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ABSTRACT 
A method of description and optimization of the 
structure of complicated multi-level processing systems 
is presented. The set of feasible structures for such class 
of systems is defined. The representation of this set is 
constructed in terms of the graph theory. The creation 
and annihilation of levels using the adjacent matrix is 
presented. A recursive algorithm is constructed to solve 
the general optimization problem of the structures. For 
the reduced statement two types of variable parameters 
are defined: for the level size and for the relations of 
adjacent levels. For solving the reduced problem the 
recursive algorithm is constructed, where index of level 
is the index of recursion. Modelling and optimization of 
the structure of multi-level processing system illustrate 
the considered approach. 
 
Keywords: discrete manufacturing and processing 
environment, optimal multi-level partitioning, optimal 
restructurization, recursive optimization algorithm. 
 
1. INTRODUCTION 
Large-scale problems can be decomposed in many 
different ways. The current approach for describing and 
optimizing the structure of hierarchical systems is based 
on a multi-level partitioning of given finite set in which 
the qualities of the system may depend on the 
partitioning. 

Examples of problems of this class are aggregation 
problems, structuring of decision-making systems, 
database structuring, the problems of multiple 
distribution or centralization, multi-level tournament 
systems, multi-level distribution systems, optimal 
clustering problems. 

In a multi-level distribution system each element is 
a supplier for some lower level elements and a customer 
for one higher-level element. The zero-level elements 
are only customers and the unique top-level element is 
only a supplier. The choice of optimal number of 
suppliers-customers on each level is a mathematically 
complicated problem. 

The multi-level tournament system (Laslier 1997) 
is a relatively simple special case of a multi-level 
processing system. To consider a tournament system, 
the number of games (pair-wise comparisons) is a 

quadratic function of the number of participants. This is 
a very quickly increasing function. If the number of 
participants is large, the number of games is very large. 
This is a reason why the multi-level approach is useful 
for the selection of the winner. From the tournaments of 
the first level the winners are distributed between the 
tournaments of the next level. The second level 
tournaments winners are going to the third level, until 
the winner is selected. Suppose the goal is to minimize 
the number of all games. If the price for all games is the 
same, the solution of the problem is well known. Each 
tournament has two participants and only one game is 
played. If the prices of games for different levels are 
different or constraints to the number of levels are 
active, a relatively complicated nonlinear integer 
programming problem arises. 

Simulation model of logistic processes in container 
terminals allows considering terminal operation at three 
different partitioning levels (Merkuryev et al. 2003). 

The optimal structuring procedure considered in 
this paper is based on the full set of hierarchical trees of 
a feasible structure that could be composed from the 
given set of elements (Riismaa 1993). In the context of 
this statement an element is considered as a logical part 
of the processing system that is carrying out an 
identifiable mission and obeys the necessary 
functionality and autonomy (Berio and Vernadat 1999; 
Littover et al. 1999; Mesarovic et al. 1970, 1975; 
Miyawaki et al. 2005; Bruzzone et al. 2007). 

The hierarchical structure is considered as a 
hierarchical tree. The variable parameters are also 
parameters that describe this tree. The feasible set of 
structures is a set of hierarchical trees. The arising 
optimization problem is an integer mathematical 
programming problem. In general, the solving process 
is exposed as a systematized selection of all possible 
feasible variations. 

The assembling problem as well as a broad class of 
design and implementation problems, such as 
component selection in production systems, 
reconfiguration of manufacturing structures, 
optimization of the hierarchy of decision making 
systems, multi-level aggregation, creation and 
cancellation of levels (Riismaa and Randvee 2003), etc. 
can be mathematically stated as a multi-level selection 
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problem (Randvee et al. 2000; Riismaa and Randvee 
1997; Vain et al. 2005, 2002, 1999). 

The main difficulty from the point of view of 
optimization is that the number of subsets of 
partitioning is a variable parameter. For corresponding 
optimization problem it means that upper limit of 
summation, the number of summands (integer valued 
parameter) is a variable parameter. The search for a 
solution to this nonlinear integer programming problem 
is considered mathematically complicated. 
 
2. FEASIBLE SET OF STRUCTURES 
Consider all s-levels hierarchies, where nodes on level i 
are selected from the given nonempty and disjoint sets 
and all selected nodes are connected with selected nodes 
on adjacent levels. All oriented trees of this kind form 
the feasible set of hierarchies (Riismaa 2003, 1993; 
Riismaa and Randvee 2002; Riismaa et al. 2003). 

The illustration of this formalism is given in Figure 
1 (Riismaa 2005a). 
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Figure 1: Feasible Set of Structures 
 

Suppose iY is an adjacent matrix of levels i and 

( )sii ,...,1  1 =− . Suppose 0m is the number of 0-level 

elements (level of object). 
 

Theorem 1. All hierarchies with adjacent matrixes 
{ }sYY ,...,1 from the described set of hierarchies satisfy 
the condition 
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The assertion of this theorem is determined directly 

(Riismaa 2003). 
 
3. OPTIMAL MULTI-LEVEL PARTITIONING 
The general optimization problem is stated as a problem 
of selecting the feasible structure which corresponds to 
the minimum of total loss given in the separable-
additive form:
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Here ( )⋅ijh is an increasing loss function of j-th 

element on i-th level and i
jrd is the element of 

1−× ii mm  matrix Di for the cost of connection between 

the i-th and (i-1)-th level (Littover et al. 2001). 
The meaning of functions ( )khij  depends on the 

type of the particular system. 
By the optimization of the structure of multi-level 

tournament system, the loss inside the j-th tournament 
on i-th level is 

 

( ) ( )1−= ijij
i
jijij kkdkh , 

 

where ijk  is the number of participants of j-th 

tournament of i-th league. 
By complexity optimization of hierarchically 

connected subsystems, the loss inside the j-th set of 
partitioning on i-th level may be defined as follows: 
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In this case the value of the function ( )khij  

describes the number of all nonempty subsystems inside 
the j-th set of partitioning on i-th level. 

Mathematically this problem is an integer 
programming problem with a non-continuous objective 
function and with a finite feasible set. For solving this 
kind of nonlinear integer programming problems only 
non-effective classical methods are known. 
 
4. RECURSIVE ALGORITHM FOR SOLVING 

THE GENERAL PROBLEM OF SRTUCTURE 
OPTIMIZATION 

In this part the algorithm that selects the feasible 
structures corresponding to the minimum of total loss 
will be introduced. 
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The set iN contain all i-th elements iY of feasible 

presentations { }sYY ,...,1  ( )si ,...,1= . 
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Define the functions 
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( )si ,...,2= . 
 
The function ( )ii Yf  represents the minimum 

loss on levels i,...,1  for adjacent matrix iY . 

Define the sets 
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The set ( )ii YP  is a set of adjacent matrixes 

1−iY minimizing the loss on levels i,...,1 for this 

adjacent matrix iY . 

The solution in terms of defined sets is 
sequential: 
Step 1. For each 11 NY ∈  compute the function ( )11 Yf  
and construct the set  

( ) ( ){ }111111 min NYYfArgYP ∈= . 

Step i.  For each ii NY ∈  construct recursively by 

the index i the sets  
( )ii YP    ( )1,...,2 −= si . 

Step s. For each ss NY ∈  construct the set 

( ) ( ){ }ssssss NYYfArgYP ∈=∗ min
~

. 

Now the following set is constructed: 
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This set contain formally all presentations of 

optimal structures from the feasible set.  
On step i  for each adjacent matrix iY  find the 

optimal adjacent matrixes 1−iY must be founded. It 

means that this minimization method is very general, 
but time-consuming and applicable for small-
dimensional problems. For this reason we further 
slightly restrict the class of problems by simplifying the 
functional dependencies in the objective function. 
 

5. REDUCED PROBLEM OF STRUCTURE 
OPTIMIZATION 

Now an important special case is considered where the 
connection cost between the adjacent levels is the 
property of the supreme level: each row of the 
connection cost matrices between the adjacent levels 
consists of equal elements. 
There is a possibility to change the variables and to 
represent the problem so that  
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where ip  is the number of nodes on i-th level. If to 

suppose additionally that ( ) ( )khkh
iimi ≤⋅⋅⋅≤1  for 

each integer k , the general problem (2) transforms into 
the two mutually dependent phases: 
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Free variables of the inner minimization (4) are used to 
describe the connections between the adjacent levels. 
Free variables of the outer minimization (3) are used for 
the representation of the number of elements at each 
level. 
 

6. RECURSIVE ALGORITHM FOR SOLVING 
THE REDUCED PROBLEMOF STRUCTURE 
OPTIMIZATION 

Consider the functions that represent the minimum loss 

on levels 1, 2,…, i, if there are exactly ip  nodes on i-th 

level: 
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For each ii Ap ∈  denote 
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The solution in terms of defined sets is 
sequential: 
 

Step 1. For each 11 Ap ∈  compute the function 

( )11 pG  and construct the set ( )101 , ppT . 

 

Step i.  For each ii Ap ∈  construct recursively by the 

index i   
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As a result of the application of given steps we 

have for every ii Ap ∈   
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Now let us consider following sets: 
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Each vector ( ) ss Vpp ∈∗
−

∗ 1,,..., 11  defines a 

target set: 
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Each element from the set sQ  corresponds to all 

feasible representations { }∗∗∗
sYYY ,...,, 21  that do not 

modify the minimal value of the cost function. 
 

7. ACADEMIC EXAMPLE: OPTIMIZATION 
THE STRUCTURE OF MULTI-LEVEL 
PROCESSING SYSTEM 

Consider the processing of n parts (Riismaa 2002, 
2005b). In case of one processing unit the overall 
processing and waiting time for all n  parts is 
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proportional to 2n  and is a quickly increasing function. 
For this reason the hierarchical system of processing 
can be suitable. From zero-level (level of object) the 
parts will be distributed between 1p  first-level 
processing units and processed (aggregated, packed 
etc.) by these units. After that the parts will be 
distributed between 2p  second-level processing units 

and processed further and so on. From 1−sp  (s - 1)-

level the units will be sent to the unique s -level unit 
and processed finally. The cost of processing and 
waiting on level i  is approximately 
 

( ) ( ) iiiiiiiiii papppldppg += −−−
2

111 ,   

),...,1( si = . 
  
Here  il  is the number of aggregates produced by one 

robot on level i  (a number of boxes for packing unit), 

id  is a loss unit inside the level i , and ia  is the cost of 

i-th level processing unit. The variable parameters are 
the number of processing units on each level 
( )sipi ,...,1= . 

The goal is to minimize the total loss (processing 
time, waiting time, the cost of processing units) over all 
levels: 
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over natural ( )sipi ,...,1= . Here [ ]p  is the integer 

part of p . The goal function of this discrete 
programming problem is discrete-convex (Theorem 4). 
It is possible to extend this function to convex function 
(Theorems 2 and 3) and get a solvable convex 
programming problem using the method of local 
searching. 
 

8. CONCLUSION 
Many discrete or finite hierarchical structuring 
problems can be formulated mathematically as a multi-
level partitioning procedure of a finite set of nonempty 
subsets. This partitioning procedure is considered as a 
hierarchy where to the subsets of partitioning 
correspond nodes of hierarchy and the relation of 
containing of subsets define the arcs of the hierarchy. 
The feasible set of structures is a set of hierarchies 
(oriented trees) corresponding to the full set of multi-
level partitioning of given finite set. 

Each tree from this set is represented by a 
sequence of Boolean matrices, where each of these 
matrices is an adjacency matrix of neighboring levels. 

To guarantee the feasibility of the representation, the 
sequence of Boolean matrices must satisfy some 
conditions – a set of linear and nonlinear equalities and 
inequalities. 

Examples of problems of this class are 
aggregation problems, structuring of decision-making 
systems, database structuring, multi-level tournament 
systems, multi-level distribution systems. 

The recursive algorithms considered in the paper 
are double-cycle optimization algorithms. The inner 
cycle increases the number of elements inside of the 
current level by one unit, and outer cycle on each step 
increases the number of levels by one unit. On each 
iteration step a one-parameter integer programming 
problem must be solved. 

The formalism described in this paper enables to 
state the reduced problem as a two-phase mutually 
dependent discrete optimization problem and construct 
some classes of solution methods. Variable parameters 
of the inner minimization problem are used for the 
description of connections between adjacent levels. 
Variable parameters of the outer minimization problem 
are used for the presentation of the number of elements 
on each level. 

The two-phase statement of optimisation 
problem guarantees the possibility to extend the 
objective function to the convex function and enables to 
construct algorithms for finding the global optimum. In 
this paper for finding the global optimum the method of 
local searching is constructed. On each step of iteration 
the calculation of the value of objective function is 
required only on some vertices of some kind of unit 
cube. 

The approach is illustrated by a multi-level 
production system example.  
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