
USING SIMULATED SENSOR IMAGES FOR OBJECT RECOGNITION OF UNIVERSAL 
GOODS FOR AUTOMATIC UNLOADING OF CONTAINERS    

 
 

Bernd Scholz-Reiter(a), Hendrik Thamer(b) 
 
 

(a), (b) BIBA – Bremer Institut für Produktion und Logistik GmbH at the University of Bremen 
 

(a)bsr@biba.uni-bremen.de, (b)tha@biba.uni-bremen.de 
 
 
 
 

ABSTRACT 
Unloading of standard sea containers is a time- and 
cost-expensive process step within global supply chains. 
Until now, existing solutions for automatic unloading 
are limited to goods of cubical shape. The main 
challenge in developing a robotic system for universal 
logistic goods is object recognition of goods that differ 
in size, shape and orientation. A common approach for 
object recognition systems is the comparison of sensor 
data to a model database. This paper presents a 
simulation system of sensor images for universal 
logistic goods. The objective of simulating sensor 
images is generating a model database and create 
training data for classification. Additionally, sensor 
images of complete packaging scenarios can be 
simulated for evaluating the object recognition 
algorithm with ideal sensor data that does not contain 
measurement noise or other inaccuracies. The 
simulation system is explained in detail by modelling of 
cubical objects.   
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1. INTRODUCTION 
The dynamical development of global flow of goods in 
complex worldwide logistics networks creates 
challenging requirements for logistic service providers 
(Aden 2008). As for instance, the pressure of providing 
efficient logistic processes  causes a request of technical 
systems for automation within the supply chain. The 
transported goods are generally packed in standardized 
packaging and loaded in carriers as containers, swap 
bodies and Uniform Load Devices (Echelmeyer 2008). 
Loading and unloading processes of containers are still 
a non-automated process in logistic markets and 
generates bottlenecks in efficiency (Burwinkel 2009). 
This paper focuses on the automatic unloading process.  

In Europe, about 64% of the imported goods are 
suitable for automatic unloading due to their size, shape 
and weight (Akbiyik 2009). Hence, the economic 
relevance of automatic unloading is very high. The 
main shapes of packaged goods can be summarized to 
cubical, cylindrical and sack-shaped (Akbiyik 2009). 
Concerning cubical goods, the successful market launch 
of the ‘Parcel Robot’ (Scholz-Reiter 2008) has shown 

the feasibility of automatic unloading of cubical goods. 
The crucial step to extend the unloading system to 
universal goods is, amongst gripping technologies, the 
development of a suitable object recognition system, 
that is able to detect and classify different goods inside 
a container. The automatic unloading process for 
universal goods refers to the bin-picking problem and is 
not completely solved today (Kirkegaard 2006).  

For an accurate determination of position and 
orientation of the goods, the sensor system must deliver 
3D information about the scene. Instead of 
reconstructing 3D information from 2D images, a 
suitable sensor technology for object recognition inside 
a poorly lighted container is Time-of-Flight (TOF) laser 
scanning (Uriarte 2010). The resulting images store the 
depth information instead of grey-scale values. The 
following object recognition process analyses the 
images for significant characteristics and compares 
them with characteristics of predefined models of 
determined object classes.  

This paper focuses on the simulation of the sensor 
images for an object recognition system for universal 
goods.  These simulated sensor images will be used in 
two different approaches for object recognition in future 
research work. Afterwards, the two approaches will be 
evaluated and the result will be compared. The first 
approach considers the generation of a model database 
that is used for comparison of the real sensor images 
with models of every predefined object class. The 
models are generated by simulating the sensor 
measurement principle of a TOF laser scanner by means 
of standard computer graphic techniques. For every 
object class, several images from different positions are 
simulated and are stored in the model database. Due to 
possible occlusions in the packaging scenario, even 
models of  object parts are generated. The second 
approach will use the simulated sensor images as 
training data for a classification task. Classification is 
the assignment of an input set to a finite number of 
discrete categories (Bishop 2006). Considering an 
automatic unloading system, the input set are 3D 
images of logistic goods. The classifier that is trained 
with the simulated sensor data, assigns each image to a 
predefined object class.       

Additionally, simulating sensor images of entire 
packaging scenarios is also possible. These images can 
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be used for evaluating object recognition algorithms. In 
order to determine the theoretical performance of 
different object recognition algorithms, the sensor 
image of the packaging scenario can be simulated 
without influence of negative measurement effects.    
 
2. STATE OF THE ART 
This paper presents a simulation methodology for TOF 
sensors in order to use it in the object recognition 
process of universal logistic goods. Therefore, the state 
of the art contains the TOF sensor technology and 
related work that use simulation techniques for this 
measurement principle. 

2.1. TOF Laser Scanning 
In order to identify universal goods inside a container 
under unfavourable lightning conditions, sensor systems 
which provide depth information by TOF laser scanning 
are suitable for image acquisition (Uriarte 2010). These 
sensors measure the distance between the object and the 
sensor by sending a light ray from a light source to the 
object to be measured. The light is emitted and  partially 
reflected from an object to the sensor, which detects it. 
The sensor measures the time between sending and 
receiving the ray and by knowing the speed of light the 
distance to the object point can be calculated. The 
acquired data is usually delivered as a set of points with 
(x,y,z) coordinates for each point. The LMS-200 from 
Sick is a frequently used ToF scanner, with a rotating 
mirror. It has an angle of 180° and a angular resolution 
of 0,25° and a measuring range from 0.1 to 30 m. The 
lateral resolution of this scanner is about 22 mm when 
measuring objects at 5 m. Figure 1 illustrates the 
measuring principle of the sensor. 
 

 
Figure 1: TOF Scanning (Uriarte 2010) 

      
Since the LMS 200 works line-based, the camera is 
mounted on a pitch device in order to scan the whole 
packaging scene. 

 
2.2. TOF Sensor Simulation 
Simulation of TOF sensors can avoid the development 
of cost expensive prototypes. Thereby, the design of  
sensor hardware and application development can be 
realized by simulation. Common algorithms that are 
tested and evaluated by simulated are in the area of 
sensor calibration and sensor data processing (Keller 
2007). 
 In order to verify a calibration tool, Meissner et al. 
have generated a realistic 3D simulation of an urban 
intersection and simulate several 4-layer laser scanner 
(Meissner 2010). A simulation system for system 

analysis and algorithm development is given by Kukko 
et al. (Kukko 2007). The purpose of this work is 
providing a tool for analyzing systematic properties of 
scanning systems and algorithm development.  
 Simulating TOF sensor images of complex 3D 
scenes is a time expensive processing step. In order to 
perform the simulation in real time, Keller  makes use 
of the programmability of modern Graphic Processing 
Units (GPUs) (Keller 2009). Their simulation approach 
is motivated in particular by physics of Photonic 
Mixing Device (PMD) sensors, which are a specific 
type of TOF sensor. Additionally, they consider typical 
measurement inaccuracies like deviation errors and 
resolution artefacts. An approach in which simulating 
TOF images are used as training data for classification 
is presented by Shotton et al. (Shotton 2011). They use 
simulated TOF images of humans of many shapes and 
sizes in highly varied poses for human pose recognition. 
They also use GPU programming techniques for 
recognition in real-time.   
 Considering the field of automatic unloading of 
containers, none of the existing approaches for cubical 
goods use simulated sensor images whether for 
evaluation of algorithms, generating a model database 
or classifier training. 

 
3. SYSTEM ARCHITECTURE 
This section describes the complete architecture of an 
object recognition system for universal logistic goods. 
The system identifies the shape of logistic goods and 
determines their position and orientation (pose). The 
object recognition process and the use of simulated 
sensor images is explained in detail. 

3.1. Architecture 
The system architecture covers the complete logistic 
process of automatic unloading of containers. For 
handling of logistic goods a mechanical robotic system 
is used. Figure 2 illustrates the system architecture. The 
process is starting with a packaging scenario that is 
made up with logistic goods with shapes from all 
predefined object classes. In the first step, a 3D image 
from the scenario is acquired by a TOF sensor. The 
sensor delivers a point cloud from which a 3D range 
image can be generated. A range image contains 
distance information instead of grey scale values. 
Afterwards, this image is analysed by object recognition  
 

        
Figure 2: System Architecture 
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techniques that are described in the following 
subsection. The result of object recognition are position 
and possible gripping points of logistic objects that are 
suitable for automatic unloading by the mechanical 
robot system. Unloading another logistic good requires 
a new image acquisition process, because gripping by 
the mechanical robot may have influences on the 
complete packaging scenario.    

 
3.2. Object Recognition 
The object recognition system consists of three parts. 
First, the image is preprocessed. In this step, 
inaccuracies that are caused by the image acquisition 
process are reduced by applying filter algorithms. 
Additionally, an initial segmentation step is performed 
to distinguish between container body and container 
content. The distinction is necessary for a collision 
detection during the unloading process. For object 
recognition the distinction is not mandatory. However, 
due to a reduced image size the computation time of the 
image analysis step reduces. In the case of using more 
sensor that scan the same packaging scenario from 
different point of views, a fusion step is necessary. This 
is realized by performing a registration between the 
sensor images. Image registration techniques define a 
transformation that maps the first point set onto the 
second one (Forsyth 2002). 

After preprocessing, an image analysis step 
identifies characteristic features of logistic objects. This 
requires another segmentation step in order to identify 
regions that represent single logistic objects. Then, 
feature extraction is performed. A feature is a 
characteristic attribute in the image that can describe a 
specific object. Usual features of objects are geometric 
characteristics like corner points, surfaces, patches and 
related areas. 

In the last step the detected object is classified 
according to a related object class. Therefore, the 
detected features of a segmented region are compared to 
features of predefined model class. The geometric 
models of logistic objects from all predefined shape 
classes are stored in a model database. 

The simulated sensor images will be used in the 
object recognition process in two different ways. The 
first approach uses the simulated sensor images for 
generation of the model database. This means for real 
automatic unloading processes, the sensor data will be 
analyzed, and single regions that possibly contain a 
logistic object are compared to the model database by 
matching operations. The second approach uses a 
different classification concept. Here, a learning 
algorithm is trained with simulated sensor images of 
single logistic objects. After the training phase, the 
classifier should be able to distinguish between the 
predefined object classes. For processing in real-time 
both approaches will be implemented by using GPU 
programming techniques.          
  

4. SENSOR SIMULATION 
This section describes the simulation of the TOF 
measurement principle by reference to the laser scanner 
LMS 200 from the company SICK. The objectives of 
sensor simulation are creating 3D images for every 
predefined object class in various scanning directions. 
Additionally, sensor images of individual parts of 
objects classes are generated. This is useful in case 
when objects are partially occluded by other objects in 
the scene. 
 One benefit of simulating sensor images is the 
generation of sensor images without scattering effects 
or measurement noise. Thereby, the object recognition 
system can be tested under ideal conditions and the 
theoretical performance can be evaluated. The 
simulated sensor data is generated by a simulation 
software that is implemented in MATLAB. The user is 
able to create different packaging scenarios with objects 
from predefined object classes. Afterwards, the sensor 
parameters like scan resolution and sensor position can 
be set. Figure 3 illustrates the scene generator of the 
simulation software. 

 

Figure 3: Screenshot of the 3D Scene Generator 
 

In real scanning processes, the light ray from the sensor 
unit is emitted sequentially over the whole scene. The 
sensor has a scan angle of 180° degrees and the angular 
resolution can be chosen from 0.25°, 0.5°, 1°. The light 
ray of the sensor is modelled by a line g like equation 1 
with a position vector p

r
 and a direction vector v

r
. 

vpx:g
rrr λ+=      (1) 

For each ray the intersection between the ray and the 
objects in the scene is computed. Therefore, the objects 
must be described geometrically. Actually, the 
simulation platform is able to simulate packaging 
scenarios with cubical goods. Implementing geometric 
models for the other objects will be one following step 
of the research work.   

4.1. Modelling of Cubical Objects 
A cubical object consists of four vertices and linking 
edges. The vertices defines the corner points of the 
cubical objects. The cubical object is limited by six 
faces that are described by equation 2. A face f in 
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coordinate form is described by a normal vector n
r

 and 
a real number b.  

bxn:f =
rr

       (2) 

Within the simulation platform, all kinds of cubical 
logistic objects can be defined and placed inside the 
standard container. Collisions of cubical objects inside 
the container are prevented by a collision check 
algorithm. For simplification reasons, deformations of 
the objects are not considered.   

4.2. Generation of the point cloud 
The TOF sensor output is a point cloud with (x,y,z) 
coordinates. In order to simulate the point cloud, the 
intersection of each ray with cubical logistic objects is 
computed. These intersection points represent the point 
cloud of a virtual TOF sensor. As the packaging 
scenario is made up with cubical objects, the 
intersection of each ray with every cubical object has to 
be determined. For a cubical object, that implies a 
possible intersection computation with six faces. In the 
case of a packaging scenario with many logistic objects 
and a high scanning resolution the calculation time 
increases significantly.  
 Therefore, visible surface determination algorithms 
from the field of computer graphic techniques are 
applied. A suitable algorithm is back face elimination. 
A back face is an oriented face with respect to a vector 
v (mostly the view direction of the camera) if the angle 
between its normal vector n and v is between 0 and 90 
degrees. Expressed mathematically, the dot product 
between n and v must be greater or equal zero. Figure 4 
illustrates the principle of back face culling for a cubical 
object. (Agoston 2005) 

 

Figure 4: Back face culling for a cubical object 
 
Result of the back face culling operation is a reduced set 
of visible surfaces for which the intersection with the 
ray must be computed. However, back face culling is a 
local operation, therefore it could be possible that a 
surface that is defined as visible can be occluded by 
another logistic object. This issue is addressed in the 
following subsection. 

  Computing intersection points of a ray and all 
visible surfaces of a logistic object requires methods 
from the field of analytical geometry. The intersection 
between a line and a face has to be computed. 
Therefore, equation 1 is inserted in equation 2  which 
results in equation 3. 
 

b)vp(n =+
rrr λ      (3)  

  
Equation 3 is solved for lambda. This value is inserted 
in equation 1 and thereby the possible intersection point 
is computed. As the face is in principle infinite, the 
intersection point is checked whether it is within the 
boarder of the face of the cubical object. After the 
checking the intersection with every object of the 
packaging scenario, each ray has a set of intersection 
points. The number of elements of the set reaches from 
zero till the number of all faces of logistic objects in the 
packaging scenario. Because of the possible long 
computation time, the intersection computations are  
implemented in C-Code instead of using the script 
language of MATLAB.    
 
4.3. Sensor Image Generation 
The generation of a TOF sensor image requires a 
processing step that identifies from the set of 
intersection points the closest point to the position of 
the sensor for each simulated ray. For this purpose, a 
standard computer graphic technique is used again. A z-
buffer algorithm is a two-dimensional array that saves 
current depth information for each pixel (Agoston 
2005). Here, the number of columns of the z-buffer is 
equal to the number of scanning points per line of the 
simulated sensor. The number of rows depends to the 
settings of the rotating unit of the sensor. The z-Buffer 
can store a value for each ray that is simulated. In order 
to generate the simulated sensor image, the virtual 
packaging is scanned line by line. The distance of the 
scan points depends on the angular resolution of the 
simulated sensor. If an intersection between a ray and a 
face of a logistic object is detected, the distance from 
sensor to intersection points is computed and stored in 
the z-buffer. When another intersection point of the 
same ray with another face is detected, the distance is 
computed again and compared with the one in the z-
buffer. In the case of a closer intersection point, the 
distance stored in the z-buffer is overwritten with the 
new distance value. Thereby, the closest intersection 
point for every ray is determined and the TOF sensor 
image that contains depth information is simulated.     

4.4. Experiments 
For evaluating the simulation methodology, complete 
packaging scenarios with cubical logistic objects are 
imported in the simulation platform and a TOF sensor 
image is simulated. For illustration two test scenarios 
are presented. The first one represents a simple 
packaging scenario with a few cubical logistic objects. 
Figure 5 illustrates the packaging scenario and the 
corresponding TOF sensor image.  
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The second scenario is generated within the context of 
(Scholz-Reiter 2009). It represents a preferably optimal 
loading solution of packaging plan by using wall 
building approaches. Through the two examples, the 
simulation platform is validated whether the simulation 
methodology is suitable to generate realistic simulated 
sensor images of virtual packaging scenarios. The 
simulation results of the second scenario are illustrated 
in figure 6. 
 
a)       b)   
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Figure 5: a) Packaging Scenario b) Sensor Image 

 

The packaging scenario of experiment 1 has 4 logistic 
objects and 10 visible faces to be scanned. The 
computation time was 0.04 seconds. The sensor scanned 
8011 points including container walls. Figure 5b 
visualizes the simulated sensor image that contains 
depth information. The depth is coded by colour, 
whereby reds represents more remote distance than 
blue.   

a)                 b) 
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Figure 6: a) Packaging Scenario b) Sensor Image 

 

Experiment 2 has 25 logistic objects and 51 visible 
faces to be scanned. The computation time was 0.19 
seconds. Since the sensor setting was the same like 
experiment 1, the number of scanned points including 
container wall was equal to 8011 points. In this 
experiment, a great challenge for object recognition 
becomes visible. The two closest logistic goods that are 
stacked directly above each other on the left side of the 
container can be a great problem for an object 
recognition system. Based on the 3D sensor image, 
figure 6b, the object recognition system cannot 
distinguish whether it is a large object or several smaller 
objects. This issue must be solved by a suitable 
segmentation algorithm during the image analysis step.    
   

5. CONCLUSION 
Automatic unloading of universal logistic goods out of 
a container is a big technical challenge, because of  
undefined size and shape of goods. In order to identify 
the position and orientation of a good, a suitable object 
recognition system is necessary. Therefore, a new 
approach is presented that uses simulated sensor 
images. These images are generated by using standard 
computer graphic techniques. They will be used in two 
different ways. Firstly, they will be used for creating a 
model database for template matching. Secondly, they 
will be applied as training data for a classification 
procedure.  These two aspects will be implemented and 
evaluated independently from each other.  
  The next step in the presented research work will 
be the integration of geometric models for cylindrical 
logistic objects and sacks. After integration, suitable 
intersection algorithms must be implemented in order to 
simulate the TOF measurement principle. Additionally, 
object recognition algorithms will be tested with ideal 
sensor images that are created by the simulation 
platform. Furthermore, a demonstrator platform will be 
constructed in future research activities. Then, realistic 
packaging scenarios with logistic objects can be 
generated and scanned from a TOF scanner. By 
recreating and scanning the same scenario in the 
simulation platform, a comparison of the real and 
virtual sensor image can be performed. 
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