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ABSTRACT 
Dispatching of multiple service vehicles is studied for 
the Dynamic Dial-A-Ride Problem (Dynamic DARP). 
In the Dynamic DARP service vehicles transport 
demands from pick-up to drop-off locations which are 
both independently and uniformly distributed within a 
unit square service region. Three policies are compared: 
First Come First Serve (FCFS), Nearest Neighbour 
(NN), and Dynamic Nearest Neighbour (DNN). 
Simulation results show NN outperforms FCFS by 
margins of up to 40%, and DNN provides further 
improvements up to 10% over NN. Analytical 
approximations are then developed for the multiple 
vehicle FCFS policy and the single vehicle varying 
velocity NN policy. The service environment is then 
expanded to more realistic city-like conditions. 
Simulation results confirm the relative policy 
performance holds. Finally, anticipatory vehicle routing 
is applied such that idle service vehicles are proactively 
routed. Anticipatory routing provides up to an 18% 
improvement over the reactive policies.  

 
Keywords:  Dynamic Vehicle Routing, Policy 
Comparisons, Approximations, Simulation 

 
1. INTRODUCTION 
The Vehicle Routing Problem (VRP) is defined in 
simple terms as seeking to serve a number of customers 
with a fleet of vehicles in an effective and efficient 
manner. Due to its practicality and wide range of 
applications the VRP has attracted considerable 
academic attention. Traditionally, studies have focused 
on static and deterministic versions of the problem 
using a set of predetermined demand locations (Xu, 
1994). However, in reality, demands (customers or 
objects) often arrive randomly in time and therefore 
require continuous dispatching processes (Bertsimas 
and Van Ryzin, 1991). In most routing situations the 
problem is inherently dynamic and stochastic in nature. 
Furthermore, the classical objective of VRPs, to 
minimize travel distance and associated direct travel 
costs, may not always prove to be the most important 
factor. In many dynamic situations, such as the ones 
mentioned above, minimizing the wait for service time 
is more important than minimizing travel cost.  

 Bertsimas and Van Ryzin (1991) were the first to 
study a dynamic and stochastic version of the VRP. The 
authors introduced the Dynamic Travelling Repairman 
Problem (DTRP) with the objective of minimizing the 
wait for service. The DTRP is defined as follows: 
demands arrive in time according to a Poisson process 
in a uniformly distributed random location within a 
Euclidean region. The demands are then serviced at that 
location for an independent and identically distributed 
amount of time by a single repair vehicle which travels 
to the demands with constant unit velocity. The authors 
analyzed several solution policies: First Come First 
Serve (FCFS), Partitioning (PART), Travelling 
Salesman Policy (TSP), Space Filling Curve (SPC), and 
Nearest Neighbour (NN). Of particular interest for this 
paper are the FCFS and NN policies. FCFS is the 
simplest policy where demands are serviced in the order 
in which they arrive. In the NN policy, the demand 
closest to the service vehicle is serviced first, 
independent of the order in which the demand arrived. 
For the single server DTRP under heavy traffic 
conditions the NN policy was shown to perform with 
the lowest average system time. Bertsimas and Van 
Ryzin (1993) extended the DTRP to the multiple 
service vehicle case but were primarily concerned with 
developing analytical system bounds and thus did not 
conduct further trials of the NN policy. Ozesenli and 
Demirel (2005) used simulation for the DTRP in a more 
realistic city-like environment in which the repairman 
will not have a constant velocity and proposed the 
Shortest Arrival Time (SAT) policy. 
  An extension to the DTRP is the Dynamic Pick-up 
and Delivery Problem (DPDP) where the service 
vehicle must transport each demand between an origin 
and a destination. The primary difference between the 
DPDP and the DTRP is that in the DTRP the vehicle 
spends time at the location of each demand to serve it 
and thus does not change location during service, but in 
the DPDP the vehicle transports the demand and thus 
does change location during service.  
 The one-to-one DPDP can be further subdivided 
into the Dynamic Stacker Crane Problem (Dynamic 
SCP), Dynamic Vehicle Routing Problem with Pick-up 
and Deliveries (Dynamic VRPPD), and the Dynamic 
Dial-A-Ride Problem (Dynamic DARP) (Berbeglia, 
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Cordeau and Laporte, 2010). The Dynamic SCP deals 
with optimizing a trucking fleet to move full truck loads 
directly from its pick-up to delivery location. The 
Dynamic VRPPD applies when vehicles can serve more 
than one request at the same time and is normally 
applied to courier services. Of particular interest to this 
paper is the Dynamic DARP where requests consist of 
users that need to be transported from a pick-up location 
to a drop-off location. Typical applications of Dynamic 
DARP include taxi services in cities (Berbeglia, 
Cordeau and Laporte, 2010). 
 The Dynamic DARP was introduced by Swihart 
and Papastavrou (1999) with the objective to minimize 
the expected time in the system for demands. The 
problem definition is analogous to that of Bertsimas and 
Van Ryzin (1991) with the alteration that each demand 
must be transported to independent and uniformly 
distributed delivery locations, which are independent of 
the pick-up locations. Three policies were compared: 
Sectoring, Stacker Crane, and Nearest Neighbour (NN). 
As in the DTRP, the NN policy delivered the lowest 
system times under heavy traffic conditions for the 
Dynamic DARP. Xiang, Chu, and Chen (2008) 
introduced several constraints, such as break down of 
vehicles, scheduled and dynamic arrivals, maximum 
work time for each driver, etc., in the DARP problem in 
which demand and delivery points are the vertices of a 
network.  
 This paper explores various policies for the 
Dynamic DARP with the primary objective being to 
minimize system time. In particular, various policies are 
first explored and compared in a simple base case 
scenario. Next, analytical expressions are derived for 
certain policies such that full simulations need not be 
run to obtain ballpark results. The policies are then 
applied to a more realistic city-like region to test if the 
relative performance holds under such conditions. 
Finally, anticipatory behaviour is explored to examine if 
its use results in improved performance. 
 
2. POLICIES 
The three policies studied in this paper are now 
described in detail. 
 
2.1. First Come First Serve (FCFS) 
In FCFS demands are simply served in the order in 
which they arrive in the system. If multiple vehicles are 
idle, the demand is serviced by a random vehicle. Idle 
service vehicles remain in their current location. 
 
2.2. Nearest Neighbour (NN) 
In NN the demand closest to the vehicle is serviced 
first, independent of the arrival order. Specifically, if 
there is more than one customer waiting a vehicle that 
drops off a demand will next service the demand with 
the pick-up location that is the smallest distance from 
the service vehicle’s current location. If a new demand 
arrives and multiple service vehicles are idle, the 
demand is serviced by the nearest vehicle. Conversely, 
if there are no idle vehicles the demand must wait for 

service until it is the nearest demand to a newly idle 
vehicle. Once a service vehicle has been assigned to a 
demand it cannot be rerouted until the demand reaches 
its drop-off location. 

 
2.3. Dynamic Nearest Neighbour (DNN) 
The DNN policy is similar to NN with some minor 
adjustments. Again, demands are serviced by the 
nearest vehicle, independent of the arrival order. 
However, unlike NN, under certain circumstances 
service vehicles can be rerouted to a new demand 
without completing service for the existing demand.  
 Before entering a more detailed explanation, the 
necessary terminology is introduced. A service vehicle 
is said to be ‘assigned’ when it is travelling towards a 
demand’s pick-up location. A vehicle is ‘busy’ when it 
has picked up the demand and is travelling between the 
pick-up and drop-off locations. If a new demand arrives 
and there are no idle service vehicles, the demand may 
be serviced by an ‘assigned’ vehicle if the new demand 
is closer to the ‘assigned’ vehicle than the currently 
assigned demand. If the new demand satisfies this 
criterion for more than one ‘assigned’ service vehicle, 
the new demand is serviced by the vehicle which is 
nearest to it. The service vehicle is re-assigned from the 
current demand to the new one, and changes its 
travelling direction towards the new demand. The 
dropped demand remains where it is and is now treated 
as any other waiting demand. This process is referred to 
as a ‘vehicle assignment reroute’. However, if when the 
new demand arrives there are one or more idle vehicles 
the new demand is always serviced by the nearest idle 
vehicle regardless of the location of any ‘assigned’ 
vehicles. As in NN, when a service vehicle becomes 
newly idle it is ‘assigned’ to the nearest waiting 
demand. It is important to mention that despite its name 
the DNN is only a partially dynamic policy 

 
3. COMPARISON OF BASE CASE POLICIES 
As a basis for discussion, an understanding of the 
relative performance of the three policies in the basic 
environment as defined by Swihart and Papastavrou 
(Swihart and Papastavrou 1999) is required. This 
chapter summarizes the performance of the FCFS, NN, 
and DNN policies, but first begins with a detailed 
problem definition of the base case. 
 
3.1. Problem Definition 
The service vehicles are located in a square region of 
area A=1. The demands for service arrive randomly in 
time according to an exponential distribution with 
arrival rate λ. The expected time between arrivals is 
defined as x=1/λ. The demand pick-up locations are 
independently and uniformly distributed within the 
square region. The drop-off locations are also 
independently and uniformly distributed and are 
independent of the pick-up locations. The distances 
between locations are defined in the Euclidean plane. In 
the base case the service vehicles travel with a constant 
unit velocity and they travel in a straight path between 
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locations (i.e., there are no roads). Under these 
conditions, distance and time are equivalent. When a 
service vehicle is idle it remains in its current location. 
The number of service vehicles is denoted by N, where 
N=1 for the single vehicle case and N>1 for the multiple 
vehicle cases.  
 The service time, s, is defined from when the 
service vehicle begins travelling to the demand’s pick-
up location until the demand reaches its drop-off 
location. The service time consists of two components: 
sw, the time the service vehicle spends travelling to the 
demand’s pick-up location, and st, the time the service 
vehicle spends transporting the demand between the 
pick-up and drop-off location. Thus, s = st + sw. The rate 
of services is defined as µ = 1/s. Wait time, W, is equal 
to the time from when the demand arrives until the 
service vehicle begins travelling towards its pick-up 
location. The actual wait time of the demand until the 
service vehicle arrives is expressed as W + sw. The total 
system time, T, is defined from the instant the demand 
arrives until it reaches its drop-off location. Therefore, T 
= s + W. The overall objective is to minimize the 
system time, T. 
 The utilization, ρ, of an individual service vehicle 
is defined as the proportion of the time the vehicle is 
servicing a demand relative to the overall time. 
Utilization under the FCFS policy is related to the 
arrival and service rates by 
 

      (1) 
 
For the system to remain stable, ρ must remain less than 
one. The utilization is closely related to the traffic 
intensity (arrival rate) of the system (Xu, 1994). In 
general, the greater the traffic intensity the larger the 
value of ρ.  
 
3.2. Results 
The simulation results comparing the system times of 
the FCFS, NN, and DNN policies for the cases of 1, 10, 
20, and 100 service vehicles are considered. Under all 
four cases the NN and DNN policies significantly 
outperform the FCFS policy. Furthermore, DNN shows 
a small improvement over NN. For all three policies the 
system becomes more efficient as the number of 
vehicles increases. The relative performance of the 
policies is examined further, beginning with a 
comparison between NN and FCFS, followed by DNN 
and NN. 

 
3.2.1. Comparison of NN to FCFS 
The NN policy outperforms the FCFS policy by 
different magnitudes depending on the arrival rate and 
the number of service vehicles. The relative 
performance of the two policies is compared in Figure 
1. 
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Figure 1: System Time Percent Improvement for NN 
Over FCFS 
 The typical improvement of NN over FCFS ranges 
from around 25% to 40%, but it increases exponentially 
near the FCFS traffic intensity limit. At lower arrival 
rates the improvement is greater for a larger number of 
vehicles. However, in the single vehicle case the 
improvement of NN over FCFS continually increases as 
λ increases while in the multiple vehicle cases it is fairly 
steady until asymptotic behavior. Furthermore, it 
appears that as N increases the relative performance 
becomes less affected by the arrival rate.  
 It is also of interest to examine the variation in the 
service time, s, for the NN policy as the number of 
vehicles changes. The results are summarized in Figure 
2.  
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Figure 2: Service Times for NN Policy 

 
The single vehicle case behaves as one would expect. 
As λ increases the service time decreases. With more 
customers in the system to choose from, the service 
vehicle finds demands that are, on average, nearer to the 
vehicle’s current location thus decreasing sw and 
therefore s. However, for the multiple vehicle case the 
results are more interesting. As λ increases, s also 
increases until some critical point where s then behaves 
as in the single vehicle case. A potential explanation for 
this phenomenon is that with low arrival rates there are 
typically several idle vehicles when each demand 
arrives. Since the nearest vehicle is selected for service, 
sw will be less than 0.52 (mean distance between two 
points independently generated uniformly distributed 
points in the unit square). As λ increases there are fewer 
idle vehicles on average and thus sw increases. Once λ 
becomes large enough, the controlling factor shifts from 
the number of idle vehicles to the number of demands in 
the system. At this point each newly available vehicle 
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has multiple demands to choose from so sw once again 
begins to decrease. It should also be noted that as N 
increases the critical value of λ also increases. 
 
3.2.2. Comparison of DNN to NN 
In order to understand the incremental gains of DNN 
over NN it is logical to compare DNN directly to NN 
rather than to FCFS. This comparison is summarized in 
Figure 3. 
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Figure 3: System Time Percent Improvement for DNN 
Over NN 
 
 The maximum improvement of DNN over NN 
ranges from around 4% to 10% depending on the 
number of service vehicles. With a single service 
vehicle the maximum improvement is a modest 4%. 
With 10 or 20 vehicles the improvement reaches a 
maximum of just over 10% and in the 100 vehicle case 
the improvement retreats to just under 8%.  
 It is also worth explaining the hill shapes of the 
improvement curves. At low arrival rates the DNN 
system times converge to those of NN. With large times 
between arrivals and many idle vehicles there is likely 
an idle vehicle close to a new customer and it is 
extremely unlikely for a vehicle assignment reroute to 
occur. As a result there is practically no difference in 
the behaviour of the two policies. But as the arrival rate 
increases the number of vehicle assignment reroutes 
also increases and at some point a difference between 
the policies can be seen. It should be noted that the 
greater the number of service vehicles the higher the 
critical traffic intensity point where the difference is 
first noticed. The greater the arrival rate the more 
assignment reroutes that occur in the DNN policy and 
the average sw decreases as vehicles are picking up 
more newly arriving nearer customers. At some point 
the improvement reaches a maximum and then begins to 
decline because of the impact of a second factor. With 
larger arrival rates there are many customers awaiting 
service. It is likely that any newly idle cab will be near a 
currently waiting customer decreasing the chances of a 
beneficial vehicle assignment reroute. As the traffic 
intensity continues to increase fewer and fewer reroutes 
occur and the improvement declines. 
 

4. ANALYTICAL APPROXIMATION OF 
POLICY PERFORMANCE 

In addition to the simulated results, it would be valuable 
to derive analytically the expected policy performance. 
This is first done in detail for the FCFS policy followed 
by approximations of the NN policy.  

 
4.1. Analytical Derivations for FCFS System Time 
It is desired to develop analytical expressions to 
estimate the system times for the FCFS policy. The 
discussion begins with the single vehicle unit velocity 
case, followed by a varying velocity service vehicle and 
finally multiple service vehicles. 
 
4.1.1. FCFS Single Service Vehicle with Unit 

Velocity 
The expected service and system times for the single 
vehicle FCFS case are derived analytically. The 
approach is analogous to that used in Bertsimas and 
Van Ryzin (Bertsimas and Van Ryzin 1991), but 
modified for the Dynamic DARP case.  
 Larson and Odoni (1981) define geometric 
probability as follows: Given two uniformly and 
independently distributed points Y1 and Y2 in a square of 
area A, then 

 
   

   
    (2) 

where c1 ~ 0.52 and c2 = 1/3    
 

The expected service time can be written as follows 
 

    (3) 
 

where both E[sw] and E[st] are equal to the expected 
distance between two uniformly distributed points in a 
square area and therefore follow Eq. (2) such that 

 
      
   (4) 

 
Then the expected service time is shown as follows 

 

  (5) 
 

 Further, the analytical expression for the expected 
system time in the single vehicle FCFS case can be 
derived. Since 

 
    (6) 

 
and E[s] is already known, to determine E[T] the 
expression for E[W] must be derived. 
 The single vehicle FCFS can be modeled as an 
M/G/1 queue (Bertsimas and Van Ryzin 1991). As a 
result, the well-known Pollaczek-Khinchin formula 
(Kleinrock 1976) can be used  
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       (7) 

where s2 is the second moment of the service time. 
 

Using Eq. (2) the variance of the service time can be 
expressed as 

 

     (8) 
From Eq.s (5) and (8) the second moment of the service 
time can be shown as 

 
                                                (9) 

      
 

By inserting Eq.s (1) and (9) into (7) the expected 
waiting time is then 

 
                (10) 

 
Therefore, from Eq.s (5), and (10) it follows that the 
expected system time is 

 
               (11) 

 
4.1.2. FCFS Single Service Vehicle with Varying 

Velocity 
The derivation is then extended to the cases where the 
service vehicle can travel with a constant velocity of 
magnitude v. The service time for the FCFS policy with 
a service vehicle travelling at velocity v is expressed as 

 
                 (12) 

 
Then, from Eq. (4) it is easily shown that 

 
                 (13) 

 
Using an analogous approach as to that of Eq. (9) it is 
easily shown the second moment of the service time 
equals 

 

                (14) 
 

Again, since FCFS can be modelled with an M/G/1 
queue the waiting time can be calculated using Eq. (7) 
and thus the expected system time for the varying 
velocity FCFS policy can be expressed as follows 

 

              (15) 
 

 The analytical formula underestimates the 
simulated results by a small margin. But the relative 
error is never more than 5% which is close enough to 
consider the results to be in agreement. 

 
4.1.3. FCFS Multiple Service Vehicles 
 The varying velocity formula can now be extended 
to estimate the system times for the multiple vehicle 
FCFS case. First, it is assumed that the ratio of the 
expected waiting time to the probability the waiting 
time is greater than zero for the multiple vehicle case is 
equal to the equivalent ratio for the varying velocity 
case. This is expressed as follows 

                 (16) 

 
 The individual terms of Eq. (16) are each 
explained, beginning with the probability of the waiting 
time being greater than zero for the varying velocity 
case. This term is simply equal to the utilization and is 
therefore solved as follows 

 
              (17) 

 
Furthermore, the waiting time for the varying velocity 
case is defined previously within Eq. (11). Lastly, the 
term representing the probability that the wait time is 
greater than zero for the multiple vehicle FCFS case is 
more difficult to solve. An exact solution is not known 
but it can be represented using M/M/N queue with the 
same λ and μ. The probability then becomes an Erlang 
C distribution expressed as 

 
               (18) 

where N is the number of service vehicles. 
 

The expected waiting time for the multiple vehicle 
FCFS are then estimated as 

              (19) 
 

And then the expected system time can be expressed as 
 

       (20) 
 

 For most cases the error between the simulated and 
analytical results hovers around 2% and even in the 
extreme case the maximum error is no more than 6%. 
This is certainly close enough to consider Eq. (20) to be 
an accurate analytical approximation of the expected 
system times for the FCFS policy with multiple service 
vehicles travelling at a constant unit velocity (see 
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Jagerman and Melamed, 2003 for the basis of this 
approximation).  

 
4.2. Analytical Approximations for NN Single 

Service Vehicle 
It would be desirable to also derive analytical 
expressions for the system times of the NN policy, but 
due to the unknown service distance this becomes a 
very difficult exercise. However, it is feasible to 
develop approximate analytical expressions based on 
coefficients derived from initial simulation runs. This is 
first done for the NN single vehicle varying velocity 
policy. The discussion begins with a derivation based 
on the unit velocity case and then the results are 
extended to the situation with a service vehicle 
travelling at a non-unit velocity. 

 
4.2.1. NN Single Vehicle with Unit Velocity  
In their work on the multiple m-vehicle infinite capacity 
DTRP, Bertsimas and Van Ryzin derive upper bounds 
for system time performance (Bertsimas and Van Ryzin 
1993). Both light traffic and heavy traffic bounds are 
presented, with the heavy traffic bound being of interest 
here. 
 Bertsimas and Van Ryzin define the utilization of 
the service vehicle differently than in this paper. To 
avoid confusion the Bertsimas and Van Ryzin 
utilization is dubbed r and is defined as 

 
                (21) 

 
The heavy traffic (r  1) lower bound can then be 
expressed as 

 
               (22) 

where  
 

While the γ constant derived for the DTRP cannot be 
applied directly, Eq. (22) can be suited to the Dynamic 
DARP.  
 First, for convenience, part of Eq. (22) is defined 
separately and is termed K, 

 
                  (23) 

 
It follows that there is a linear relationship between K 
and the system times for the single vehicle unit velocity 
NN policy. The R2 value of 0.9986 validates the linear 
regression fit is a good one. Given this relationship it 
stands that with the correct coefficients for slope, a, and 
y-intercept, b, the system time can be accurately 
approximated for any λ using a linear equation. 
Motivated by Eq. (22), the y-intercept is fixed as the 
service time and the slope is determined from 
simulation results such that  

 
               (24) 

 

 The equation is verified against the simulation 
results. A maximum error of only 4% indicates the 
analytical approximation is valid. 

 
4.2.2. NN Single Vehicle with Varying Velocity 
The formula obtained from the unit velocity case can 
now be extended to the situation in which the service 
vehicle travels with a constant velocity of magnitude v.  
Simulated results could again be used to obtain the 
coefficients a and b for each individual velocity. 
However, the exercise becomes more useful if the same 
coefficient values apply independent of the velocity 
such that 

 
               (25) 

 
 This hypothesis is tested against the simulation 
results for the NN single vehicle policy with velocity 
increases of 10 and 20 times the unit velocity. 
Throughout all arrival rates the error stays less than 5% 
indicating that the analytical approximation provides an 
accurate estimate of the system time. Therefore, the 
hypothesis is indeed correct and the coefficients 
obtained from the unit velocity case can be used to 
calculate the expected system time for the NN policy 
with a single service vehicle travelling at a constant 
velocity of magnitude v.  
 
4.3. Analytical Approximations for NN Multiple 

Service Vehicles 
It is also desired to find analytical approximations for 
the NN policy with multiple service vehicles travelling 
at a constant unit velocity. An analogous approach to 
the varying velocity case is used. 
 Ideally, as in varying velocity, it would be best if 
the same coefficients could be derived from the single 
vehicle case and applied to all other vehicle cases. 
Unfortunately, from experimentation it is known that 
this does not hold true. 
 Although each number of vehicles requires its own 
set of coefficients, it can still be shown that analytical 
approximations can be derived for the NN multiple 
vehicle policy. As an example, the case of 10 service 
vehicles is presented. First, it is important to understand 
that the relationship between K and the system time is 
no longer linear. Therefore, a quadratic polynomial 
must be used for the regression fit. An R2 value of 
0.9916 indicates that the second order polynomial is 
indeed a good fit. Therefore, the equation used for the 
analytical multiple vehicle system time approximation 
is 

 
                (26) 

 
From simulation the coefficient values can be 
determined. For the N=10 case the values are: 
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Using the same method the coefficient values for other 
N cases can also be obtained. Here, the cases of N=10 
and N=20 are examined. Again, the maximum relative 
error is less than 5%, further proving the regression fit 
is strong.  
 
5. APPLICATION OF POLICIES IN CITY-LIKE 

ENVIRONMENT 
The relative performance of the policies is studied under 
somewhat more realistic conditions, which is dubbed 
the “City” environment. Although this “City” model is a 
large simplification of an actual city, it is still believed 
some insight can be gained into how the policies may 
perform in the real world.  
5.1. Description of “City” Environment 
The unit square service region is divided into two 
halves along the vertical midpoint line. The left half is 
termed the city and the right half the suburbs. Both the 
city and suburb sections have areas of Ac=As=0.5. The 
total area of the region is still A=1. 
 The simulation time is divided into repeating 24 
hour time chunks representing a fictitious day. The first 
12 hours of the day are termed the morning and the 
second 12 hours the evening. 
 The “City” environment is constructed to emulate a 
simplified form of a typical city’s traffic patterns. 
During the morning 50% of the demands have a pick-up 
location in the suburbs and a drop-off location in the 
city. The pick-up locations are uniformly distributed 
within the suburbs and the drop-off locations are 
independent of the pick-up locations and uniformly 
distributed within the city area. The other 50% of 
demands have pick-up and drop-off locations 
independent of the city/suburb divide as in the base 
case. Furthermore, there is an emulated rush hour 
period between hours 7 and 10 where the arrival rate of 
demands is doubled. In the evening the pattern is 
reversed such that 50% of the demands have pick-up 
locations in the city and drop-off locations in the 
suburbs and the other 50% remain independent of the 
city/suburb boundaries. The evening rush hour with the 
doubled traffic rate occurs between hours 16 and 19. 
 
5.2. Comparison between “City” Policies 
The results are compared between the policies under the 
“City” conditions.  

 
5.2.1. Comparison of NN “City” to FCFS “City” 
The relative performance of the NN and FCFS policies 
in the city-like conditions is summarized in Figure 4.  
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Figure 4: System Time Percent Improvement for NN 
“City” Over FCFS “City” 
 
As in the base case the NN policy outperforms FCFS in 
the “City” environment. The improvement follows a 
similar shape but the differences between the number of 
vehicles is less pronounced. In fact, there is virtually no 
difference between any of the multiple vehicle cases. 
Furthermore, the magnitude of the improvement is 
slightly less under the “City” conditions. At low arrival 
rates the improvement hovers around 20% compared to 
values of 25-40% for the base case and the asymptotic 
behaviour is less severe in the “City” environment. 
 
5.2.2. Comparison of DNN “City” to NN “City” 
Similarly, the relative performance of the DNN and NN 
“City” policies is shown in Figure 5. 
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Figure 5: System Time Percent Improvement for DNN 
“City” Over NN “City” 
 
The DNN “City” policy outperforms NN “City”. 
However, here the pattern is quite a bit different from  
the base case. For lower traffic intensities the 
improvement is non-existent to very small, but at higher 
arrival rates the improvement spikes to 40-60% 
dwarfing the maximum improvement of only 10% in 
the base case.  

The primary conclusion from the analysis is that 
the relative order of the policies remains unchanged in 
the city-like environment. 
 
6. ANTICIPATORY BEHVAVIOUR IN CITY-

LIKE ENVIRONMENT 
The dynamic routing policies studied thus far show 
dependable performance improvements, even in the 
city-like conditions. However, these policies are all 
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reactive in nature in that routing decisions are not made 
until a new customer arrives. What if, instead of idle 
taxis remaining in their current location waiting for the 
next call, idle taxis are routed to locations that are most 
likely to see new customers? Would this result in 
further performance improvements? Such a policy is 
what is referred to as anticipatory vehicle routing or, 
more generally, anticipatory behaviour. In essence, the 
goal of anticipatory behaviour is to predict, with some 
uncertainty, how to best distribute the vehicles 
throughout the service area to most efficiently serve the 
upcoming demands. 

 
6.1. Description of Anticipatory Behaviour Model 
The details of the anticipatory model studied are now 
described. The algorithm is designed in an attempt to 
optimize the number of service vehicles present in each 
sector to best meet the upcoming demand profile. For 
example, in the morning the flow of demands is from 
the suburbs to the city. This leaves an excess of vehicles 
in the city. Therefore, on completed service, a portion of 
the service vehicles are directly rerouted to the suburbs. 
In order to optimize the anticipatory routing, it is crucial 
that the correct proportion of vehicles be rerouted. Such 
a derivation of this proportion is now presented. 
 Consider the morning commute. Recall that 50% of 
the demands have pick-up locations in the suburbs and 
drop-off locations in the city, and the other 50% have 
random pick-up and drop-off locations. Since half of the 
random drop-off locations will be in the city, overall 
75% of the vehicles will end in the city and only 25% in 
the suburbs. Conversely, 75% of the demands will have 
pick-up locations in the suburbs and only 25% in the 
city. With no anticipatory routing the mismatching of 
service vehicle locations to the demand profile is 
apparent.  
 To properly match the demand profile 75% of the 
total number of vehicles should be present in the 
suburbs. With 25% of the taxis already ending in the 
suburbs, 50% of the total number of service vehicles 
should be routed from the city to the suburbs. 
Therefore, in the morning, of the service vehicles with a 
drop-off location in the city 66.67% are rerouted back to 
the suburbs even if no specific demand is waiting. It is 
randomly determined which of the vehicles are 
rerouted. In the evening the logic remains the same but 
the pattern is reversed.  
 It is important to note that the preceding rules only 
apply when there are no customers waiting. If a service 
vehicle becomes newly idle and there are one or more 
waiting demands the vehicle is immediately sent to 
service a waiting demand, and therefore the anticipatory 
routing no longer applies. Furthermore, idle service 
vehicles which are travelling towards a new anticipatory 
location are still eligible to be assigned to incoming 
demands. The intermediate position of a travelling idle 
vehicle is dynamically updated and compared to the 
location of the incoming demand as would be done if 
the service vehicle were not moving.  

 An additional point centers around the policies 
studied with anticipatory vehicle routing. It does not 
seem logical to apply FCFS with anticipatory behaviour 
because the service order is based on arrival time rather 
than relative location. As a result the policy is not 
studied here. The NN and DNN policies are considered. 
Both policies behave exactly as before except for the 
fact that service vehicles are anticipatorily routed to 
better meet the upcoming demand patterns. 
 To route the idle vehicles an additional feature is 
added to the “City” conditions. Cab-stops are 
introduced such that when a service vehicle becomes 
idle it does not remain at its current position but travels 
to a cab-stop. The cab-stops emulate one additional 
real-life feature in that idle vehicles do not normally 
wait where their last drop-off was but instead at 
designated taxi waiting areas. In the model there are a 
total of eight cab-stops – four in the city and four in the 
suburbs – aligned vertically through the center of each 
sector. The cab-stop locations are chosen such that a 
uniformly distributed newly idle service vehicle has an 
equal probability of being nearest each of the eight 
stops. Each cab-stop encompasses a nearest vehicle area 
with a width of 0.5 and a height of 0.25. 
 Given the overall profile of anticipatory vehicle 
routing, the problem then becomes to which particular 
cab-stop to send each service vehicle. If a vehicle is not 
being rerouted to the opposite sector, it will simply 
travel to the nearest cab-stop. If the vehicle is being 
anticipatorily routed it will travel to the nearest cab-stop 
in the opposite sector. For example, in the evening, a 
vehicle located in the suburbs at (0.82, 0.46) would be 
sent to the nearest city cab-stop at (0.25, 0.375). 
   
6.2. Comparison of Anticipatory Policies to “City” 

Policies 
The primary goal of studying anticipatory routing is to 
understand the improvement, if any, it generates over 
the reactive “City” policies. This comparison is shown 
for the NN and DNN policies in Figures 6 and 7, 
respectively.  
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Figure 6: System Time Percent Improvement for NN 
Anticipatory Over NN “City” 
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Figure 7: System Time Percent Improvement for DNN 
Anticipatory Over DNN “City” 
 
The first note is that the improvement for the NN and 
DNN policies is very similar. This provides evidence 
that the effect of adding anticipatory behaviour does not 
significantly depend on to which of the two policies it is 
applied. Therefore, the performance of anticipatory 
behaviour is discussed in general terms. 
 Anticipatory vehicle routing does outperform the 
reactive “City” policies. While the magnitude of the 
improvement does not depend on the policy, it is 
affected by the traffic intensity and the number of 
service vehicles. The maximum improvement of around 
18% occurs at the lowest traffic intensities. The 
magnitude of the improvement remains relatively 
constant up to medium traffic before it begins to decline 
more quickly. In heavy traffic the system times are 
statistically equal to those of the “City” policies. 
Furthermore, the improvement is greater for the 
multiple vehicle cases than the single vehicle case. The 
maximum improvement for N=1 is only around 7%. 
The 20 and 100 vehicles cases outperform the 10 
vehicle case but the improvements for N=20 and 
N=100 are quite close. This suggests the magnitude of 
the improvement increases with number of service 
vehicles up to a point where it then begins to level off. 
 These results are not entirely surprising. It seems 
logical the improvement would decrease as the arrival 
rate increases. At low traffic intensities rerouted idle 
service vehicles have sufficient time to reach or make 
significant progress towards the opposite sector before 
they are assigned to an incoming demand. As the arrival 
rate increases idle taxis are assigned to new demands 
more quickly and on average have less travelling time 
towards the other sector, thus lowering the benefit. At 
high traffic intensities there is almost always a waiting 
demand and thus the anticipatory policy collapses to the 
reactive “City” policy and no improvement is seen.   
  
7. CONCLUSION 
This paper makes several contributions to the 
understanding of service vehicle routing in the Dynamic 
DARP. First, the well understood NN policy was 
extended and modestly improved to incorporate 
partially dynamic behaviour. It was shown that this 
DNN policy outperformed NN by up to 10% under the 
base conditions. Secondly, the analytical understanding 

of the policies was furthered. Analytical formulas for 
the multiple vehicle FCFS policy were derived. 
Furthermore, accurate approximations for the single 
vehicle varying velocity NN policy were presented 
using only a single set of simulation runs. While not yet 
completed, this potentially paves the way for similar 
expressions for multiple vehicle policies. Thirdly, it was 
demonstrated that the relative performance of the FCFS, 
NN, and DNN policies holds true under somewhat more 
realistic city-like conditions. Lastly, the understanding 
of anticipatory behaviour for service vehicle dispatching 
was furthered. It was shown that anticipatory vehicle 
routing for the more complex NN and DNN policies 
outperforms the reactive policies by up to 18%.  

 
8. FUTURE WORK 
The major areas of potential future work are  discussed 
next. 

 
8.1. Future Work for Comparison of Base Case 

Policies 
The DNN policy is not a fully dynamic solution. Two of 
the major shortcomings include: (i) if a new demand 
arrives and there is one or more idle vehicles, the 
demand is always serviced by an idle vehicle even if an 
assigned vehicle is nearer, and (ii) no dynamic 
reassignments occur when a service vehicle becomes 
newly idle after reaching a drop-off location. There is a 
significant opportunity to develop and test a fully 
dynamic nearest neighbour policy. It is hoped that such 
a policy could produce much greater improvements than 
the current magnitudes of no more than 10%. 
 While there are many potential solutions to the 
implementation of a fully dynamic policy, one 
possibility is discussed here. The policy is concisely 
summarized as: When a service vehicle (demand) 
becomes idle (arrives) it is assigned to its nearest 
demand (service vehicle), and dropped service vehicles 
(demands) are considered as becoming idle (arriving). 
Whenever a service vehicle becomes idle or a new 
service vehicle arrives, the service vehicle-demand pairs 
are dynamically reassigned. This is done in such a way 
that once a vehicle and demand have been paired they 
are removed from future comparisons for that trigger 
such that algorithm is guaranteed to quickly converge to 
a solution  

 
8.2. Future Work for Analytical Approximations of 

Policy Performance 
As the policies become more dynamic and the service 
environments more complex, producing analytical 
expressions for system time performance becomes 
increasingly more difficult. With that being said, it is 
still believed there is an opportunity to develop an 
analytical approximation for the multiple vehicle NN 
policy that requires only one set of initial simulation 
runs. It is unclear exactly how this is to be 
accomplished but the single vehicle varying velocity 
NN model could be used as a starting point. 
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8.3. Future Work for Objective 4: Application of 
Policies in “City” Environment 

The “City” environment studied was a very simple 
approximation of the real-world. The conditions could 
be expanded to better simulate real life conditions. 
Potential improvements could include: the addition of 
roads to constrain taxi movement, an increased number 
of neighbourhoods, a larger number of service vehicles, 
more complex traffic patterns and rush hour modelling, 
or traffic disturbances such as stoplights. Although 
many improvements can be made it seems unlikely that 
any model could accurately simulate the complexity of 
a real city so the models should still only be used to 
assess relative, not absolute, performance. That being 
said, there is still value in understanding the effects that 
different real-life phenomenon could have on policy 
performance. 
 
8.4. Future Work for Anticipatory Behaviour in 

“City” Environment 
Anticipatory vehicle routing represents a significant 
opportunity for future work. There are many possible 
directions to take in future research, so the ones 
presented here are merely suggestions. The effect of the 
vehicle anticipation routing method could be further 
studied. For example, instead of travelling to a 
particular location, taxis could be sent to patrol 
throughout the specified sector. Furthermore, 
anticipatory behaviour could be applied to the previous 
future work suggestions. It would be interesting to 
understand how the performance of anticipatory routing 
would change under more realistic “City” conditions. 
Furthermore, anticipatory behaviour could be applied to 
a fully dynamic policy. If possible, it would be of 
interest to understand how close such a policy would 
come to the optimal system performance. 
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