard 

Figure 2: An Example of Block Layout 
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The objective of the block relocation problem is to 

find an optimal sequence of these two operations that 

minimizes the number of operations required. In 

practice, the objective function of the block relocation 

problem is the number of relocation operations because 

the number of retrieval operations is identical to the 

number of blocks and hence is constant. 

There are two types of problem settings for the 

block relocation problem. In the restricted problem, the 

relocatable blocks are restricted to the one on the top of 

the stack that includes the block retrieved next, i.e. the 

block with the highest priority. In the layout of Fig. 2, 

block (1, 3) is the unique relocatable block because 

block (1, 1) has the highest priority and should be 

retrieved next. On the other hand, such a restriction is 

not imposed on relocatable blocks in the unrestricted 

problem. Hence, blocks (1, 3), (2, 1), (3, 3), and (4, 4) 

are all relocatable in this problem. This study will 

consider the restricted problem. In the following, the 

highest priority of the blocks in stack i , namely, 

ij
Nj

i PQ
i


1
min  is referred to as the priority of stack i . 

There have been several studies on heuristic 

algorithms for the block relocation problem (eg. Caserta 

and Voβ 2009; Caserta and Voβ 2011; Forster and 

Bortfeldt 2012; Petering and Hussein 2013; Jin et al. 

2013). However, to the best of the author's knowledge, 

algorithms based on local search have not been studied 

extensively so far. The purpose of this study is to 

construct a local search algorithm and to examine its 

effectiveness by numerical experiments. 

 

2. PROPOSED ALGORITHM 

The proposed algorithm is a variant of the variable 

neighborhood search (Mladenović and Hansen 1997; 

Hansen et al. 2010). The constructive greedy heuristics 

by Caserta et al., 2011 is utilized for both computing the 

initial solution and representing solutions. 

 

2.1. Constructive Heuristics 

Suppose that the relocatable block in the current block 

layout is block ),( ji  )minarg( kk Qi  .This heuristics 

relocates block ),( ji  to stack *k  determined as 

follows: 

 

1. If there exists a stack whose height is less than 

T  and whose priority is lower (larger) than ijP , 

k
QPTN

Qk
kijk 


,

* minarg . 

2. Otherwise, k
TN

Qk
k 

 maxarg*
. 

 

In the block layout in Fig. 2, the relocatable block 

(1, 3) is relocated to stack 2 according to the first 

condition. 

 

2.2. Solution Representation 

In the proposed algorithm, a solution is represented by 

destination stacks of relocatable blocks, which form a 

)1()1(  TN  matrix )( ijxX  . Each element ijx  is 

associated with a relocatable block as follows. Suppose 

that all the blocks with priorities higher than i  have 

already been retrieved and that the block with priority 

i is block ),( lk  )( iPkl  . Since this block is to be 

retrieved next, the blocks above it should be relocated to 

other stacks, whose destination stacks are determined by 

ijx . More specifically, the destination stack of the j th 

block ),( jlk   is determined by ijx . 

Instead of encoding the destination stack directly, 

the proposed method encodes into ijx  the relative 

position of the destination stack in order to take 

advantage of the constructive heuristics. More 

specifically, the candidate destination stacks (the stacks 

other than stack k  whose heights are less than T ) are 

sorted in the increasing order of their priorities, and the 

positions of the destination stacks are denoted by their 

differences from that of the stack determined by the 

constructive heuristics. In the block layout of Fig. 2, for 

example, the block to be retrieved next is block (1, 1) 

and the relocatable block is (1, 3), which is associated 

with 12x . The candidates for its destination stack are 

stacks 2 and 3 whose priorities are 4 and 2, respectively. 

Therefore, 3, 2 is the sorted sequence of stacks. Since 

the destination stack determined by the constructive 

heuristics is stack 2, 12x  should be either -1 or 0, which 

means that the destination stack is stack 3 or stack 2, 

respectively. Obviously, a zero solution matrix in this 

encoding always represents the solution by the 

constructive heuristics. Therefore, it will be easy to 

search around the heuristic solution intensively under 

this encoding method. 

 

2.3. Variable Neighborhood Search 

Based on the representation of a solution explained in 

the preceding subsection, a variable neighborhood 

search algorithm is applied. The initial solution is 

computed by applying a local search from the solution 

obtained by the constructive heuristics. The 

neighborhood of the incumbent solution in the local 

search is defined by those generated by changing the 

value of an element of the solution matrix. The 

incumbent solution is updated by the first improvement 

rule: it is updated immediately when a better solution is 

found in the neighborhood. 

Next, the incumbent solution is perturbed 

randomly. The following three types of perturbations 

are employed in turns: 

 

1. Insertion/Deletion 

An element is inserted into or deleted from a 

row of the solution matrix with an equal 
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probability of 0.5. In the case of insertion, an 

element with zero is inserted. 

2. Modification 

The value of an element ijx  is changed 

randomly. 

3. Interchange 

Values of two elements 
1ijx  and 

2ijx  in the 

same row are interchanged. 

 

One of these perturbations is applied to randomly 

chosen rows and/or positions. Then, the local search is 

started again from this new incumbent solution. After 

these are repeated for some number of iterations, the 

incumbent solution is replaced by the current best 

solution, and then it is perturbed so that the local search 

can be started again from it. 

It is possible that no destination stack exists for 

some value of ijx . In this case, the feasibility of a 

solution is ensured by modulo operation. 

The pseudocode of the proposed algorithm is 

summarized in Fig. 3. InsertionDeletion( X , p ) in line 

8 perturbs the solution matrix X  by the insertion and 

deletion operations, and p  specifies the total number of 

insertion and deletion operations applied, which is 

given by  8/Np . Similarly, Modification( X , p ) and 

Interchange( X , p ) apply the modification and 

interchange operations, respectively, and the total 

numbers of operations applied are  16/Np  and 

 4/Np , respectively. After these perturbations are 

applied 9nrepeat times, the incumbent solution is 

replaced by the best solution in line 23. If the best 

solution is not updated successively for 8 times, 

nrepeat  is increased by 1, whose maximum value is 

restricted to 6. 

All the parameters in the algorithm were 

determined by preliminary experiments. 

 

3. NUMERICAL EXPERIMENTS 

The proposed algorithm was applied to the 12500 

benchmark instances by Zhu et al. (2012). The 

algorithm was coded in C and the experiments were 

conducted on a desktop computer with an Intel Core i7-

2700K CPU (3.5GHz) by changing the maximum 

number of iterations ( maxiter ) from 100 to 5000. To 

examine the effectiveness of the algorithm, the results 

are compared with optimal or best solutions obtained by 

the exact algorithms (Zhu et al. 2012; Tanaka and Takii 

2014). 

Table 1 summarizes the results. T  and S  denote 

the maximum height of stacks and the number of stacks, 

respectively, and n  denotes the number of instances. 

“obj” and “time” are the average objective value and the 

average CPU time in seconds, respectively. In addition, 

“best” denotes the average objective value of optimal or 

best solutions found by the exact algorithms (Zhu et al. 

2012; Tanaka and Takii 2014) as well as the proposed 

algorithm, and “heur” the average objective value of the 

constructive heuristics in 2.1, “ini” the average 

objective value of the initial solution (the solution 

obtained by applying the local search from the solution 

shown in “heur”. Boldface in the “obj” columns means 

that all the solutions yield the best objective values. The 

average CPU time for the initial solution is omitted 

because it was less than 0.01s. From this table, we can 

observe that the proposed algorithm is able to find good 

solutions quickly. Indeed, the best solutions for 85 

instances among 180 unsolved instances by the exact 

algorithms were updated by the proposed algorithm. 

 

4. CONCLUSION 

This study proposed a variable neighborhood search 

algorithm for the block relocation problem. Numerical 

experiments showed that the algorithm is able to find 

good solution in a short time. We will be able to 

improve the performance of the local search in more 

sophisticated frameworks such as the tabu search 

algorithm, but it is left for future research. Extending 

the algorithm for the unrestricted problem is also left for 

future research. 

1: Obtain an initial solution matrix incumbentX . 

2: incumbentbest XX  , 1i . 

3: 1nrepeat  , 0notupdated  . 

4: while True do 

5:    for 1j  to nrepeat do 

6:       for 1k  to 9 do 

7:          case  3/k  of 

8:             1: InsertionDeletion( incumbentX , k ) 

9:             2: Modification( incumbentX , 3k ) 

10:             3: Interchange( incumbentX , 6k ) 

11:          endcase 

12:          Apply the local search from incumbentX . 

13:          if incumbentX  is better than bestX  then 

14:             incumbentbest XX   

15:             1notupdated   

16:          endif 

17:          if maxiteri  then 

18:             Output bestX  and terminate. 

19:          endif 

20:          1 ii  

21:       endfor 

22:    endfor 

23:    bestincumbent XX   

24:    1notupdatednotupdated   

25:    if 8notupdated   then 

26:       0notupdated   

27       )6 ,1nrepeatmax(nrepeat   

28:    endif 

29: endwhile 

Figure 3: Pseudocode of the Algorithm 
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Table 1: Computational Results for the Instances by Zhu et al. (2012) 
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T  S n best heur ini 
 100  500  1000  5000 

 obj time  obj time  obj time  obj time 

3 6 300 6.64 6.71 6.64  6.64 0.00  6.64 0.01  6.64 0.02  6.64 0.06 

 7 300 7.77 7.85 7.78  7.77 0.00  7.77 0.02  7.77 0.02  7.77 0.09 

 8 300 8.93 9.01 8.93  8.93 0.01  8.93 0.02  8.93 0.03  8.93 0.14 

 9 300 10.37 10.46 10.37  10.37 0.01  10.37 0.03  10.37 0.04  10.37 0.20 

 10 300 11.59 11.73 11.60  11.59 0.01  11.59 0.03  11.59 0.06  11.59 0.27 

4 6 400 12.51 12.91 12.57  12.51 0.01  12.51 0.02  12.51 0.03  12.51 0.13 

 7 400 14.50 14.96 14.57  14.51 0.01  14.50 0.03  14.50 0.05  14.50 0.21 

 8 400 16.72 17.35 16.83  16.73 0.01  16.72 0.04  16.72 0.07  16.72 0.32 

 9 400 18.46 18.98 18.53  18.46 0.02  18.46 0.05  18.46 0.10  18.46 0.49 

 10 400 20.54 21.21 20.69  20.55 0.02  20.54 0.07  20.54 0.14  20.54 0.71 

5 6 500 19.01 20.24 19.26  19.04 0.01  19.01 0.03  19.01 0.05  19.01 0.25 

 7 500 22.52 24.01 22.86  22.56 0.01  22.53 0.05  22.52 0.09  22.52 0.41 

 8 500 25.73 27.45 26.10  25.78 0.02  25.73 0.07  25.73 0.14  25.73 0.68 

 9 500 28.31 30.16 28.81  28.38 0.02  28.33 0.10  28.31 0.20  28.31 0.99 

 10 500 31.45 33.44 31.98  31.53 0.03  31.47 0.14  31.45 0.28  31.45 1.43 

6 6 600 26.96 29.68 27.67  27.09 0.01  26.98 0.05  26.98 0.09  26.96 0.45 

 7 600 31.00 34.27 31.91  31.16 0.02  31.04 0.08  31.02 0.15  31.01 0.76 

 8 600 35.31 38.89 36.30  35.54 0.03  35.38 0.12  35.34 0.24  35.32 1.20 

 9 600 39.52 43.49 40.70  39.82 0.04  39.62 0.18  39.58 0.36  39.54 1.85 

 10 600 43.31 47.80 44.66  43.68 0.05  43.46 0.25  43.40 0.51  43.34 2.62 

7 6 700 35.45 40.29 36.94  35.83 0.02  35.56 0.08  35.51 0.15  35.46 0.74 

 7 700 41.10 46.94 42.92  41.58 0.03  41.30 0.12  41.24 0.24  41.17 1.23 

 8 700 46.25 52.80 48.33  46.87 0.04  46.51 0.20  46.43 0.40  46.33 2.06 

 9 700 51.93 59.16 54.33  52.64 0.06  52.26 0.29  52.17 0.59  52.05 3.04 

 10 700 57.04 65.14 59.72  57.91 0.08  57.49 0.43  57.37 0.86  57.19 4.49 
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