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ABSTRACT 
In future smart electric grids, the control of electric 
vehicles’ charging processes will be a central aim of 
demand side management. While this control enables 
the avoidance of possible critical peak-load values, the 
optimal coordination with supply from fluctuating 
renewables offers promising possibilities for power grid 
operation. Within this work, an optimization approach 
will be proposed that uses evolutionary optimization for 
computing performant control-policies for all EVs 
within a complex system. These policies are able to 
satisfy the EV users’ energy demand on the one hand, 
while guaranteeing secure operation of the power grid 
on the other hand. Considering a high amount of EVs 
allows further the optimal integration of e-mobility into 
large-scale distribution networks. 

 
Keywords: Electric Vehicle Charging Control, 
Probabilistic Power Flow, Evolutionary Optimization, 
Simulation Optimization 

 
1. INTRODUCTION 
Optimal integration of electric vehicles (EVs) into 
modern power grids plays an essential role in future 
power system operation and control. Numerous 
investigations have been performed in order to identify 
optimal charging policies for meeting objectives like 
peak-shaving, optimization of power quality metrics or 
maximal usage of power from renewable sources. 
Especially this interaction of zero-emission supply 
plants and electrified vehicles is seen as central concern, 
since the usage of energy from renewables directly 
influences the reachable environmental benefit of 
electric vehicles. Here, both the supply as well as the 
demand side show nondeterministic behavior which has 
to be tackled in some way. Therefore, a simulation-
based optimization approach will be demonstrated, that 
uses metaheuristic algorithms for finding optimal 
charging schedules of an electric car fleet within a given 
system. This approach is capable of considering both, 
the physical power grid as well as the individual 
electrified traffic through probabilistic simulation 

models, where all nondeterministic influences can be 
incorporated dynamically into the heuristic search 
process. Each solution candidate will be evaluated a 
sufficient number of times through simulation in order 
to increase the accuracy of the performance estimation 
within an uncertain environment. 
 
2. OPTIMAL CHARGING CONTROL 
Various researchers examine the problem of integrating 
electric vehicles optimally into power grids, where 
direct control of charging power is seen as 
advantageous for reaching optimal load characteristics 
(Clement, 2008; Clement, 2009; Sortomme, 2011). 
Central challenge beside the formulation and 
computation of the optimization problem itself is the 
consideration of the individual behavior that mainly 
characterizes electric vehicle charging load. Different 
approaches try to tackle this task using static load 
profiles (Clement, 2008), representations of behavior 
using Queuing Theory (Vlachogiannis, 2009) or 
simulation via Monte Carlo methods (Sortomme, 2011).  

All these approaches generally have in common 
that they try to compute static load profiles that are later 
used within certain optimization methods. Thus, there is 
no interrelated process that incorporates probabilistic 
behavior during the search for optimal solutions. 
Especially when talking about optimization in uncertain 
systems, simulation-based optimization with heuristic 
algorithms has been applied to various fields of 
applications and will be the central approach within this 
work. Here, with probabilistic simulation models, the 
uncertain system can be modeled holistically consisting 
of traffic simulation, probabilistic models of renewable 
supply as well as the power grid simulation model for 
the computation of resulting load flows. 

 
3. SIMULATION-BASED POLICY EVOLUTION 
The complete system architecture is shown in Figure 1: 
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Here, the problem represented by simulation consists of 
the distribution grid load flow simulation itself, 
probabilistic models for fluctuating supply from 
renewable plants as well as the simulation of the EV 
fleet. The solution candidate represented by a charging 
policy for all EVs is passed to the simulation for 
evaluation, returning its resulting fitness value to the 
optimization algorithm.  

In the end, the finally best found charging policy 
should satisfy end-users energy demand while 
considering probabilistic driving behavior of EVs 
(traffic simulation), guaranteeing secure distribution 
grid operation (power grid simulation) as well as 
maximizing usage of power from fluctuating 
renewables (probabilistic power supply models). 

 
3.1. Policy Optimization 
In existing research literature on integrating EV fleets 
into distribution grids, the common approach is to 
implement an optimization procedure that computes 
optimal charging schedules based on existing 
knowledge and forecasted system behavior in advance. 
But in an uncertain and volatile system such as the 
underlying one consisting of probabilistically behaving 
agents and intermittent power supply from renewable 
plants, it would be more appropriate to make charging 
decisions on the fly, reacting to dynamic situations 
quickly and in a flexible manner.  

Therefore, a policy-based approach is the central 
aim of this work. Here, each agent (EV) receives a 
flexible policy rather than a static schedule that makes it 
react to its environment dynamically during operation, 
but in a globally optimal manner when deciding about 
the agent’s charging. This policy is principally the same 
for all agents, but using individual data from agent’s 
environment, it leads to agent-specific charging 
behavior.  

The basic concept is indicated in Figure 2, where 
the policy evaluation is indicated for a given EV that 

arrives at an arbitrary location which is equipped with 
charging infrastructure. 

 
Figure 2: Policy Control 

. 
 
Principally, the optimized policy which finally decides 
the EV’s charging power at a given time step is 
synthesized from atomic rules that consider agent-
specific parameters from its environment. Out of these 
parameters, atomic rules are used to compute 
information out of them for evaluating EVs power 
demand as well as the state of its environment. Here, 
three different parameter classes can be distinguished 
from each other: 

 
• Agent-specific parameters concern the EV’s 

driving behavior, like its residence time at the 
actual charging station or its likelihood of 
getting parked at another charging spot later 
on. 

• Local parameters consider other EVs 
immediately affecting the local situation in the 
power grid. For example, if the power grid is 
stressed locally because of a high amount of 
EVs charging at the same bus, their charging 
power has to be reduced in the next time step 
in order to avoid critical power flow 
conditions. 

• Global parameters consider information 
describing the whole system’s state, like the 
total load to the distribution grid, totally 
expected supply from renewables or financial 
aspects considering costs of electrical power 
supply. 

 
Using these parameters as input for the atomic rules, 
each rule delivers a numeric result in the interval [0,1] 
that defines the agent’s priority for charging. 0 would 
indicate that the corresponding EV should not charge at 
the actual time step, 1 advises it to charge with 
maximum power. Since a variety of criteria has to be 
taken into account for computing the optimal charging 
power of an EV, as can be estimated from the parameter 

Figure 1: Simulation Optimization 
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classes defined above, multiple rules have to be defined 
that finally have to be merged in some way. Table 1 
gives an overview of all defined atomic rules. 
 
Tabelle 1: Atomic Rules 

Rule Acronym 
Total Residence Time so Far RT 
Estimated Time to Departure ETTD 
Passed Residence Time at Location PRT 
Actual Irradiance AI 
Past Irradiance During PRT PI 
Estimated Irradiance to ETTD EI 
Actual Wind Speed AWS 
Past Wind Speed During PRT PWS 
Estimated Wind Speed to ETTD EWS 
Actual Base Load ABL 
Past Base Load During PRT PBL 
Estimated Base Load to ETTD EBL 
Actual Price AP 
Past Price During PRT PP 
Estimated Price to ETTD EP 
Distance to Peak Load DTB 
Mean MVA Rating MMVA 
Number of EVs Same Location NREVL 
Mean number EVs Same Location 
During PRT 

MNREVL 

Number of EVs Charging Globally NREVC 
Number of EVs charging, Same 
Location 

NREVCL 

Mean Charging Rate per EV Globally MCR 
Mean Charging Rate, Same Location MCRL 
Agent’s Already Charged Energy ACE 

 
More detailed information about the atomic rules 

can be obtained from (Hutterer, 2012). Summing up, all 
these rules combined are capable of considering not 
only the single EV’s needs, but also describe the global 
system’s state concerning power grid operation and 
behavior of the total EV fleet. These rules now have to 
be combined in an appropriate way in order to compute 
the final charging power of an affected EV. 
 
3.2. Rule Synthesis 
Within this work, two approaches will be compared for 
constructing the final policy out of atomic rules. The 
aim of this so called “rule synthesis” is to compute a 
final value that describes the charging decision out of 
the set of atomic rules that are needed in order to 
consider all needed information from the agent’s 
environment. 
 
3.2.1. Synthesis with Linear Combination 
The first approach uses a fixed mathematical structure 
given in Equation 1. Here, the agent’s charging rate 
(CR) at time step i is computed using a linear 
combination of all rules r, each rule multiplied by a 
specific weight w, divided by the amount of rules j. This 
kind of rule synthesis is a common approach from 
production logistics as used in (Vonolfen, 2011) and 

(Beham, 2009). Here, the control variables that are 
manipulated during the heuristic search process are the 
weights wj that describe the impact of each rule. For this 
kind of real-valued optimization, evolution strategies 
according to (Beyer, 2002) are applied. 

j

wr
CR

j

J

j
ij

i

*
1

,∑
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Even if the rule synthesis using a linear combination is 
quite intuitive and leads to competitive results, it seems 
to be inflexible, disregarding the possibility of 
identifying potential nonlinear relationships between 
atomic rules. Therefore, a second approach is 
introduced that allows a more flexible, nonlinear 
combination of atomic rules, namely genetic 
programming (GP) (Affenzeller, 2009).  

 
3.2.2. Synthesis with Genetic Programming 
Extending the principle concept of genetic algorithms, 
GP uses evolutionary-inspired concepts for the heuristic 
search process, but is able to evolve computer 
programs. Within the herein described work, these 
computer programs take the appearance of structured 
trees, where leafs represent rules as defined before, that 
are combined by arbitrary mathematical operators 
which are incorporated by inner nodes. This kind of 
solution representation allows arbitrary mathematical 
combinations of atomic rules.  

 
To give some overview on GP, finding first research 
activities in the 1980s, the computationally expensive 
concept of GP was pushed majorly by the steady 
increase of computational power in the last two 
decades. One of the most important publications in this 
field was (Koza, 1992), stating GP as automated 
invention machine for numerous practical applications 
like the artificial ant problem or later applications of 
symbolic regression (Affenzeller, 2009), to name the 
most popular ones, while (Langdon 2002) finally 
provides profound analysis in the context of GA schema 
analysis. This ability of GP to automatically construct 
new solutions (programs) to a given problem is enabled 
by its special kind of solution representation, that is not 
restricted to a fixed structure (like fixed-length one-
dimensional array as in standard GA), but forms a 
hierarchical computer program of variable length, 
consisting of functions and terminals. In the herein 
presented application, functions are inner nodes of the 
structured tree, while terminals can be constants or 
atomic rules. Figure 3 gives an exemplary tree that 
could represent a policy for the addressed problem. 
 

Here, inner nodes that represent functions are 
indicated in dotted style, while terminal nodes are 
plotted in solid style. In this case, the policy would 
consider the estimated time to departure of the 
appropriate EV, the actual irradiance and thus the 
supply from photovoltaics, as well as the mean charging 
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rate of all other EVs in order to not stress the 
distribution grid with peak charging load. Out of this 
mathematical combination, finally a numerical value is 
derived that represents a charging decision. 

 

 
Figure 3: Exemplary GP Solution 
 

The great advantage of this kind of flexible 
solution representation compared to the application of a 
fixed-structure linear combination is that GP is able to 
find nonlinear coherences between atomic rules with 
variable length. Using any arbitrary combination of 
mathematical operators as inner nodes, the degree of 
freedom for finding performant policies gets increased 
drastically. Further, since GP is not constrained to use 
the hole set of atomic rules for solution creation, 
simpler policies can be found too. In the end, its 
disadvantage is that the possible solution space is 
increased drastically.  

For overcoming this problem and pruning the 
solution space, the possible grammar is restricted to the 
following operators in Table 2. The grammar in this 
case defines the set of functions (inner nodes) that is 
applied for evolving solution candidates during the 
genetic search process. Further information on usable 
grammar can be obtained in the appropriate literature 
(Affenzeller, 2009) as well as in HeuristicLab 
(www.heuristiclab.com) which is used as heuristic 
optimization framework. 

 
Table 2: GP Grammar 
Arithmetic Operators {+, -, x, /} 

Conditions {IfThenElse} Conditional Operators 
Comparisons {<,>} 

 
3.3.  Policy Evaluation 
The principal process of the policy evaluation can be 
obtained from Figure 4: in each time step of the 
simulation, if the agent remains at a charging station, 
the policy evaluation is initiated in order to compute the 
resulting charging power. After gathering all the 
information the agent needs (global, local as well as 
agent-specific parameters), the respective outcome of 
the atomic rules is computed. Combining these results 
according to the rule synthesis method, the final 
charging power can be derived. The atomic rules are 
generally constructed such that each rule as well as its 
respective weight results in a numeric value in the 
interval [0,1]. Thus, for the linear combination, the final 
results exists in the interval [0,1] as well. This value 
therefore is interpreted as charging rate and is 

multiplied by the maximum possible charging power 
per EV. Thus, when using rule synthesis with linear 
combination, no invalid charging power can occur from 
the policy, as long as the decision variables are kept 
within [0,1]. 

When using rule synthesis with GP, the policy 
directly outputs the desired charging power. Here, 
possibly invalid values may result from the solution 
candidate (negative charging power, too high charging 
power) because of the high degree of freedom when 
building the structured tree, which has to be managed in 
some way. A reason could be for example the addition 
of a constant or a multiplication of rules with some 
value. In this work, this is considered the following 
way: if the resulting value is less than 0 or greater than 
the maximum charging power, the value is set to 0 or 
the maximum value respectively and a penalty is added 
to the fitness term according to the degree of the 
violation. Since power-flow simulation may not 
converge in exceptional conditions (for example if the 
resulting charging load takes unmanageable values), 
this penalty is turned into a so called “death penalty” for 
the respective solution. Thus, if a solution candidate 
leads to non-convergence of the load-flow simulation, it 
is assumed to be useless. 
 
3.4. Solution Evaluation 
The evaluation procedure of a solution candidate is 
indicated in Figure 4. 

 
Figure 4: Solution Evaluation 
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When evaluating a solution candidate in 
simulation, first of all the traffic simulation is 
performed over the whole time interval, in order to 
describe the expected EV behavior. Having this 
behavior in form of computed driving profiles for each 
agent, its resulting charging power is computed for each 
time step that follows from the evaluation of the 
respective policy. With the charging load caused by all 
agents, further the power flow simulation is executed 
for each time step considering probabilistic injection 
from renewable sources, in order to compute the 
actually occurring load flow in the physical distribution 
grid. With the final power flow solution, all constraints 
as well as the objective function can be evaluated in 
order to derive the fitness of the solution.  

 
3.5. Evaluation under Uncertainty 

When evaluating a solution candidate in an 
uncertain environment, estimating its real performance 
is a ubiquitous as well as challenging task which might 
be computationally expensive. This is due to the 
stochastic nature of the evaluation as well as the slow 
convergence of a performance measure estimator 
relative to the number of runs performed. 

 
The obtained fitness from a simulation run can be 

formulized as  
ε+= ff~ , 

where the obtained fitness value f~  deviates from the 
real fitness caused by some probabilistic noise ε . This 
noise is mainly defined in literature as being normally 
distributed (Stagge, 1998; Fu 2002) by ),( σμΝ  with 
zero mean. While the evolutionary search proceeds 
rapidly it may happen that some other individual than 
the best is chosen as parent for the next generation, 
caused by an inaccurate estimate of f . This may lead 
to a decrease in progress velocity and may also lead the 
evolutionary search into unpromising regions of the 
search space. Thus, doing multiple evaluation runs and 
averaging over the obtained values of f~ is important 
for estimating the candidates’ real performance. Since 
The accuracy of this estimate cannot improve faster 
than N/1 , where N is the number of computed 
samples as indicated in Figure 4, choosing an 
appropriate value of N is essential when addressing 
computational costs of evaluation. Different approaches 
have been investigated both in literature as well as by 
the authors of this paper (Hutterer, 2012) for inferring N 
in an adaptive way during the search process. Within 
this paper, it is seen as sufficient to experimentally 
derive a performant value for N and fix it. 

 
4. SETTING UP EXPERIMENTS 
As highlighted in the introductory chapter, many 
researchers are investigating this optimal integration of 
EVs into distribution grids nowadays. When 
considering the treated power grid levels, these 

researchers mainly focus on quite low-level integrations 
in mostly radial distribution feeders or even lower. The 
special advantage of the herein used policy-based 
control approach, as discussed extensively in (Hutterer, 
2012), is that it enables the consideration of huge EV 
fleets and thus consider their integration from a higher 
level point of view. Hence, in this work, larger 
distribution networks are considered that will be 
discussed as follows. 
 
4.1. Large-Scale Distribution Grid Testcases 

In order to guarantee universality for the 
considerations within this work, the well known IEEE 
distribution grid testcases1 will be used and modified for 
representing valid test instances. Throughout the grid, a 
huge EV fleet is modeled, where each single agent can 
produce a charging load of maximum 11kW, related to 
a three-phase charging process with 400V and 16A, as 
exemplarily possible when using a Mennekes VDE 
(Type 2) plug connector. This configuration, as existing 
for example when charging the well known Tesla 
Roadstar, is certainly one of the most important 
technical specifications in this field in actual 
developments and is seen to get a common standard 
throughout EV-manufacturers.  

The power grid simulation model is being 
downscaled such that the cumulated charging power of 
all agents sums up to 20% of the daily peak load 
maximally in each considered case. For representing 
individual electrified traffic from a power grid point of 
view, the relevant behavior that has to be modeled 
describes time interval and location of each EV when 
being parked to a charging station and thus being ready 
for charging. Based on real-world traffic data from an 
Austrian survey2, two most relevant driving patterns can 
be extracted for a week day, namely the pattern of full-
time and half-time workers. Within each pattern, three 
different locations are modeled for parking at home, at 
work and at any location in free time (shopping, 
education, entertainment). For each location, different 
probabilities for the existence of a charging 
infrastructure are modeled, describing a possible future 
infrastructure scenario from an actual point of view: at 
home, each EV user has an own charging station. At 
work, there is a probability of 50% that an appropriate 
infrastructure is available. For locations where potential 
users remain in free time, this probability is assumed to 
be 25%.  

The resulting charging load at a specific location is 
than being correlated to a corresponding bus within the 
distribution grid model. Within each simulation run, 
synthetic driving profiles are computed from prototype-

                                                           
1 Testcases provided by University of Washington, UW 
Electrical Engineering. (1999). 
http://www.ee.washington.edu/research/pstca/ 
2 Federal Ministry for Transport, Innovation and 
Technology, Verkehr in Zahlen 2007, 
http://www.bmvit.gv.at/verkehr/gesamtverkehr/statistik/
downloads/viz07gesamt.pdf, Retrieved 09.07.2012 
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profiles, being randomized in terms of driving time and 
residence time at specific locations. Thus, the 
probabilistic behavior of individual traffic can be 
modeled based on real-world data and incorporated into 
the evolutionary optimization process enabled by the 
simulation-based approach.  

 
For modeling the power output of renewable 

sources, wind power plants as well as large-scale 
photovoltaic plants are added to the distribution 
network. For wind power modeling, the corresponding 
wind speed values at the plant sites are sampled from a 
Weibull-distribution as described in (Vlachogiannis, 
2011), where their power curves are assumed  such that 
each plant reaches its maximum output at cut-off 
windspeed. Using the sampled wind speed value, with 
the plant’s power curve the resulting power output of 
the plant can be modeled. 

Photovoltaic-plants follow a typical daily 
generation profile that is randomized in each time step 
with a standard deviation of 10%, considering a typical 
uncertainty in photovoltaic-generation forecasting. All 
renewable supply models are designed such that they 
cumulated produce in average 50% of the energy 
needed for all EVs in the system.  

In order to consider realistic power grid conditions, 
the base load is modeled as described in the IEEE 
testcases, but randomized too for simulating a 
probabilistic demand side with a standard deviation of 
4%. 

A thorough discussion of the used modeling 
approach can be obtained from (Hutterer, 2012). The 
configurations for both test cases are shown in Tabelle 
13, where the distribution of renewable plants 
throughout the grid model as well as the EV fleet are 
defined. 
 
Table 3: Test Cases Configurations 
14-Bus Testcase 
# EVs 960 
# Photovoltaic Plants 3 
# Wind Plants 2 
Bus # with Photovoltaic 
Injection 

6,8,10 

Bus # with Wind Power 
Injection 

3,12 

Bus # with fixed 
Generation 

2 

Slack Bus # 1 
118-Bus Testcase 
# EVs 4366 
# Photovoltaic Plants 9 
# Wind Plants 3 
Bus # with Photovoltaic 
Injection 

12,31,46,54,59,61,87,103,1
11 

Bus # with Wind Power 
Injection 

25,49,100 

Bus # with fixed 
Generation 

10,26,65,66,69,80,89 

Slack Bus # 1 
5. PROBLEM FORMULATION 
A formal description of the optimization problem shall 
now be stated in order to underline the application: 
given a fleet of EVs within a distribution grid, a vector 
Pc = [Pc1,1,...,Pci,n] describes the active charging power 
of each EV n at time step i over a given time interval. 
At the end of this considered planning frame, each EV 
must have received a specific amount of energy for 

satisfying its daily demand: i

I

i
nin tPcE Δ≤ ∑

=1
,min, *  

This constraint is valid assuming that batteries are big 
enough and the one-way distance of an EV does not 
lead to a low state of charge. Since additional load 
caused by related charging of electric vehicles can 
endanger power grid security, constraints have to be 
satisfied that ensure secure distribution grid operation. 
Thus, within each time step i, power flow constraints 
have to be considered. Steady-state security constraints 
can be formulated (Wood, 1996) for ensuring lower and 
upper bounds for generator real and reactive power 
output Pg and Qg,  

max,min, jjj PgPgPg ≤≤
 

max,min, jjj QgQgQg ≤≤
’ 

maximal power flows over transmission lines Pf, 

max,kk PfPf ≤
’ 

 as well as admissible voltage deviations VΔ , 

max,min, kkk VVV Δ≤Δ≤Δ
, 

for all buses j=1…J and all transmission lines k=1…K. 
 

While satisfying all formulated constraints, the 
objective function shall be defined of minimizing 
financial costs of power supply.  

Since charging power is restricted to a maximum 
value, an additional constraint has to be formulated 
when using the GP-based policy synthesis as discussed 
in section 3.2, being formulized as: 

max,, cni PPc ≤ . 
What is important to mention at this point is that 

the vector Pc as introduced above containing the 
charging power of each EV at each time step is never 
present in a static manner. Each value Pci,n results from 
a single evaluation of the policy within the simulation 
of a certain time step. Therefore, as indicated in Figure 
4, the load flow in the system is computed within each 
time step in order to check the constraints. The finally 
obtained fitness function is stated in Equation 2, where 

iPcCV )(  is a vector containing the quadratic violations 

of each constraint, multiplied by k  being a vector with 
fixed weights of the constraint violation value relative 
to the financial cost function value. 

∑
=

+
24

1
])(*)([

i
ii PcCVkPcCf      (2) 
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Since the objective concerns financial costs of 
energy supply for charging electric vehicles, a daily 
price profile is assumed that is taken from the European 
energy exchange as used in (Hutterer, 2012). 
 
6. EXPERIMENTAL RESULTS 
For the experiments performed within this work, 
evolutionary algorithms are used, depending on the 
applied policy synthesis approach. For optimizing the 
weights for the fixed-structure linear combination, 
Evolution Strategies (ES) are applied according to 
(Beyer, 2002). ES are generally performant 
metaheuristics for real-valued optimization problems 
and proven to be suitable for simulation-based 
optimization (Hutterer, 2012). For the GP-based 
evolution of policies, Genetic Algorithms (GA) are 
applied. Both classes of algorithms are executed in 
HeuristicLab based on their standard implementations. 
The finally used configurations can be obtained from 
Table 4 and Table 5. 
 
Table 4: Algorithm Configurations 14-Bus Testcase 
Type (5+15)-ES 
Manipulator SelfAdaptiveNormalAllPositions- 

Manipulator 
Recombinator Average Crossover 
Parents per Child 2 
Stopping 
Criterium 

5000 Generations 

Sampling Sample Each Solution 3 Times 
Type GA 
Manipulator MultiSymbolicExpressionTree- 

Manipulator 
Recombinator SubtreeCrossover 
Population Size 250 
Mutation 
Probability 

15% 

Stopping 
Criterium 

200 Generations 

Sampling Sample Each Solution 3 Times 
 
Table 5: Algorithm Configuration 118-Bus Testcase 
Type (5+10)-ES 
Manipulator SelfAdaptiveNormalAllPositions- 

Manipulator 
Recombinator Average Crossover 
Parents per Child 2 
Stopping 
Criterium 

5000 Generations 

Sampling Sample Each Solution 6 Times 
Type GA 
Manipulator MultiSymbolicExpressionTree- 

Manipulator 
Recombinator SubtreeCrossover 
Population Size 150 
Mutation 
Probability 

15% 

Stopping 
Criterium 

200 Generations 

Sampling Sample Each Solution 6 Times 
 
Further details on the used configurations can be 
obtained from HeuristicLab and from the appropriate 
literature respectively (Affenzeller, 2009). 
 
6.1. Results for the 14 Bus Testcase 
The obtained best solution is shown in Table 6, showing 
the obtained weights for the given atomic rules. It can 
easily be seen, that most rules are weighted near to 1, in 
order to construct the final policy out of them.  

The finally best found solution for the GP-based 
rule synthesis cannot be visualized at this point, since it 
forms a structured tree of length 28 (number of used 
nodes) and depth 5. Some statements can even be done: 
the best found tree uses only 9 out of the 24 atomic 
rules for synthesizing the policy. This means that the 
rules are highly correlated to each other (which is 
obvious) and not all of them are needed for finding 
valid policies. Table 7 shows same numeric results. 

 
Table 6: Best Solution 14 Bus Testcase 
Rule Weight Rule Weight 
RT 1 AP 0.9166 
ETTD 1 PP 0.6943 
PRT 1 EP 0.9166 
AI 0.9613 DTB 0.9572 
PI 0.9959 MMVA 0.8560 
EI 0.2370 NREVL 0.6080 
AWS 0.9814 MNREVL 0.9393 
PWS 1 NREVC 0.8132 
EWS 0.5910 NREVCL 1 
ABL 1 MCR 0.9939 
PBL 0.9861 MCRL 0.9548 
EBL 1 ACE 0.6544 
 

Table 7: Numeric Results 14 Bus Testcase 
Fitness Standard Deviation of 

Fitness: 100 Replications 
Synthesis with Linear Combination 
476.20 1.04% 
GP-based Synthesis 
512.01 3.1% 
 

The fitness addresses the resulting costs (in Euro) for 
supplying energy for charging the EV fleet. These costs 
only address the energy-generation costs, which vary in 
a range of around 0.03 to 0.08 per kWh over a typical 
day at the European energy exchange (EEX). The price 
that a consumer would have to pay additionally contains 
taxes as well as a fee to the power grid operator. Each 
solution is evaluated over 100 simulation runs for final 
results in order to obtain its robustness within the 
uncertain environment. Therefore, the standard 
deviation of the obtained fitness over these 100 runs is 
used as robustness estimator. 
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As can be seen in Table 7, the synthesis with fixed 
structure linear combination outperforms GP-based 
synthesis in both metrics. Thus, the harder heuristic 
search caused by an increased solution space when 
trying to find a valid solution with GP dominates its 
advantage of finding nonlinear coherences between 
rules. 

 
Nevertheless, both approaches are capable of 

finding feasible (all constraints are satisfied) solutions 
with optimized financial costs of energy supply. 

 
6.2. Results for the 118 Bus Testcase 

As can be seen from the algorithm configurations, 
for the second testcase, quite lower population sizes 
have been used. This is due to the fact that this testcase 
considers 4366 EVs and therefore the evaluation of the 
policy when simulating its performance has to be 
executed more than 4 times more often than in the 
smaller testcase. Thus, population size has been 
decreased in order to keep the optimization 
computationally tractable. 

 
Table 8: Best Solution 118 Bus Testcase 
Rule Weight Rule Weight 
RT 1.0000 AP 0 
ETTD 0.2406 PP 0.0812 
PRT 1.0000 EP 0.6627 
AI 0.3997 DTB 0.2803 
PI 1.0000 MMVA 1.0000 
EI 1.0000 NREVL 0.3945 
AWS 1.0000 MNREVL 1.0000 
PWS 0.3103 NREVC 0.0654 
EWS 0.6412 NREVCL 1.0000 
ABL 0.2891 MCR 0.9603 
PBL 0.4047 MCRL 0.4853 
EBL 1.0000 ACE 0.8274 
 

Table 9: Numeric Results 14 Bus Testcase 
Fitness Standard Deviation of 

Fitness: 100 Replications 
Synthesis with Linear Combination 
2556.13 6.0% 
GP-based Synthesis 
2612.20 6.8% 

 
 The best found solution as visualized in Table 8 
differs with respect to the smaller testcase drastically, 
considering a much higher variation in the single 
weights. Taking a look at the numerical comparisons in 
Table 9, once more the given fixed structure synthesis 
outperforms the GP-based one. Comparing the reached 
fitness-values of both testcases, in the 14-bus case costs 
of 0.4958 result per single EV, while these costs are 
increased to 0.5854 in the 118-bus case for the best 
solution. Since in both cases same generation costs are 
assumed for the power grid simulation, it can be stated 
that the solution of the smaller testcase has better 

overall quality, proving that the optimization task in the 
second case seems to be harder. 

 
CONCLUSION 
In this work, a simulation optimization framework has 
been proposed that is capable of computing optimal 
charging decisions for a huge fleet of electric vehicles 
for optimally integrating them into distribution grids. 

These decisions are principally performed using 
flexible policies that enable the EVs to act individually 
within a dynamic environment. The respective policies 
are evolved using evolutionary computation techniques, 
where the search space is spanned through a simulation 
ensemble consisting of the electric power grid model, 
electric vehicle behavior models as well as probabilistic 
supply models. Two different representations have been 
formulated and compared to each other that enable the 
synthesis of the final policy using a set of atomic rules. 
Since these variants for rule synthesis majorly influence 
the evolutionary search, comparisons have finally been 
performed for evaluating reachable solution quality 
based on two practical test instances. 
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