RECURSIVE ALGORITHM FOR OPTIMIZATION THE STRUCTURE OF COMPLICATED LOGISTIC, MANUFACTURING AND PROCESSING ENVIRONMENTS

Tiit Riismaa
Institute of Cybernetics at Tallinn University of Technology
Akadeemia tee 21, Tallinn, 12618

titr@ioc.ee

ABSTRACT
A method of description and optimization of the structure of complicated multi-level processing systems is presented. The set of feasible structures for such class of systems is defined. The representation of this set is constructed in terms of the graph theory. The creation and annihilation of levels using the adjacent matrix is presented. A recursive algorithm is constructed to solve the general optimization problem of the structures. For the reduced statement two types of variable parameters are defined: for the level size and for the relations of adjacent levels. For solving the reduced problem the recursive algorithm is constructed, where index of level is the index of recursion. Modelling and optimization of the structure of multi-level processing system illustrate the considered approach.

Keywords: discrete manufacturing and processing environment, optimal multi-level partitioning, optimal restructurization, recursive optimization algorithm.

1. INTRODUCTION
Large-scale problems can be decomposed in many different ways. The current approach for describing and optimizing the structure of hierarchical systems is based on a multi-level partitioning of given finite set in which the qualities of the system may depend on the partitioning.

Examples of problems of this class are aggregation problems, structuring of decision-making systems, database structuring, the problems of multiple distribution or centralization, multi-level tournament systems, multi-level distribution systems, optimal clustering problems.

In a multi-level distribution system each element is a supplier for some lower level elements and a customer for one higher-level element. The zero-level elements are only customers and the unique top-level element is only a supplier. The choice of optimal number of suppliers-customers on each level is a mathematically complicated problem.

The multi-level tournament system (Laslier 1997) is a relatively simple special case of a multi-level processing system. To consider a tournament system, the number of games (pair-wise comparisons) is a quadratic function of the number of participants. This is a very quickly increasing function. If the number of participants is large, the number of games is very large. This is a reason why the multi-level approach is useful for the selection of the winner. From the tournaments of the first level the winners are distributed between the tournaments of the next level. The second level tournaments winners are going to the third level, until the winner is selected. Suppose the goal is to minimize the number of all games. If the price for all games is the same, the solution of the problem is well known. Each tournament has two participants and only one game is played. If the prices of games for different levels are different or constraints to the number of levels are active, a relatively complicated nonlinear integer programming problem arises.

Simulation model of logistic processes in container terminals allows considering terminal operation at three different partitioning levels (Merkuryev et al. 2003). The optimal structuring procedure considered in this paper is based on the full set of hierarchical trees of a feasible structure that could be composed from the given set of elements (Riismaa 1993). In the context of this statement an element is considered as a logical part of the processing system that is carrying out an identifiable mission and obeys the necessary functionality and autonomy (Berio and Vernadat 1999; Littover et al. 1999; Mesarovic et al. 1970, 1975; Miyawaki et al. 2005; Bruzzone et al. 2007).

The hierarchical structure is considered as a hierarchical tree. The variable parameters are also parameters that describe this tree. The feasible set of structures is a set of hierarchical trees. The arising optimization problem is an integer mathematical programming problem. In general, the solving process is exposed as a systematized selection of all possible feasible variations.

The assembling problem as well as a broad class of design and implementation problems, such as component selection in production systems, reconfiguration of manufacturing structures, optimization of the hierarchy of decision making systems, multi-level aggregation, creation and cancellation of levels (Riismaa and Randvee 2003), etc. can be mathematically stated as a multi-level selection

The main difficulty from the point of view of optimization is that the number of subsets of partitioning is a variable parameter. For corresponding optimization problem it means that upper limit of summation, the number of summands (integer valued parameter) is a variable parameter. The search for a solution to this nonlinear integer programming problem is considered mathematically complicated.

2. FEASIBLE SET OF STRUCTURES
Consider all s-levels hierarchies, where nodes on level i are selected from the given nonempty and disjoint sets and all selected nodes are connected with selected nodes on adjacent levels. All oriented trees of this kind form the feasible set of hierarchies (Riismaa 2003, 1993; Riismaa and Randvee 2002; Riismaa et al. 2003).

The illustration of this formalism is given in Figure 1 (Riismaa 2005a).

![Figure 1: Feasible Set of Structures](image)

<table>
<thead>
<tr>
<th>Figure 1: Feasible Set of Structures</th>
</tr>
</thead>
</table>

Suppose Y_i is an adjacent matrix of levels i and $i-1$ ($i = 1,...,s$). Suppose m_{ij} is the number of 0-level elements (level of object).

Theorem 1. All hierarchies with adjacent matrixes \{\(Y_1,...,Y_s\)\} from the described set of hierarchies satisfy the condition

\[
Y_s \cdots Y_1 = (1,...,1)
\]

(1)

The assertion of this theorem is determined directly (Riismaa 2003).

3. OPTIMAL MULTI-LEVEL PARTITIONING
The general optimization problem is stated as a problem of selecting the feasible structure which corresponds to the minimum of total loss given in the separable-additive form:

\[
\min_{Y_1,...,Y_s} \left\{ \sum_{i=1}^{s} \sum_{j=1}^{m_i} h_{ij} \left(\sum_{r=1}^{m_j-1} d_{jr} y_{jr}^r \right) \right\} \left(Y_s \cdots Y_1 = (1,...,1) \right)
\]

(2)

Here \(h_{ij}(\cdot)\) is an increasing loss function of j-th element on i-th level and d_{jr} is the element of \(m_i \times m_{i-1}\) matrix D_i for the cost of connection between the i-th and $(i-1)$-th level (Littover et al. 2001).

The meaning of functions \(h_{ij}(k)\) depends on the type of the particular system.

By the optimization of the structure of multi-level tournament system, the loss inside the j-th tournament on i-th level is

\[
h_{ij}(k_{ij}) = d_{ij} k_{ij} (k_{ij} - 1),
\]

where k_{ij} is the number of participants of j-th tournament of i-th league.

By complexity optimization of hierarchically connected subsystems, the loss inside the j-th set of partitioning on i-th level may be defined as follows:

\[
h_{ij}(k) = \sum_{q=1}^{k} a_{ijq} k! \frac{k!}{q!(k-q)!}.
\]

In this case the value of the function \(h_{ij}(k)\) describes the number of all nonempty subsystems inside the j-th set of partitioning on i-th level.

Mathematically this problem is an integer programming problem with a non-continuous objective function and with a finite feasible set. For solving this kind of nonlinear integer programming problems only non-effective classical methods are known.

4. RECURSIVE ALGORITHM FOR SOLVING THE GENERAL PROBLEM OF STRUCTURE OPTIMIZATION
In this part the algorithm that selects the feasible structures corresponding to the minimum of total loss will be introduced.

Denote

\[
N_i = \left\{ Y_i \left| \sum_{j=1}^{m_i} y_{jr}^i = 1 \right. \left(r = 1,...,m_0 \right) \right\},
\]

\[
N_i = \left\{ Y_i Y_{i-1} \cdots Y_1 = (1,...,1) \right\} (i = 2,...,s).
\]

The set N_i contain all i-th elements Y_i of feasible presentations \{\(Y_i,...,Y_s\}\} ($i = 1,...,s$).
Define the functions

\[f_i(Y_i) = \left\{ \sum_{j=1}^{m_i} h_{ij} \left(\sum_{r=1}^{m_i} d_{jr}^i y_{jr}^i \right) \right\} \sum_{j=1}^{m_j} y_{jr}^i = 1 \}, \]

\[f_s(Y_s) = f_{i-1}(Y_{i-1}) + \]

\[= \min_{Y_{i-1} = N_{i-1}} \left\{ \sum_{j=1}^{m_i} h_{ij} \left(\sum_{r=1}^{m_i} d_{jr}^i y_{jr}^i \right) \right\} \]

\[(i = 2, ..., s).\]

The function \(f_i(Y_i) \) represents the minimum loss on levels \(1, ..., i \) for adjacent matrix \(Y_i \).

Define the sets

\[P_i(Y_i) = Arg \min_{i-1} \left\{ f_i(Y_{i-1}) \right\}. \]

\[P_s(Y_s) = Arg \min \{ f_s(Y_s) \}. \]

The set \(P_i(Y_i) \) is a set of adjacent matrixes \(Y_{i-1} \) minimizing the loss on levels \(1, ..., i \) for this adjacent matrix \(Y_i \).

The solution in terms of defined sets is sequential:

Step 1. For each \(Y_i \in N_i \) compute the function \(f_i(Y_i) \) and construct the set

\[P_i(Y_i) = Arg \min \{ f_i(Y_{i-1}) \}. \]

Step i. For each \(Y_i \in N_i \) construct recursively by the index \(i \) the sets

\[P_i(Y_i) \quad (i = 2, ..., s - 1). \]

Step s. For each \(Y_s \in N_s \) construct the set

\[P_s(Y_s) = Arg \min \{ f_s(Y_s) \}. \]

Now the following set is constructed:

\[U_s^* = \left\{ Y_s^* \in \bar{P}_s(Y_s^*) \right\}. \]

This set contain formally all presentations of optimal structures from the feasible set.

On step \(i \) for each adjacent matrix \(Y_i \) find the optimal adjacent matrixes \(Y_{i-1} \) must be founded. It means that this minimization method is very general, but time-consuming and applicable for small-dimensional problems. For this reason we further slightly restrict the class of problems by simplifying the functional dependencies in the objective function.

5. REDUCED PROBLEM OF STRUCTURE OPTIMIZATION

Now an important special case is considered where the connection cost between the adjacent levels is the property of the supreme level: each row of the connection cost matrices between the adjacent levels consists of equal elements.

There is a possibility to change the variables and to represent the problem so that

\[d_{jr}^i = 1; \quad i = 1, ..., s; \quad j = 1, ..., m_i; \quad r = 1, ..., m_{i-1}. \]

Now the total loss depends only on sums

\[\sum_{i=1}^{m_i} y_{jr}^i = k_j, \]

where \(k_j \) is the number of edges beginning in the \(j \)-th node on \(i \)-th level.

Recognize also that \(\sum_{j=1}^{m_i} k_j = p_{i-1} \), \(i = 1, ..., s \),

where \(p_i \) is the number of nodes on \(i \)-th level. If to suppose additionally that \(h_{i1}(k) \leq \cdots \leq h_{imi}(k) \) for each integer \(k \), the general problem (2) transforms into the two mutually dependent phases:

\[\min \left\{ \sum_{i=1}^{s} g_i(p_{i-1}, p_i) | (p_1, ..., p_{i-1}) \in W^s \right\}. \]

over \(p_1, ..., p_{s-1} \)

where

\[\sum_{i=1}^{s} g_i(p_{i-1}, p_i) \]
\[g_i(p_{i-1}, p_i) = \min \left\{ \sum_{j=1}^{p_i} h_{ij}(k_j) \left| \sum_{j=1}^{p_i} k_j = p_{i-1} \right. \right\} \]

over \(k_{i1}, \ldots, k_{ip_i} \)

(4)

\[W^s = \left\{ (p_1, \ldots, p_{s-1}) \left| 1 \leq p_i \leq p_{i-1} \right. \right\} \]

Free variables of the inner minimization (4) are used to describe the connections between the adjacent levels. Free variables of the outer minimization (3) are used for the representation of the number of elements at each level.

6. RECURSIVE ALGORITHM FOR SOLVING THE REDUCED PROBLEM OF STRUCTURE OPTIMIZATION

Consider the functions that represent the minimum loss on levels 1, 2, ..., \(i \), if there are exactly \(p_i \) nodes on \(i \)-th level:

\[G_i(p_i) = g_i(p_0, p_i), \]

\[G_i(p_i) = \min \{ G_{i-1}(p_{i-1}) + g_i(p_{i-1}, p_i) \mid p_{i-1} \in A_{i-1} \} \]

over \(p_{i-1} \)

and

\[A_i = \{1, \ldots, m_i\}, \quad i = 1, \ldots, s. \]

For each \(p_i \in A_i \) define the sets

\[B_i(p_i) = \text{Arg} \min \{ G_{i-1}(p_{i-1}) + g_i(p_{i-1}, p_i) \mid p_{i-1} \in A_{i-1} \} \]

\[B_i(p_i) = \{ p_0 \} \]

and for each \(p_{i-1} \in B_i(p_i) \), \(p_i \in A_i \) the sets

\[T_i(p_{i-1}, p_i) = \left\{ k_{i1}, \ldots, k_{ip_i} \right\} = \min \left\{ \sum_{j=1}^{p_i} h_{ij}(k_j) \left| \sum_{j=1}^{p_i} k_j = p_{i-1} \right. \right\} \]

For each \(p_i \in A_i \) denote

\[T_i(p_i) = \bigcup T_i(p_{i-1}, p_i). \]

over all \(p_{i-1} \in B_i(p_i), i = 1, \ldots, s. \)

The solution in terms of defined sets is sequential:

Step 1. For each \(p_i \in A_i \) compute the function \(G_i(p_i) \) and construct the set \(T_i(p_0, p_i) \).

Step i. For each \(p_i \in A_i \) construct recursively by the index \(i \)

\[G_i(p_i), \quad B_i(p_i) \]

and

\[T_i(p_{i-1}) = \bigcup T_i(p_{i-1}, p_i) \quad \text{over} \quad p_{i-1} \in B_i(p_i), \quad i = 2, \ldots, s. \]

As a result of the application of given steps we have for every \(p_i \in A_i \)

all \(G_i(p_i), \quad B_i(p_i), \quad T_i(p_{i-1}) \), \(i = 2, \ldots, s \).

Now let us consider following sets:

\[V_s = \left\{ (p_1^*, \ldots, p_{s-1}^*, 1) \right\} \]

Each vector \((p_1^*, \ldots, p_{s-1}^*, 1) \in V_s \) defines a target set:

\[Q_s = \left\{ \left(T_i(p_0, p_i^*), T_2(p_i^*, p_2^*), \ldots, T_{s-1}(p_{s-2}^*, p_{s-1}^*), T_s(p_{s-1}^*) \right) \right\} \]

Each element from the set \(Q_s \) corresponds to all feasible representations \(\{Y^*_1, Y^*_2, \ldots, Y^*_s\} \) that do not modify the minimal value of the cost function.

7. ACADEMIC EXAMPLE: OPTIMIZATION THE STRUCTURE OF MULTI-LEVEL PROCESSING SYSTEM

Consider the processing of \(n \) parts (Riimaa 2002, 2005b). In case of one processing unit the overall processing and waiting time for all \(n \) parts is...
proportional to n^2 and is a quickly increasing function. For this reason the hierarchical system of processing can be suitable. From zero-level (level of object) the parts will be distributed between p_1 first-level processing units and processed (aggregated, packed etc.) by these units. After that the parts will be distributed between p_2 second-level processing units and processed further and so on. From p_{s-1} ($s - 1$)-level the units will be sent to the unique s-level unit and processed finally. The cost of processing and waiting on level i is approximately

$$g_i(p_{i-1}, p_i) = (d_i l_i p_{i-1} / p_i)^2 p_i + a_i p_i (i = 1, ..., s).$$

Here l_i is the number of aggregates produced by one robot on level i (a number of boxes for packing unit), d_i is a loss unit inside the level i, and a_i is the cost of i-th level processing unit. The variable parameters are the number of processing units on each level $p_i (i = 1, ..., s)$.

The goal is to minimize the total loss (processing time, waiting time, the cost of processing units) over all levels:

$$\min_{i=1}^{s} (d_i l_i)$$(p_{i-1} p_i)^2 + (p_{i-1} - p_i)^2 + 1$$

over natural $p_i (i = 1, ..., s)$. Here $[p]$ is the integer part of p. The goal function of this discrete programming problem is discrete-convex (Theorem 4). It is possible to extend this function to convex function (Theorems 2 and 3) and get a solvable convex programming problem using the method of local searching.

8. CONCLUSION

Many discrete or finite hierarchical structuring problems can be formulated mathematically as a multi-level partitioning procedure of a finite set of nonempty subsets. This partitioning procedure is considered as a hierarchy where to the subsets of partitioning correspond nodes of hierarchy and the relation of containing of subsets define the arcs of the hierarchy. The feasible set of structures is a set of hierarchies (oriented trees) corresponding to the full set of multi-level partitioning of given finite set.

Each tree from this set is represented by a sequence of Boolean matrices, where each of these matrices is an adjacency matrix of neighboring levels. To guarantee the feasibility of the representation, the sequence of Boolean matrices must satisfy some conditions – a set of linear and nonlinear equalities and inequalities.

Examples of problems of this class are aggregation problems, structuring of decision-making systems, database structuring, multi-level tournament systems, multi-level distribution systems.

The recursive algorithms considered in the paper are double-cycle optimization algorithms. The inner cycle increases the number of elements inside of the current level by one unit, and outer cycle on each step increases the number of levels by one unit. On each iteration step a one-parameter integer programming problem must be solved.

The formalism described in this paper enables to state the reduced problem as a two-phase mutually dependent discrete optimization problem and construct some classes of solution methods. Variable parameters of the inner minimization problem are used for the description of connections between adjacent levels. Variable parameters of the outer minimization problem are used for the presentation of the number of elements on each level.

The two-phase statement of optimisation problem guarantees the possibility to extend the objective function to the convex function and enables to construct algorithms for finding the global optimum. In this paper for finding the global optimum the method of local searching is constructed. On each step of iteration the calculation of the value of objective function is required only on some vertices of some kind of unit cube.

The approach is illustrated by a multi-level production system example.

REFERENCES

AUTHORS BIOGRAPHY

Tiit Riismaa graduated from the Tartu University in 1972 as a mathematician and received a Ph.D. in 1986 in mathematical cybernetics at the Computing Centre of Russian Academy of Science. Now he is the researcher for the Institute of Cybernetics at Tallinn University of Technology. His fields of research include mathematical theory of systems, hierarchical systems, optimization of structures, mathematical programming.