
D²CTS: A DYNAMIC AND DISTRIBUTED CONTAINER TERMINAL SIMULATOR

G. Lesauvage
(a)

, S. Balev
(b)

, F. Guinand
(c)

Université du Havre, LITIS EA 4108

BP 540, 76058 Le Havre, France

(a)

gaetan.lesauvage@litislab.eu,
(b)

stefan.balev@litislab.eu,
(c)

frederic.guinand@litislab.eu

ABSTRACT

The CALAS project (Carrier Laser Tracking System)

consists in a laser measure system able to localize

precisely straddle carriers within a container terminal.

The information given by such a tool makes an

optimization possible. As members of the LITIS, our

participation in this project concerns the conception and

the development of a simulation platform able to

reproduce both structure and dynamics of a container

terminal. The software must be able to simulate

dynamic events occurring during a container terminal

day of work. Therefore, we proposed D²CTS, a

Dynamic and Distributed Container Terminal

Simulator. We will discuss in this paper the modelling

process and the possibilities of such a simulator.

Keywords: container terminal, modelling, simulation,

dynamics.

1. CONTEXT

With the development of trade activities which have

continually increased, container has become the first

mode of packaging for exchanging goods. Container

terminals have been created all around the world in

order to facilitate the transfer between ships and trucks

or trains. The performance of these transfers has to be

considered to reduce the waiting cost of the container

terminal customers.

Le Havre’s harbour is the biggest harbour of

France in container traffic. It is located at the North

West cost of France, beside the Channel, sea door

between the Atlantic and the North Sea. To keep

competitive, the harbour has to provide a high quality of

service and unceasingly develop new technologies and

processes.

To compute optimized solutions for problems such

as berth allocation, vehicle routing, mission scheduling

or container positioning, the location of entities present

within the terminal must be known. GPS systems were

traditionally used to locate the vehicles but this

technology is not accurate enough regarding the

terminal configuration. In fact, the distance between

two lanes can be less than the precision of GPS. So

more accurate technology have been developed such as

differential GPS (DGPS) or laser systems which are

much more accurate.

CALAS project (acronym for Carrier Laser

Tracking System) concerns a laser localization system

created by Laser Data Technology Terminal (LDTT).

This project takes place in Le Havre's harbour in France

and regroups multiple partners such as industrial

companies (Ateliers de Normandie, EADS Astrium,

Electronic Equipment and D2A), research laboratories

(LMAH, LITIS) and universities (University of Le

Havre, INSA of Rouen). LDTT's technology is

composed by a set of laser data access points spread all

over the terminal and laser sensors able to send data

such as location, current task, direction, etc. to the

optimization system in real time.

Figure 1: Laser Heads located on the Terminal de

Normandie, Le Havre, France (source: http://www.ldtt-

fr.com/).

Figure 2: LDTT’s laser localization system (source:

http://www.ldtt.fr.com).

149

mailto:gaetan.lesauvage@litislab.eu
mailto:stefan.balev@litislab.eu
mailto:frederic.guinand@litislab.eu

D²CTS (Dynamic and Distributed Container

Terminal Simulator) is our contribution to this project.

It models a container terminal and all the interactions

occurring in this complex system. Our purpose was to

represent the terminal both in its structure and its

dynamics. D²CTS aims at being coupled to the laser

data system and at running optimization algorithms

dealing with the data sent by the sensors and finally at

sending the results to the entities through the

communication system.

2. MODEL

As usual with complex systems modelling, the level of

precision of the model must be considered carefully.

Indeed, a useless level of detail will degrade the

performance (Heidemann et al. 2001) and, on the other

hand, a lack of detail will generate inaccurate data

(Cavin et al. 2002).

We chose to use discrete time to be able to control

the level of details in the time dimension. Moreover, to

be able to model such a large scaled simulation, we

used a parallel and distributed simulation architecture

(Fujimoto 2000).

2.1. Container terminal organization

A container terminal is generally divided in three parts.

First, the quay side where ships are loaded or unloaded.

On the opposite, the land side concerns both trucks and

trains. And finally in between these two areas the

stocking area (yard) is used to stock temporary

containers within the terminal. Each zone is composed

by one or several blocks. Each block is formed by a set

of lanes. And each lane is composed by a set of slots.

Figure 3: The three container terminal areas.

The trucks area has been modelled by lanes of only

one slot able to stack only one container high if and

only if a truck is parked at this location. The train areas

have also been modelled by lanes of slots of one

container high but those lanes can be discontinuous to

let other vehicles going through. A container can be

stack on a lane of this area only if a train is there too. In

the yard area, a slot is generally able to contain a stack

of three containers high according to the handling trucks

characteristics.

2.2. Container terminal vehicles

As described in (Steenken, Voss, and Stahlbock 2004),

vehicles found within a container terminal can be

divided in two categories. The first one concerns the

customers’ vehicles such as trucks, trains or ships. The

second one concerns container handling vehicles.

The vertical handling facilities are all the cranes

such as quay cranes (or gantry cranes) or stocking

cranes. These structures are respectively used to load or

unload ships and to stock a container in the yard.

Figure 4: Quay cranes used at Le Havre’s harbour

(source: http://www.t-n.fr).

On the other hand, the horizontal handling

category regroups vehicles able to move a container

from a place to another one into the container terminal.

Some of them are passive, that is they cannot load

or unload a container by their own means, they

generally need a crane. Among these vehicles, the

automated guided vehicles (AGV) are able to drive

within the terminal thanks to an electric wire network.

On the contrary, the active handling trucks are able

to lift a container by themselves. These vehicles are

straddle carriers, forklift trucks or reach stackers.

Forklift trucks are generally used to handle empty

containers whereas reach stackers which can take a

container by the side, are used to load containers on a

train. Straddle carriers can lift a container from above

and are very useful to move containers in the yard by

driving over the lanes. They are also used to load or

unload trucks or trains. Some of them are able to

dynamically adapt the spreader size to any container

dimensions while some of them require to be set up in

the depot.

Figure 5: straddle carrier, forklift truck and a reach

stacker used in the Terminal de Normandie (source:

http://www.t-n.fr).

150

2.3. Container terminal road network

The blocks of the terminal are linked by a network of

roads and crossroads. We can model it by a directed

graph in which the nodes are the crossroads and the

edges are both the roads and the lanes.

The two types of edges are handled differently,

because two straddle carriers cannot cross when they

are on the same lane. That is why lanes are modelled as

First-In-First-Out edges (Orda and Rom 1990).

Moreover, the capacity of a lane is usually limited to

one vehicle at a time. So other vehicles will have to wait

for the lane to be freed before using it. This

characteristic has a consequent impact on the routing

performance and has to be considered by the routing

algorithms (Lesauvage, Balev and Guinand, 2011).

2.4. Straddle carrier activities

For the moment, this simulator focuses on the straddle

carrier activities. As described above, these vehicles are

autonomous and are widely used for this reason. A

straddle carrier moves containers within the terminal.

Those moves are called missions. We distinguish four

kinds of missions:

 Incoming container missions;

 Outgoing container missions;

 Transhipment missions;

 Staying container missions.

The first category concerns trucks, trains and ships

unloading. Straddle carriers drive to the pick-up

locations and unload the vehicles, and then lift the

container, drive to the yard to stock it. Concerning

ships, they are unloaded by quay cranes which stack the

containers on the quay. Then, straddle carriers come to

pick-up the containers. The second category concerns

trucks, trains and ships loading. In this case, straddle

carriers start by picking-up a container from the yard

and then drive to the delivery location (trucks areas,

trains area or ship areas) to deliver it to their recipient.

The third category of missions concerns the move of a

container from a ship to another one. Finally, the last

kind of missions concerns internal yard optimization

process. Indeed, in some cases, it can be useful to

reorganize a part of the stock area in order to reduce

further delivery times or to free strategic container slots

for next unloading missions.

Two time windows are affected to every mission.

One concerns the pickup phase, the other one is related

to the delivery. These time windows are used to fix an

appointment between straddle carriers and hypothetical

customer vehicles (trucks, trains or ships) concerned by

the missions. Straddle carriers have to reach the pickup

or delivery location within the given time window and

so does the customers vehicles. If a straddle carrier

comes too early, it will have to wait. On the contrary, if

it comes too late, the customer vehicle will have to wait.

As a consequence, a time window overrun implies a

cost for the terminal because, if a customer has to wait

excessively, it may require late fees from the container

terminal exploitation company. However, in the case of

yard optimization missions, the time windows can be

overrun because it has no direct effect on the customers.

So, according to the mission kind, time windows can be

hard or soft. For incoming missions, the pickup time

window is hard and the delivery time window is soft.

For the outgoing container missions, the pickup time

window is soft but the delivery time window is hard.

For transhipment missions, both time windows are hard,

and for yard optimization missions both time windows

are soft. Those time windows characteristics have to be

taken into account in the mission scheduling process

(Balev, Guinand, Lesauvage and Olivier 2009).

2.5. Terminal de Normandie

The LDTT's laser system has been first implanted

within the Terminal de Normandie (Normandy

Terminal) in Le Havre. This is the reason why we have

first modelled this terminal.

Figure 6: Terminal de Normandie, Harbour of Le

Havre, France (source: http://www.t-n.fr).

It is delimited at north by the quay of Asia (North

West) and the quay of Osaka (North East), and at South

by the truck and train areas. This terminal is made up of

1170 crossroads, 170 roads, 531 lanes and 3499

containers slots. The yard contains 12 stocking areas

and there are 3 train lanes and 3 truck areas. This

terminal has been created in 1990 in order to contain the

flow of container exchanges which has grown at a

sustained rate. It is able to deal with the biggest

container ships.

It uses five quay cranes and a fleet of about twenty

straddle carriers. There is no stocking crane in this

terminal. So the traffic regulation within the terminal is

essential to ensure a sufficient quality of service for the

customers. Moreover, if a straddle carrier comes too

early at a truck or train location, it will have to wait for

the truck or the train to pickup or deliver the container.

The vehicles depot is located at the centre of the

terminal to reduce the travelling costs to the containers

locations. In this container terminal, the straddle carriers

do not have to pass by the depot after every mission, but

in order to avoid traffic jam, if a straddle carrier has no

mission to accomplish, then it will go back to the depot.

In order to model this terminal, a detailed

computerized plan has been created based on another

rough plan supplied by our partners. The xml

description file of the Terminal de Normandie resulting

151

from this work contains around 2500 lines just to

describe its structure and the road network.

Figure 7: Detailed computerized plan of the Terminal de

Normandie.

2.6. Dynamics modelling

Time modelling is essential in D²CTS because we aim

at studying the dynamics impact on the system

behaviour. We chose to use discrete time in order to be

able to model events related to the dynamics. Therefore,

discrete time allows setting up the time step depending

on the desired level of precision and of performance.

As a matter of fact, a container terminal is a

complex system made up of a large number of entities

interacting with each other’s and changing the state of

the terminal at every moment. This system is also open,

and external flows come in and out, making it to

change. These flows concern trucks, trains and ship

arrival/departure. Moreover dynamic events can occur

within the container terminal such as handling vehicles

or cranes failure, mission arrival into the system,

mission cancelling, container lost, and every events

generated by the human behaviour such as the failure to

adhere to the mission schedule or the routing paths. The

events are modelled by a start time stamp, a system

knowledge time stamp and a description. When the

simulation time reaches the time of a start time stamp,

the event is triggered.

3. IMPLEMENTATION OF THE MODEL

3.1. What does D²CTS do?

D²CTS is able to model a container terminal and its

dynamics. So it is able to perform some tests about:

 the terminal architecture;

 the terminal communication architecture;

 the vehicles routing;

 the vehicles fleet size;

 the mission scheduling;

 the containers location;

 the containers traffic absorption capacity.

Indeed, the program allows changing the configuration

of the terminal itself. We can for instance decide to add

a depot or to remove a stocking area and measure the

consequences on the terminal evolution. It is also

possible to add roads in the network or to remove some

of them to test the impact of such modifications on the

traffic within the terminal.

Moreover, several routing algorithms can be used.

The Floyd-Warshall's and Dijkstra's algorithms (Floyd

1962, Dijkstra 1971) have already been implemented.

Furthermore, we developed a routing algorithm based

on the Dijkstra’s algorithm, taking waiting time and

FIFO arcs into account.

D²CTS can also be useful to perform some tests on

the size of the straddle carriers’ fleet. Indeed, a straddle

carrier is very expensive and such an outlay has to be

considered carefully. So, D²CTS can run two

simulations: a first one without adding the new straddle

carrier, and a second one with the new vehicle. Then,

the both results can be compared to help the decision

makers to reduce the risk factor related to such an

investment.

In the same way, several mission scheduling

policies or containers location strategies can be tested

thanks to the simulator.

3.2. Technology and generic programming

D²CTS is written in Java which ensures a large

flexibility in coding and executing the program. The

distribution process uses the Java RMI technology and

all the data are described by XML files. It concerns the

terminal structure and road network, the vehicles

characteristics, the containers location, the dynamic

events and the program distribution.

The graphical user interface uses the GraphStream

API (Dutot, Guinand, Olivier and Pigné 2007) which is

an open-source library developed within the University

of Le Havre and able to model and draw dynamic

graphs. On the other hand, EADS Astrium, our partner

within the CALAS project has developed a 3D

graphical user interface able to simulate the driving of

the straddle carriers. It uses data sent by D²CTS through

a database to reproduce the container terminal structure

and components. The actions realized within their

program are also reproduced within D²CTS thanks to

the database interconnection.

The program architecture is based on a modular

paradigm. It means that the simulator contains a kernel

connected or not to other parts. This approach has the

benefits to ensure a high flexibility for developing new

modules and for adapting the simulator to the users’

expectations. Thus, it is possible to run D²CTS without

graphical user interface or, for instance, to perform

some tests with different routing algorithms.

Figure 8: D²CTS architecture.

The available modules are:

152

 the kernel;

 the time controller;

 the 2D graphical user interface;

 the laser localization system;

 the vehicles routing algorithms;

 the missions scheduling algorithms;

 the automated vehicles component.

Figure 9: Time controller GUI snapshot.

Figure 10: D²CTS 2D GUI snapshot of a simulation

using the Terminal de Normandie.

Figure 11: Snapshot of the missions tab of the D²CTS

data view.

These modules can be executed on several and

heterogeneous computers. The distribution process uses

Java RMI technology which implies a serialization of

the remote objects. But the data sent through the

network can be weighty; this is the reason why the

distribution configuration must be handled carefully. A

bad configuration implies high communication times

and the performance might drop.

3.3. Configuration

D²CTS uses XML files to describe its configuration.

The files concern the network and the distribution

configuration, the terminal description (stock and

exchange areas, road network, vehicles depot,

containers location...), the laser localization system

description (laser heads location and range), and the

vehicles description, location, and behaviour. Those

files are then parsed by the simulator which creates

corresponding objects according to the description.

3.4. Vehicles handling

In the simulator, a straddle carrier can be either

autonomous or man-driven.

In the first case, the straddle carrier behaviour is

handled by the software which checks objectives at each

step of time. If the objective is not reached, then a

direction is computed and the straddle carrier makes a

move towards it. Else, a new objective is computed.

In the second case, the straddle carrier is driven by

a user through the EADS Astrium 3D interface. So, the

simulator supplies a mission workload, the routing

paths to these locations, and just checks the new

location of the straddle carrier trying to detect if the

vehicle is following its given path. If an error is

detected the path has to be recomputed. Moreover, if an

event occurs concerning the road network or mission

scheduling, new routing solutions are computed and

sent to the concerned vehicles.

Figure 12: Straddle carriers 2D implementation in the

simulator.

A straddle carrier can also generate some events

such as failures or the impossibility to pick-up or to

deliver a container at a given location. These events

occur when the state of the terminal in the data structure

does not fit with the reality. It may happen if a straddle

carrier driver chose a mission and decide to change but

without advising the system. So, the system becomes

corrupted and the errors can be detected much later.

D²CTS aim at detecting incoherencies between a

supposed behaviour of a straddle carrier and its real

actions. If such incoherencies are detected, the system

tries to repair them if it is possible. Otherwise, a

communication between the straddle carrier driver and

the control operator is required to take decisions and

acting on either the straddle carrier activity or the

system knowledge of the terminal state.

3.5. Test data generation

Another module has been developed within D²CTS in

order to generate realistic data. It concerns the starting

state of a terminal and events generation.

The container generator is used to create containers

and to locate them within a given terminal. The

algorithm makes sure that the container can physically

153

be placed at the computed location. The corresponding

XML file is then generated.

The mission generator role is to provide missions

events within a given period of time and according to an

initial state of a terminal. It generates ships, trucks and

trains arrival and departure. The algorithm makes sure

that the vehicles location will be free at the arrival time.

Next, it computes which containers have to be loaded or

unloaded. Finally, the time windows for both pickup

and delivery operations are calculated by taking into

account the travel time between those locations. A time

margin is next added to let a relative tolerance to fit

with reality constraints. The events are finally written in

a XML file which can be added for further simulations.

4. CONCLUSION AND PERSPECTIVES

D²CTS is a container terminal simulator able to

reproduce dynamic events and to perform tests

concerning optimization matters such as the terminal

architecture, the vehicles routing or the mission

scheduling. It is fully adaptable thanks to a XML data

description structure and distribution configuration.

The calibration of D²CTS will consist in

representing the state of the terminal at the very

beginning of a working day. Then, the validation will

consist in running the simulation taking into account the

real events occurring in the working day at the container

terminal and finally by comparing the state of the real

terminal and of the simulated one at the end of the day.

We are currently developing routing algorithms

taking into account the graph properties of a container

terminal road network. We are also creating mission

scheduling policies based on meta-heuristics. Those

problems are defined as NP-hard (Bish, Leong, Li, Ng

and Simchi-Levi 2001) and only a simulation approach

could propose an integrated solution for all the

concerned subsystems (Soriguera, Espinet and Robuste

2006). The next step of our work will consist in

measuring the performance of these algorithms thanks

to D²CTS.

ACKNOWLEDGMENTS

We would like to thank our sponsors in the CALAS

project: the D.G.E (Direction Générale des Entreprises)

and the Région Haute Normandie for their financial

support. We also wanted to thank our partners: LDTT,

Ateliers de Normandie, EADS Astrium, LMAH and

INSA of Rouen.

REFERENCES

Balev, S., Guinand, F., Lesauvage, G. and Olivier, D.,

2009, Dynamical handling of straddle carriers

activities on a container terminal in uncertain

environment - a swarm intelligence approach. In

ICCSA 2009, The 3rd International Conference on

Complex Systems and Applications, June 29
th

 –

July 2
nd

, Le Havre, France.

Bish, E. K., T. Y. Leong, C. L. Li, J. W. C. Ng, D.

Simchi-Levi, 2001, Analysis of a new vehicles

scheduling and location problem. In Naval

Research Logistics, Vol. 48, 2001, pp. 363-385.

Cavin, D., Sasson, Y. and Schiper, A. 2002, On the

accuracy of MANET simulators. In proceedings of

the 2nd Int’l Workshop on Principles of Mobile

Computing, ACM Press, Toulouse, France, pp.38–

43.

Dijkstra, E.W., 1971, EWD316: A Short Introduction to

the Art of Programming. T. H. Eindhoven, The

Netherlands, August.

Dutot, A., Guinand, F., Olivier, D. And Pigné, Y., 2007,

Graphstream: A tool for bridging the gap between

complex systems and dynamic graphs. In

Emergent Properties in Natural and Artificial

Complex Systems. Satellite Conference within the

4th European Conference on Complex Systems

(ECCS'2007), October 4
th
 – 5

th
, Dresden,

Germany.

Floyd, R.W., 1962, Algorithm 97: Shortest path. In

Communications of ACM, volume 5, number 6,

p345.

Fujimoto, R. M., 2000, Parallel and Distributed

Simulation Systems, Wiley Interscience.

Heidemann, J., Bulusu, N., Elson, J., Intanagonwiwat,

C., Lan, K., Xu, Y., Ye, W., Estrin, D. and

Govindan, R., 2001, Effects of detail in wireless

network simulation. In proceedings of SCS

Multiconference on Distributed Simulation.

Lesauvage, G., Balev, S. and Guinand, F., 2011,

Routage des chariots cavaliers sur un terminal

portuaire à conteneurs. In ROADEF 2011, Société

française de Recherche Opérationnelle et Aide à

la Décision, March 2
nd

-4
th

, Saint-Etienne, France.

Orda, A. and Rom, R., 1990, Shortest-path and

minimum-delay algorithms in networks with time-

dependent edge-length. In Journal of the ACM,

volume 37 issue 3: 607-625.

Soriguera, F., Espinet, D., Robuste, F., 2006, A

simulation model for straddle carrier operational

assessment in a marine container terminal. In J

Maritime Res 3(2):19–34.

Steenken, D., Voss, S. And Stahlbock R., 2004,

Container terminal operation and operations

research – a classification and literature review. In

OR Spectrum 26: 3-49.

154

