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ABSTRACT 

The CALAS project (Carrier Laser Tracking System) 

consists in a laser measure system able to localize 

precisely straddle carriers within a container terminal. 

The information given by such a tool makes an 

optimization possible. As members of the LITIS, our 

participation in this project concerns the conception and 

the development of a simulation platform able to 

reproduce both structure and dynamics of a container 

terminal. The software must be able to simulate 

dynamic events occurring during a container terminal 

day of work. Therefore, we proposed D²CTS, a 

Dynamic and Distributed Container Terminal 

Simulator. We will discuss in this paper the modelling 

process and the possibilities of such a simulator. 

 

Keywords: container terminal, modelling, simulation, 

dynamics. 

 

1. CONTEXT 

With the development of trade activities which have 

continually increased, container has become the first 

mode of packaging for exchanging goods. Container 

terminals have been created all around the world in 

order to facilitate the transfer between ships and trucks 

or trains. The performance of these transfers has to be 

considered to reduce the waiting cost of the container 

terminal customers. 

Le Havre’s harbour is the biggest harbour of 

France in container traffic. It is located at the North 

West cost of France, beside the Channel, sea door 

between the Atlantic and the North Sea. To keep 

competitive, the harbour has to provide a high quality of 

service and unceasingly develop new technologies and 

processes. 

To compute optimized solutions for problems such 

as berth allocation, vehicle routing, mission scheduling 

or container positioning, the location of entities present 

within the terminal must be known. GPS systems were 

traditionally used to locate the vehicles but this 

technology is not accurate enough regarding the 

terminal configuration. In fact, the distance between 

two lanes can be less than the precision of GPS. So 

more accurate technology have been developed such as 

differential GPS (DGPS) or laser systems which are 

much more accurate.  

CALAS project (acronym for Carrier Laser 

Tracking System) concerns a laser localization system 

created by Laser Data Technology Terminal (LDTT). 

This project takes place in Le Havre's harbour in France 

and regroups multiple partners such as industrial 

companies (Ateliers de Normandie, EADS Astrium, 

Electronic Equipment and D2A), research laboratories 

(LMAH, LITIS) and universities (University of Le 

Havre, INSA of Rouen). LDTT's technology is 

composed by a set of laser data access points spread all 

over the terminal and laser sensors able to send data 

such as location, current task, direction, etc. to the 

optimization system in real time. 

 

 
Figure 1: Laser Heads located on the Terminal de 

Normandie, Le Havre, France (source: http://www.ldtt-

fr.com/). 

 

 
Figure 2: LDTT’s laser localization system (source: 

http://www.ldtt.fr.com). 
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D²CTS (Dynamic and Distributed Container 

Terminal Simulator) is our contribution to this project. 

It models a container terminal and all the interactions 

occurring in this complex system. Our purpose was to 

represent the terminal both in its structure and its 

dynamics. D²CTS aims at being coupled to the laser 

data system and at running optimization algorithms 

dealing with the data sent by the sensors and finally at 

sending the results to the entities through the 

communication system. 

 

2. MODEL 

As usual with complex systems modelling, the level of 

precision of the model must be considered carefully. 

Indeed, a useless level of detail will degrade the 

performance (Heidemann et al. 2001) and, on the other 

hand, a lack of detail will generate inaccurate data 

(Cavin et al. 2002). 

We chose to use discrete time to be able to control 

the level of details in the time dimension. Moreover, to 

be able to model such a large scaled simulation, we 

used a parallel and distributed simulation architecture 

(Fujimoto 2000). 

 

2.1. Container terminal organization 

A container terminal is generally divided in three parts. 

First, the quay side where ships are loaded or unloaded. 

On the opposite, the land side concerns both trucks and 

trains. And finally in between these two areas the 

stocking area (yard) is used to stock temporary 

containers within the terminal. Each zone is composed 

by one or several blocks. Each block is formed by a set 

of lanes. And each lane is composed by a set of slots. 

 

 
Figure 3: The three container terminal areas. 

 

The trucks area has been modelled by lanes of only 

one slot able to stack only one container high if and 

only if a truck is parked at this location. The train areas 

have also been modelled by lanes of slots of one 

container high but those lanes can be discontinuous to 

let other vehicles going through. A container can be 

stack on a lane of this area only if a train is there too. In 

the yard area, a slot is generally able to contain a stack 

of three containers high according to the handling trucks 

characteristics. 

 

2.2. Container terminal vehicles 

As described in (Steenken, Voss, and Stahlbock 2004), 

vehicles found within a container terminal can be 

divided in two categories. The first one concerns the 

customers’ vehicles such as trucks, trains or ships. The 

second one concerns container handling vehicles. 

The vertical handling facilities are all the cranes 

such as quay cranes (or gantry cranes) or stocking 

cranes. These structures are respectively used to load or 

unload ships and to stock a container in the yard. 

 

 
Figure 4: Quay cranes used at Le Havre’s harbour 

(source: http://www.t-n.fr). 

 

On the other hand, the horizontal handling 

category regroups vehicles able to move a container 

from a place to another one into the container terminal. 

Some of them are passive, that is they cannot load 

or unload a container by their own means, they 

generally need a crane. Among these vehicles, the 

automated guided vehicles (AGV) are able to drive 

within the terminal thanks to an electric wire network. 

On the contrary, the active handling trucks are able 

to lift a container by themselves. These vehicles are 

straddle carriers, forklift trucks or reach stackers. 

Forklift trucks are generally used to handle empty 

containers whereas reach stackers which can take a 

container by the side, are used to load containers on a 

train. Straddle carriers can lift a container from above 

and are very useful to move containers in the yard by 

driving over the lanes. They are also used to load or 

unload trucks or trains. Some of them are able to 

dynamically adapt the spreader size to any container 

dimensions while some of them require to be set up in 

the depot. 

 

 
Figure 5: straddle carrier, forklift truck and a reach 

stacker used in the Terminal de Normandie (source: 

http://www.t-n.fr). 
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2.3. Container terminal road network 

The blocks of the terminal are linked by a network of 

roads and crossroads. We can model it by a directed 

graph in which the nodes are the crossroads and the 

edges are both the roads and the lanes. 

The two types of edges are handled differently, 

because two straddle carriers cannot cross when they 

are on the same lane. That is why lanes are modelled as 

First-In-First-Out edges (Orda and Rom 1990). 

Moreover, the capacity of a lane is usually limited to 

one vehicle at a time. So other vehicles will have to wait 

for the lane to be freed before using it. This 

characteristic has a consequent impact on the routing 

performance and has to be considered by the routing 

algorithms (Lesauvage, Balev and Guinand, 2011). 

 

2.4. Straddle carrier activities 

For the moment, this simulator focuses on the straddle 

carrier activities. As described above, these vehicles are 

autonomous and are widely used for this reason. A 

straddle carrier moves containers within the terminal. 

Those moves are called missions. We distinguish four 

kinds of missions: 

 Incoming container missions; 

 Outgoing container missions; 

 Transhipment missions; 

 Staying container missions. 

 

The first category concerns trucks, trains and ships 

unloading. Straddle carriers drive to the pick-up 

locations and unload the vehicles, and then lift the 

container, drive to the yard to stock it. Concerning 

ships, they are unloaded by quay cranes which stack the 

containers on the quay. Then, straddle carriers come to 

pick-up the containers. The second category concerns 

trucks, trains and ships loading. In this case, straddle 

carriers start by picking-up a container from the yard 

and then drive to the delivery location (trucks areas, 

trains area or ship areas) to deliver it to their recipient. 

The third category of missions concerns the move of a 

container from a ship to another one. Finally, the last 

kind of missions concerns internal yard optimization 

process. Indeed, in some cases, it can be useful to 

reorganize a part of the stock area in order to reduce 

further delivery times or to free strategic container slots 

for next unloading missions. 

Two time windows are affected to every mission. 

One concerns the pickup phase, the other one is related 

to the delivery. These time windows are used to fix an 

appointment between straddle carriers and hypothetical 

customer vehicles (trucks, trains or ships) concerned by 

the missions. Straddle carriers have to reach the pickup 

or delivery location within the given time window and 

so does the customers vehicles. If a straddle carrier 

comes too early, it will have to wait. On the contrary, if 

it comes too late, the customer vehicle will have to wait. 

As a consequence, a time window overrun implies a 

cost for the terminal because, if a customer has to wait 

excessively, it may require late fees from the container 

terminal exploitation company. However, in the case of 

yard optimization missions, the time windows can be 

overrun because it has no direct effect on the customers. 

So, according to the mission kind, time windows can be 

hard or soft. For incoming missions, the pickup time 

window is hard and the delivery time window is soft. 

For the outgoing container missions, the pickup time 

window is soft but the delivery time window is hard. 

For transhipment missions, both time windows are hard, 

and for yard optimization missions both time windows 

are soft. Those time windows characteristics have to be 

taken into account in the mission scheduling process 

(Balev, Guinand, Lesauvage and Olivier 2009). 

 

2.5. Terminal de Normandie 

The LDTT's laser system has been first implanted 

within the Terminal de Normandie (Normandy 

Terminal) in Le Havre. This is the reason why we have 

first modelled this terminal. 

 

 
Figure 6: Terminal de Normandie, Harbour of Le 

Havre, France (source: http://www.t-n.fr). 

 

It is delimited at north by the quay of Asia (North 

West) and the quay of Osaka (North East), and at South 

by the truck and train areas. This terminal is made up of 

1170 crossroads, 170 roads, 531 lanes and 3499 

containers slots. The yard contains 12 stocking areas 

and there are 3 train lanes and 3 truck areas. This 

terminal has been created in 1990 in order to contain the 

flow of container exchanges which has grown at a 

sustained rate. It is able to deal with the biggest 

container ships. 

It uses five quay cranes and a fleet of about twenty 

straddle carriers. There is no stocking crane in this 

terminal. So the traffic regulation within the terminal is 

essential to ensure a sufficient quality of service for the 

customers.  Moreover, if a straddle carrier comes too 

early at a truck or train location, it will have to wait for 

the truck or the train to pickup or deliver the container. 

The vehicles depot is located at the centre of the 

terminal to reduce the travelling costs to the containers 

locations. In this container terminal, the straddle carriers 

do not have to pass by the depot after every mission, but 

in order to avoid traffic jam, if a straddle carrier has no 

mission to accomplish, then it will go back to the depot. 

In order to model this terminal, a detailed 

computerized plan has been created based on another 

rough plan supplied by our partners. The xml 

description file of the Terminal de Normandie resulting 

151



from this work contains around 2500 lines just to 

describe its structure and the road network.  

 

 
Figure 7: Detailed computerized plan of the Terminal de 

Normandie. 

 

2.6. Dynamics modelling 

Time modelling is essential in D²CTS because we aim 

at studying the dynamics impact on the system 

behaviour. We chose to use discrete time in order to be 

able to model events related to the dynamics. Therefore, 

discrete time allows setting up the time step depending 

on the desired level of precision and of performance. 

As a matter of fact, a container terminal is a 

complex system made up of a large number of entities 

interacting with each other’s and changing the state of 

the terminal at every moment. This system is also open, 

and external flows come in and out, making it to 

change. These flows concern trucks, trains and ship 

arrival/departure. Moreover dynamic events can occur 

within the container terminal such as handling vehicles 

or cranes failure, mission arrival into the system, 

mission cancelling, container lost, and every events 

generated by the human behaviour such as the failure to 

adhere to the mission schedule or the routing paths. The 

events are modelled by a start time stamp, a system 

knowledge time stamp and a description. When the 

simulation time reaches the time of a start time stamp, 

the event is triggered. 

 

3. IMPLEMENTATION OF THE MODEL 

 

3.1. What does D²CTS do? 

D²CTS is able to model a container terminal and its 

dynamics. So it is able to perform some tests about: 

 the terminal architecture; 

 the terminal communication architecture; 

 the vehicles routing; 

 the vehicles fleet size; 

 the mission scheduling; 

 the containers location; 

 the containers traffic absorption capacity. 

 

Indeed, the program allows changing the configuration 

of the terminal itself. We can for instance decide to add 

a depot or to remove a stocking area and measure the 

consequences on the terminal evolution. It is also 

possible to add roads in the network or to remove some 

of them to test the impact of such modifications on the 

traffic within the terminal. 

Moreover, several routing algorithms can be used. 

The Floyd-Warshall's and Dijkstra's algorithms (Floyd 

1962, Dijkstra 1971) have already been implemented. 

Furthermore, we developed a routing algorithm based 

on the Dijkstra’s algorithm, taking waiting time and 

FIFO arcs into account. 

D²CTS can also be useful to perform some tests on 

the size of the straddle carriers’ fleet. Indeed, a straddle 

carrier is very expensive and such an outlay has to be 

considered carefully. So, D²CTS can run two 

simulations: a first one without adding the new straddle 

carrier, and a second one with the new vehicle. Then, 

the both results can be compared to help the decision 

makers to reduce the risk factor related to such an 

investment. 

In the same way, several mission scheduling 

policies or containers location strategies can be tested 

thanks to the simulator. 

 

3.2. Technology and generic programming 

D²CTS is written in Java which ensures a large 

flexibility in coding and executing the program. The 

distribution process uses the Java RMI technology and 

all the data are described by XML files. It concerns the 

terminal structure and road network, the vehicles 

characteristics, the containers location, the dynamic 

events and the program distribution. 

The graphical user interface uses the GraphStream 

API (Dutot, Guinand, Olivier and Pigné 2007) which is 

an open-source library developed within the University 

of Le Havre and able to model and draw dynamic 

graphs. On the other hand, EADS Astrium, our partner 

within the CALAS project has developed a 3D 

graphical user interface able to simulate the driving of 

the straddle carriers. It uses data sent by D²CTS through 

a database to reproduce the container terminal structure 

and components. The actions realized within their 

program are also reproduced within D²CTS thanks to 

the database interconnection. 

The program architecture is based on a modular 

paradigm. It means that the simulator contains a kernel 

connected or not to other parts. This approach has the 

benefits to ensure a high flexibility for developing new 

modules and for adapting the simulator to the users’ 

expectations. Thus, it is possible to run D²CTS without 

graphical user interface or, for instance, to perform 

some tests with different routing algorithms. 

 

 
Figure 8: D²CTS architecture. 

 

The available modules are:  
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 the kernel; 

 the time controller; 

 the 2D graphical user interface; 

 the laser localization system; 

 the vehicles routing algorithms; 

 the missions scheduling algorithms; 

 the automated vehicles component. 

 

 
Figure 9: Time controller GUI snapshot. 

 

 
Figure 10: D²CTS 2D GUI snapshot of a simulation 

using the Terminal de Normandie. 

 

 
Figure 11: Snapshot of the missions tab of the D²CTS 

data view. 

 

These modules can be executed on several and 

heterogeneous computers. The distribution process uses 

Java RMI technology which implies a serialization of 

the remote objects. But the data sent through the 

network can be weighty; this is the reason why the 

distribution configuration must be handled carefully. A 

bad configuration implies high communication times 

and the performance might drop. 

 

3.3. Configuration 

D²CTS uses XML files to describe its configuration. 

The files concern the network and the distribution 

configuration, the terminal description (stock and 

exchange areas, road network, vehicles depot, 

containers location...), the laser localization system 

description (laser heads location and range), and the 

vehicles description, location, and behaviour. Those 

files are then parsed by the simulator which creates 

corresponding objects according to the description. 

 

3.4. Vehicles handling 

In the simulator, a straddle carrier can be either 

autonomous or man-driven. 

In the first case, the straddle carrier behaviour is 

handled by the software which checks objectives at each 

step of time. If the objective is not reached, then a 

direction is computed and the straddle carrier makes a 

move towards it. Else, a new objective is computed. 

In the second case, the straddle carrier is driven by 

a user through the EADS Astrium 3D interface. So, the 

simulator supplies a mission workload, the routing 

paths to these locations, and just checks the new 

location of the straddle carrier trying to detect if the 

vehicle is following its given path. If an error is 

detected the path has to be recomputed. Moreover, if an 

event occurs concerning the road network or mission 

scheduling, new routing solutions are computed and 

sent to the concerned vehicles. 

 

 
Figure 12: Straddle carriers 2D implementation in the 

simulator. 

 

A straddle carrier can also generate some events 

such as failures or the impossibility to pick-up or to 

deliver a container at a given location. These events 

occur when the state of the terminal in the data structure 

does not fit with the reality. It may happen if a straddle 

carrier driver chose a mission and decide to change but 

without advising the system. So, the system becomes 

corrupted and the errors can be detected much later. 

D²CTS aim at detecting incoherencies between a 

supposed behaviour of a straddle carrier and its real 

actions. If such incoherencies are detected, the system 

tries to repair them if it is possible. Otherwise, a 

communication between the straddle carrier driver and 

the control operator is required to take decisions and 

acting on either the straddle carrier activity or the 

system knowledge of the terminal state. 

 

3.5. Test data generation 

Another module has been developed within D²CTS in 

order to generate realistic data. It concerns the starting 

state of a terminal and events generation.  

The container generator is used to create containers 

and to locate them within a given terminal. The 

algorithm makes sure that the container can physically 
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be placed at the computed location. The corresponding 

XML file is then generated. 

The mission generator role is to provide missions 

events within a given period of time and according to an 

initial state of a terminal. It generates ships, trucks and 

trains arrival and departure. The algorithm makes sure 

that the vehicles location will be free at the arrival time. 

Next, it computes which containers have to be loaded or 

unloaded. Finally, the time windows for both pickup 

and delivery operations are calculated by taking into 

account the travel time between those locations. A time 

margin is next added to let a relative tolerance to fit 

with reality constraints. The events are finally written in 

a XML file which can be added for further simulations. 

 

4. CONCLUSION AND PERSPECTIVES 

D²CTS is a container terminal simulator able to 

reproduce dynamic events and to perform tests 

concerning optimization matters such as the terminal 

architecture, the vehicles routing or the mission 

scheduling. It is fully adaptable thanks to a XML data 

description structure and distribution configuration. 

The calibration of D²CTS will consist in 

representing the state of the terminal at the very 

beginning of a working day. Then, the validation will 

consist in running the simulation taking into account the 

real events occurring in the working day at the container 

terminal and finally by comparing the state of the real 

terminal and of the simulated one at the end of the day. 

We are currently developing routing algorithms 

taking into account the graph properties of a container 

terminal road network. We are also creating mission 

scheduling policies based on meta-heuristics. Those 

problems are defined as NP-hard (Bish, Leong, Li, Ng 

and Simchi-Levi 2001) and only a simulation approach 

could propose an integrated solution for all the 

concerned subsystems (Soriguera, Espinet and Robuste 

2006). The next step of our work will consist in 

measuring the performance of these algorithms thanks 

to D²CTS. 
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