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ABSTRACT 
In this paper we intend to show that the open-source 
simulation framework DESMO-J can be used not only 
for logistic investigations - as it was being used by 
many during the last years - but also for evaluating and 
testing control systems. Therefore we propose to 
implement model components of container terminals in 
such a way that they can be used in logistic simulation 
as well as in device emulation test beds. This paper 
outlines our experience in extending DESMO-J for a 
broad range of applications in the context of container 
terminals and our experience in developing reusable 
model components for simulation and emulation. While 
Java-based DESMO-J is a product of the University of 
Hamburg, the functional container terminal extension, 
called COCoS, we present in this paper has been 
developed by the Hamburger Hafen and Logistik AG. 
 
Keywords: discrete simulation framework, logistic 
simulation, device emulation, container terminal 

 
1. INTRODUCTION 

 
1.1. Hamburg Container Terminals 
With a container handling rate of 9.7 million TEU in 
2008, Hamburg accommodates one of the ten largest 
container ports worldwide and accordingly the second 
largest within Europe, right behind Rotterdam. This 
capacity is to be expanded to 18 million TEU in the 
next couple of years. 
 Hamburger Hafen und Logistik AG (HHLA) is one 
of the leading port logistics groups in the European 
North Range. With its Container, Intermodal and 
Logistics segments, HHLA is positioned vertically 
along the transport chain. Efficient container terminals, 
high-capacity transport systems and a full range of 
logistics services form a complete network between the 
overseas port and its European hinterland. 
 HHLA operates three container terminals which 
were responsible for more than two thirds of the overall 
container handling in Hamburg in 2008. One of them is 
the HHLA Container Terminal Altenwerder (CTA) 
which is considered to be a state of the art terminal 
worldwide. The northern section of the CTA is shown 
in Figure 1. Since the container dispatching processes at 

the CTA are almost fully automated, a particularly 
significant relevance is attached to the integration of 
container handling technology and IT-based control 
systems. 
 Increasing handling rates require highly efficient 
dispatching strategies for container vessels and 
hinterland traffic. Not only that every deceleration 
would bring financial damage to terminal carriers and 
forwarding companies but additionally, an interruption 
in container handling process would immediately cause 
congestions in metropolitan area traffic because of  
nearby autobahns and city center.  
 These requirements stress the importance of using 
efficient methods for improving and validating the 
evolution of terminal layout, logistic handling strategies 
or control systems. The University of Hamburg and  
HHLA have been collaborating on developing 
simulation techniques to solve such terminal-specific 
problems for many years. 
 

 
Figure 1: Northern section of Container Terminal 
Altenwerder (Brandt 2007) 

 
1.2. Container Terminal Simulation 
According to (Steenken et al. 2004) a multi modal 
container terminal can be considered as an open system. 
The waterside (ships) and the landside (trains, trucks) 
have always been the two main interfaces to its 
environment. But distinct container terminals may 
significantly vary in types and quantity of handling 
equipment, terminal layout or grade of automation of 
handling processes. Besides these physical aspects there 
are also many individual types of supporting and 
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surrounding IT-Systems as well as planning and control 
strategies integrated therein. The fact that these and 
further aspects need to comply with various specific 
requirements of terminal operations  finally leads to a 
considerable number of planning and optimization 
problems that emerge and evolve throughout a container 
terminal's life cycle. According to (Saanen 2001) this 
life cycle may be divided into three main phases: 

1. Conceptual, functional and technical design 
2. Implementation and Realization 
3. Commissioning and Operation 
In practice, the phases may overlap significantly 

and may be interconnected by iterative feedback loops, 
for instance if an existing terminal receives a redesign 
due to new requirements. 

Simulation is to be used if experimentation with 
the real system is too expensive, complex or dangerous, 
which applies to container terminals in particular. 
Therefore simulation has become an important method 
in analysis and optimization of container terminal 
operations in the recent past (Steenken et al. 2004).  Just 
like the planning problems mentioned above, the 
application of simulation may be attributed to the 
phases of a container terminal's life cycle and may be 
differentiated accordingly as illustrated in Figure 2.  

Strategic simulation mainly points at problems of 
terminal design and is applied in phase (1) 
correspondingly. Different logistic concepts, decision 
rules or optimization algorithms that address problems 
of operational terminal planning within phase (2) and 
(3) deserve close comparison by means of operative 
simulation studies before they can be put into 
production on an existing terminal. Tactical simulation 
stands for an integration of simulation models within 
the terminal's IT-systems in order to generate solutions 
for operational and on line planning problems in phase 
(2) and (3). This integration is also referred to as 
simulation optimization or optimization via simulation. 
While strategic, operational and tactical simulation are  
directly focused on, mainly logistical, planning 
problems within a terminal's life cycle, phase (2) 
particularly requires simulation techniques for the 
purpose of development and validation of terminal 
operation systems by emulating terminal equipment, IT-
systems or human behavior. 

 
1.3. Outline 
Section 2 details the comparison between simulation 
and emulation in order to extract differences and 
similarities. Section 3 concentrates on the simulation 
framework DESMO-J and explains its main 
functionality, its software architecture, how it can be 
extended and how it has been used in harbor simulation 
so far. Section 4 concentrates on COCoS, the extension 
HHLA uses in order to develop simulation models 
based on DESMO-J.  Section 5 describes how 
DESMO-J and COCoS fit the requirements presumed in 
section 2 by referring to concrete model 
implementations. Section 6 finally discusses the 

experiences made in combining logistic simulation and 
device emulation by presenting benefits and limitations. 

 
Figure 2: Correlation of simulation and emulation with 
container terminal planning problems and life cycle 
 
2. SIMULATION VS. EMULATION 
In principle there are two different application scenarios 
for using simulation in context of container terminals. 
The traditional one is executing logistic simulation 
experiments to compare different handling strategies or 
to investigate the terminal layout. A completely 
different approach is to use simulation technique for 
testing terminal operating systems (TOS). We speak of 
emulation in this context. We depict differences of 
simulation and emulation in this section. 
 
2.1. Definition 
The main difference between logistic simulation and 
device emulation is that not the modelled system – the 
terminal – is subject of the investigation, but a control 
system, in this case a real TOS which is linked to the 
model. Emulation is used to imitate a real system; it 
offers an interface so that the control system cannot 
distinguish between a model and reality. This intends to 
already examine operability of a TOS before the 
employment at a real terminal. We denote emulation to 
be a subset of simulation. 

(Auinger et al. 1999) proposed using simulated 
systems in combination with real systems in different 
ways. Figure 3 illustrates the different possibilities to 
combine simulation models with reality. Arrow 1 
describes testing all components in live respectively 
prototype mode, not using simulation at all. This is the 
most realistic way of testing, but also the most 
expensive, furthermore dysfunctions can cause 
maximum damage. Arrow 2 is near to classical 
simulation view, without interaction with reality. This 
can be used for logistical simulation described above. 
Arrow 3 shows a kind of simulation called Reality-in-
the-loop or Real-Time-Control. Here the material 
terminal hardware is tested with a model of a control 
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system. (Schütt and Hartmann 2000) described how 
HHLA tested AGVs (Automated Guided Vehicles) with 
a virtual control system during CTA’s planning phase. 
Arrow 4 describes the way of coupling simulation with 
reality which we call emulation and this paper is about: 
A simulated terminal system is piloted by a real TOS, 
so that the TOS can be tested with help of a terminal 
model. 

 

 
Figure 3: Possible combinations of reality and 
simulation (based upon Auinger et al. 1999) 
 
2.2. General Requirements 
Logistic simulation is often embossed by bird’s eye 
view; we look at the behavior of a terminal in general, 
so we can abstract from many details and implement the 
model with a top-down approach. In contrast, device 
emulation always depends on worm’s eye view. We 
have to implement models with a bottom-up approach 
that is to say that all activities on the terminal have to be 
mapped from the view of emulated components, for 
instance quay cranes or AGVs. 
 Beyond this, the needed level of detail for 
emulation requires more time and effort than 
conventional simulation models. For example, in 
logistic simulation models, only the time span is 
relevant, which a quay crane needs for picking up a 
container on landside and setting it down onto the ship, 
but when testing a TOS with help of emulation models, 
a lot of intermediate steps have to be modeled auxiliary. 
For example, a dual-trolley quay crane owns two 
trolleys, which get individual briefings by TOS and 
have to interact for dispatching the container (see 
section 5.2 for details). The TOS needs information 
about the exact position of these trolleys, for this reason 
modeling the kinematic behavior of mobile devices 
becomes necessary. Therefore, the technical 
characteristics of the devices have to be investigated 
and mapped exactly into the model, which is 
unnecessary in simulation models at all. 
 Fundamentally in emulation, interfaces for 
communicating with the Control System (in case of 
harbor simulation: the TOS) are needed. In general, 
these are the same interfaces, which are implemented by 
local device drivers of real terminal components. In 
most cases, we deal with TCP/IP-based socket 

communication, and there is a set of telegram types, 
which have to be implemented. These telegrams may 
brief the device for doing a selected task or may request 
the status of the device. In other direction, telegrams 
which have to be sent from the device to the TOS may 
contain the status of the device, signal finished jobs or 
announce error states.  
 This leads us to another main difference between 
simulation and emulation. In simulation experiments, 
time spans that do not include any events will be 
skipped; duration of a simulation run depends on CPU-
speed. By contrast in emulation, the advancement of 
simulation time has to be adjusted to real-time. Since 
the TOS is a real-time system, which assumes that the 
processing of jobs consumes time, and since we do not 
want to change this behavior for testing the TOS, we 
need to slow down simulation. The challenge of doing 
this is to find an approach, which delays the 
advancement of execution time, and nevertheless allows 
the insertion of new processes which were 
commissioned by the TOS over the communication 
interface; i.e., if the next scheduled process is estimated 
to start in a selected time span, the emulation model 
may not advise the thread to sleep until just before the 
end of this time span, because it is possible that a new 
upcoming task will have to be started prior to the 
process the scheduler is currently waiting for. 
  
2.3. Manual- or automatic-driven experiments 
The way of executing emulation experiments, differs 
fundamentally from logistic simulation experiments. 
Because of real-time conditions, the number of executed 
experiments is substantially smaller, and the analysis of 
results is extended by methods that are inappropriate in 
logistic simulation. In the following, we distinguish two 
types of experiments: manually driven and 
automatically driven tests.  
 During the course of the manual experiments, a 
human tester takes the role of the dock workers and 
operators of package items. He achieves certain tasks, 
and examines whether the TOS is reacting correctly to 
his interactions. Therefore, the model has to provide 
another interface, which is used for user interaction. All 
the actions, which dock workers and operators may 
accomplish on the terminal and thus are not induced by 
the TOS, like lashing a container or entering a danger 
area, have to be mapped to this interface. Additionally, 
all information about component states, which could be 
in interest for the tester, has to be accessible via this 
interface. We call it the manual interaction interface. 
 The tester should get access to this interface in 
scope of a Graphical User Interface (GUI). This can be 
realized via buttons, dropdown boxes and input fields, 
which should give feedback to user action. In this 
context, the visualization of temporary state of model 
becomes substantial. This can either be table-based 
summing-ups of model components. Or, which is quite 
more ergonomic, via 2d- or 3d-animations enriched by 
additional information boxes. Since the status of 
emulated devices has to appear just in time, a 
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concurrent animation is urgently needed, in contrast to 
logistical simulation experiments, where a post-process 
animation is adequate.  
 Beside these manual tests, also automatic tests are 
to be possible. In case of testing a new version of a 
TOS, each time a lot of standardized workflows have to 
be validated. This needs not to be done by human 
testers. Therefore, another component has to be added, 
which automatically acts on the manual interaction 
interface. The behavior of this component has to be 
described by an easy changeable set of rules.  We do not 
need any animation here, but we have to insert logging 
mechanisms, which outruns the trace logging of 
conventional simulation loggings in the level of detail, 
so that dysfunctions of the TOS can be found via an 
additional analysis component. 

 
2.4. Combination 
There are many intersections of the requirements of 
logistic simulation and device emulation, so a reuse of 
model components can help saving time and money.  
(Vorderwinkler et al. 1999) already proposed  reusing 
simulation components from planning phases for device 
emulation. But some fundamental differences should 
not be disregarded.  

According to section 2.3 device emulation and 
logistic simulation differ in their requirements. Table 1 
summarizes the most important differences. However 
simulation and emulation models may share many  
aspects of model structure and implementation and 
accordingly requirements on underlying simulation  
frameworks. Note, that the behavior and the tasks of 
terminal components like quay cranes are basically the 
same in simulation and emulation. The aim of our 
investigations was to investigate whether a reuse of 
model components in logistic simulation as well as in 
device emulation is advantageous particularly in 
container terminal domain.   

 
Table 1: differences between emulation and simulation 

Logistic Simulation Device Emulation 
bird’s eye or worm’s eye 

perspective 
worm’s eye perspective 

keep model as simple as 
possible 

high level of detail 

closed system needs interfaces for 
interacting with other 

systems 
simulation time 

advancement depends on 
CPU speed 

simulation time 
advancement depends on 

real time 
huge number of 

experiments 
smaller number of 

experiments 
automatic-driven 

experiments 
manual- or automatic-

driven experiments 
analysis depends on 
reports, post-process 

animation 

concurrent animation 
and/or exhaustive logging 

 

3. DESMO-J 
 

3.1. Main Functionality 
DESMO-J (Discrete Event Simulaton Modeling in 
Java) is a simulation framework targeted at developers 
of discrete-event simulation models (Page and Kreutzer 
2005). It offers an exhaustive environment to ease 
implementation of event-oriented, process-oriented or 
transaction-oriented models using the object-oriented 
high level language Java. As specialty, a combination of 
these different simulation world-views is possible, too. 
DESMO-J was developed by Department of Informatics 
at University of Hamburg and published under APL 2.0, 
which is a common open-source license. Binaries, 
source code, API and a tutorial can be found on 
http://www.desmo-j.de.  

DESMO-J clearly separates between model and 
experiment. Experiments are realized via several black 
box elements, which are ready-for-use for executing 
simulation runs, like the Experiment class which 
encapsulates experimentation functionality, the 
Simulation Scheduler or the Simulation Clock. 
Therefore the modeler only has to implement the model 
itself and does not have to care about implementing the 
technical framework. DESMO-J also allows creating 
hierarchical model composition, since models can be 
embedded into other models as so-called sub-models. 

Models are implemented via deriving several 
white-box components. The main task the modeler has 
to solve at this, is mapping model activity to events (in 
event-oriented worldview) or to processes (in process-
oriented worldview). Events and processes are to 
describe activity of model components, and can be 
scheduled on simulation scheduler. Entities describe 
dynamic model components. In event-oriented 
worldview, an entity’s state can be changed by events. 
In process-oriented worldview, processes are derived 
from entities, which means a process is an active entity 
itself, which can interact with other entities, and change 
its state on its own.  

Additionally, there are a lot of helpful components, 
which can be used in the model building process 
without derivation, e.g. there are different kinds of 
queues for waiting entities, or a set of stochastic 
distributions, which can be used to generate pseudo-
random numbers. Since the user can specify a seed for 
random-number generation, a replay even of stochastic-
driven simulation runs is possible. There are several 
objects, which can be used for reporting and analysis of 
experimentation runs, e.g. there are statistic classes like 
counter, time series or histogram, and report classes 
which generate reports in a selected format (e.g. HTML 
or XML) for model components, which are of interest 
for the user (e.g. entities or queues). The user also may 
implement statistic or reporting-classes on its own.  

 
3.2. Implementation Language 
DESMO-J bases on the object-oriented language Java, 
which addresses a large community of programmers. 
Firstly, all of our students have a Java-programming 
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expertise, so teaching simulation with help of DESMO J 
is in line with their curriculum. Furthermore, many 
companies focus on the usage of Java, too, because 
advantages of Java are e.g. the portability across diverse 
platforms, the huge amount on reusable libraries (e.g. 
the Java API, GUI-libraries like SWING or even third 
party libraries like DESMO-J) or the robustness since 
there are no dangling pointers or memory leaks like e.g. 
in C++. Furthermore, because of its handy syntax and 
the large amount of developing tools, implementing 
simulation models using Java-language reach a 
satisfactory tradeoff between ergonomics and 
flexibility. For example there is the Javadocs-tool for 
easy creation of documentations or there are open-
source, extendable Integrated Development 
Environments like Eclipse, which offer more features 
for manipulating code than most code-editors of 
commercial simulation tools do. 

Although, the Java Virtual Machine cannot deliver 
the performance as models compiled to machine code 
for the underlying platform, note that commercial 
simulation tools often use scripting languages, which 
are definitely slower than the pre-compiled java-byte 
code of DESMO-J.  
 The current version 2.1.4b of DESMO-J bases on 
the newest Java version 1.6, so it includes state-of-the-
art programming methods like Generics (e.g. Queues 
can act as specialized queues for selected entities, which 
primarily induces type safety) or other advanced 
concepts. 
 
3.3. Expandability 
A very important aspect in using DESMO-J is its 
expandability. It is possible to integrate DESMO-J into 
other software frameworks, as well as to extend it by 
additional class libraries. In order to ease modeling and 
simulation in special application domains, it makes 
sense to develop domain-specific extensions, which 
provide objects for that particular domain. These can be 
quite general, more technical extensions like FAMOS, 
which permits Multi-Agent-Based simulation with 
DESMO-J (Knaak 2006), or very specialized 
approaches, for example to use a DESMO derivate as 
simulation component to simulate business production 
processes and calculate ecological input/output-balances 
(Wohlgemuth 2005). There are several DESMO-J 
extensions, which are beyond the scope of this paper, 
however. Because of the flexibility of ASL 2.0,  
DESMO-J is licensed under, it is possible to implement 
extensions or changes without licensing it under an 
open-source license. Therefore, companies like HHLA 
have the possibility to develop their own extensions, 
which have not to be published obligatorily, just like the 
extension presented in this paper. 

 
3.4. Harbor simulation with DESMO-J 
At HMS 2003, we presented our first DESMO-J harbor 
extensions for our research projects in harbour logistics 
(Page and Neufeld 2003). This class library offers three 
types of objects: There are dynamic, mobile, temporary 

objects like ships, trucks and trains; dynamic, mobile, 
permanent objects like cranes and van carriers; and 
stationary, permanent objects like holding areas, gates, 
jetties and yards. While the stationary objects are 
mostly implemented as derivation of DESMO-J’s 
queues, the mobile objects are derived from DESMO 
J’s processes. The framework distinguishes between the 
material flow, which deals with transportation and 
turnover over material goods, and the information flow, 
which deals with handling of job briefings. We 
examined the practicability of these early concepts in an 
empirical investigation within Containerterminal 
Burchardkai in Hamburg in co-operation with HHLA. 
Because these extensions are good for logistic 
investigations but too abstract for the purposes of 
emulating container terminals devices, we present a new 
harbor extension for DESMO-J called COCoS in this 
paper. However since HMS 2003, DESMO-J was used 
to implement harbour models by several authors. We 
give a summary on selected articles of foreign parties in 
the following. 

 (Asperen et al. 2004) investigated the impact of 
arrival processes, using the example of a chemical 
plant’s jetty in Rotterdam (Netherlands). They assumed 
that a company can affect the ship arrival times with 
help of tactical sales plans and compared four different 
arrival processes. Initially they used a commercial 
simulation tool for their investigations, later on in the 
project they changed to DESMO J. They assigned the 
following reasons: Limitations in scripting language of 
the commercial tool made it very hard to implement 
complex models, while Java-based DESMO J offered 
much more flexibility. In addition, communication with 
other components did not work satisfyingly, while 
DESMO J did not have any problems in that, which was 
very important for our intention of connecting a TOS to 
an emulation model, too. Last but not least they stressed 
the better runtime performance of DESMO-J (Aspeeren 
et al. 2004). 

A team at the Christian-Albrecht-University in 
Kiel (Germany) compared different dispatching 
strategies for AGVs at CTA in co-operation with 
HHLA. With help of DESMO J, they built up a “simple 
model with short run times which can easily be 
configured and produces realistic results” (Briskorn and 
Hartmann 2005).The subject of their investigations 
were two variants of job assignment. In the first case, 
only AGVs were considered which were currently idle; 
in the second case, they also considered AGVs which 
would finish their task within a certain time. These 
strategies were tested within five different scenarios, 
with 100 simulation runs per scenario and strategy. 
(Briskorn and Hartmann 2005; Briskorn et al 2007) 

A working-group at the Bleking Institiute of 
Technology (Sweden) was very experienced with 
simulating logistic aspects of horizontal transport of 
container terminals. For example they identified the 
number of cassette-based AGVs that were required to 
achieve an optimal workload for quay crane for a given 
terminal (Henesey et al 2006a); they evaluated 
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dispatching strategies for AGVs (Kosowski and Persson 
2006); and compared cassette-based to traditional AGV-
Systems (Henesey et al 2006b). They declared that they 
preferred DESMO-J, since it allowed the suitable 
approach to implement terminal components as process 
entities, which had their own life-cycles, properties and 
behavior, and which coordinated their tasks using 
Contract Net protocol. Furthermore, simulation 
experiments were able to be executed via command 
prompt and reports were created automatically 
(Kosowski and Persson 2006, p. 31; Henesey et al 
2006a). 

 All these authors used DESMO-J for logistic 
simulation; we did not find any indications that 
DESMO-J had been used in emulation context so far. 
Therefore, the intention in our paper is to show, that 
using DESMO-J as emulation engine is definitely 
possible. 

 
4. COCOS 
As well as the examples for a usage of DESMO-J in 
harbour-simulation mentioned above, the COCoS-
framework developed in (Brandt 2007) has originally 
been designed for logistic container terminal-
simulation. This relationship and correlating 
application-domains are illustrated in Figure 4. 

As an extension of DESMO-J for the development 
of integrated container terminal simulation models,  
COCoS can be used to compare different terminal-
layouts or to evaluate the impact of different handling 
equipment or control strategies on key figures of 
terminal productivity. COCoS provides black and white 
box concepts for modelling and implementing such 
models. 

 

 
Figure 4: COCoS and Application-Domains (Brandt 
2007) 

 
4.1. Framework-architecture 
A container terminal can be conceptually reduced to a 
collection of enclosed subsystems that are connected by 
an information and a material flow. Accordingly 
container terminal simulation models should be 

composed of   enclosed model-components representing 
theses subsystems (Simulation Building Blocks, see 
Verbraeck (2004)). To achieve this aim COCoS 
provides an integration architecture for the combination, 
connection and communication between reusable model 
components as well as a basic  architecture for the 
components themselves. 
 Basic relationships within the framework-
architecture are shown in Figure 5. Components 
representing enclosed terminal subsystems are 
characterized as functional components (see section 
4.2). Unlike these, the framework's technical 
components do not represent parts of the simulated 
system but provide services for pure technical aspects of 
a simulation model such as visualization or statistics. 
These reusable functional and technical components 
have been built upon the framework's core which 
contains all basic framework elements and upon several 
system libraries which form the framework's 
technological foundation.   
 

 

Figure 5: Framework architecture of COCoS (Brandt 
2007) 

 
4.2. Functional components 
Functional components represent the container terminal 
subsystems such as quay-cranes, gantry cranes or 
horizontal transport systems. COCoS defines the 
architecture of functional components to assure their 
integrability and reuse in the context of different 
container terminal simulation models.  

Multi-tier architectures can lead to advantages in 
loose coupling and reuse of software components. 
COCoS's functional components follow this important 
principle by implementing a three-layered architecture 
in order to transfer the mentioned advantages to the 
context of container terminal simulation. Hence each 
layer encapsulates a prominent scope typically existing 
in a container terminal simulation model, especially to 
refine a model wide separation of logical and physical 
aspects as described in (Pidd and Castro 1998). 

The logical layer is responsible for planning 
decisions,  resource management and task-handling 
mechanisms such as task-splitting, task-optimization or 
task-allocation. Through this the logical layer connects 
a functional component to a model's information flow. 
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In contrast, the material flow layer implements the 
physical aspects of a functional component. In terms of 
container terminal simulation, the material flow layer is 
mainly responsible for the handling and transportation 
of containers, thereby consuming simulation time for 
these physical operations. The communication layer 
serves as an extension point for adding additional 
interfaces to a functional component that are not 
supported by the standardized model architecture. This 
feature becomes especially important when embedding 
a functional component within a device emulator as 
described in section 5.2. But a functional component 
doesn't require all of the layers described above, given 
that pure information flow components that only 
provide the coordination of functionality, that  may also 
be required in constructing a container terminal 
simulation model. 

According to (Pidd and Castro 1998) the fast and 
secure development of complex simulation models 
through combination of model components especially 
requires a coupling scheme which specifies the 
communication between model components as well as 
the way they are connected. Therefore, COCoS  
contains mechanisms for the loose coupling of of 
functional components within an integrated container 
terminal simulation model or more precisely within the 
model's information and material flow. These aspects 
are to be described within the next two sections. 
 
4.3. Information flow modeling 
More than simply providing the basic elements needed 
for the development of container terminal simulation 
models, COCoS also supports the conceptual modelling 
process itself by providing a generic task-handling 
concept that standardizes the model's information flow 
as a flow of generic task-objects carrying sets of task-
attributes. 
 Functional model components serve as task-
handlers and primarily communicate by assigning tasks 
to each other accordingly. The underlying hierarchical 
model structure is defined by a model-wide XML-based 
task-model which can be considered as an executable 
coupling scheme within the model's information flow. 
More precisely a task-model specifies how   super-tasks 
are split into sub-tasks and how task-attributes have to 
be passed on or generated thereby. The task-model also 
specifies   targets for the generated sub-tasks as well as 
intermediate sequential relations. During their 
processing, the start and the completion of tasks are   
reported to their original sender. In order to execute a 
task model, COCoS provides black-box components 
which process the XML-based task-model-definition 
during experimentation. 
 By that task-models can be used to conceptually 
model the main information flow within an integrated 
container terminal simulation in an early phase of model 
development, which has also been proposed in 
(Robinson 2006). 

 

4.4. Material flow modeling 
The model's material flow is finally responsible for 
physical execution of tasks generated by the 
information flow. COCoS complements the described 
principles of information flow modeling by providing 
black- and white-box components for modeling and 
implementing these physical processes within a 
functional component's material flow layer. COCoS  
also contains basic resource classes like horizontal 
transporters routed on a graph based path net or crane 
components that can be combined to complex crane 
systems including a precise kinematic simulation. All 
these components follow DESMO-J's process oriented 
modeling style as it is set as default for implementation 
of functional components in COCoS. Material flow 
resources and their operational states are managed by 
the component's material flow layer making them 
available to the logical layer which then assigns tasks to 
these resources. Besides this connection to the 
information flow, material flow layers are 
interconnected by linking physical component layouts 
within an integrated terminal layout in order to facilitate 
container transportation in between components. This is 
realized by synchronous and asynchronous handover 
mechanisms that serve as the only coupling mechanism 
between functional components or their material flow 
layers respectively. 

 
4.5. Technical components and model integration 
Technical components are not part of the model logic 
and therefore do not follow the described architecture of 
functional components. Nevertheless COCoS defines 
architectural principles for important technological 
model aspects as well as for the support of the 
development of reusable and exchangeable technical 
components. The most important aspects are model 
visualization, model statistics, graphical user interfaces 
(GUI) or logging. In addition COCoS makes use of 
aspect oriented programming techniques (AOP) to 
separate technical and logical concerns as far as 
possible during the development process. 

Functional and technical components are 
integrated to a container terminal simulation model by 
extending a centric COCoS model class. This model 
class is a direct descendant of the DESMO-J model 
class and thus provides the connection to DESMO-J's 
experimentation environment and simulation engine. It 
also serves as a model context for included functional 
components by offering common technical and 
functional services such as visualization, object and 
layout management or the input of scenario data. 

 
5. COCOS APPLIED 
At first this section briefly summarizes how COCoS has 
been used for the development of logistic simulation 
models and then proceeds with a more detailed 
description of the framework’s application in 
developing device emulators. 
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5.1. Logistic Simulation with COCoS 
As mentioned above COCoS has originally been 
developed for modeling and implementing integrated 
container terminal simulation models for the 
investigation of logistic problems. The process of 
developing such models can be summed up as follows: 

1. Modeling the information flow in the form of a 
model-wide task-model 

2. Selection or development of appropriate 
functional components for the task model's 
execution 

3. Selection or development of technical 
components for statistic analysis, visualization, 
user-interface et cetera. 

4. Integration of functional and technical 
components within a COCoS-Model that is 
controlled by the task-model. 

By iterating through these steps and varying model 
components and model configuration accordingly, 
different options of terminal design or control strategies 
can be explored.  

Figure 6 shows a screenshot of a simple proof-of-
concept-model during eperimentaion. The model 
features a simple  pathnet based horizontal transport 
component, a single trolley quaycrane component and a 
storage-crane component as well as technical 
components that provide services for animation, logging 
and collecting task-based model statistics in a relational 
database. While the COCoS-Control-Center serves as 
graphical user interface to the model, DESMO-J's 
simulation engine is driving model execution inside. 

Although most of these components are kept very 
simple, the model is able to show that COCoS's 
integration concepts work excellent for modeling, 
assembling and execution of logistic simulation models. 
 

 
Figure 6: Logistic simulation model implemented with 
COCoS 

 
5.2. Emulation with COCoS 
Beyond this usage on logistic problems, functional 
terminal-components such as quay cranes or gantry 
cranes can be extended to device emulators by 
increasing detail level and adding specific 
communication- or user-interfaces. Related concepts 

have been proved in practice and will be described in 
this section. 
 
5.2.1. General concepts 
Different general, mainly technical features needed for 
device emulation had to be integrated directly into 
COCoS. Slowing down simulation time is a prominent 
example, since implementation of real-time 
functionality into DESMO-J has been in progress, but is 
not yet part of the official published DESMO-J release. 
To bridge this, COCoS was extended by a simple but 
adequate real-time control process that synchronizes 
real-time and simulation time by means of an adjustable 
time-synchronization cycle. Derived from DESMO-J’s 
white-box simulation process, the simulation time 
control process basically linearises the discrete event 
oriented simulation time variation by constantly 
(re-)scheduling real-time consuming sleep-events. 
These sleep events are completely independent from the 
remaining functional model logic, rather their only 
purpose is to fill up the models discretionary time gaps. 
Within each cycle the advances of simulation time and 
real time are compared measuring the time divergence 
that is generated by computing time for model 
execution which is not reflected by the simulation time 
at all. This divergence is factored into the calculation of 
the next sleep delay in order to prevent simulation time 
and real time from continuously diverging. Cycle time 
and accuracy of this process as well as an arbitrary 
acceleration factor can be configured through model 
parameters. These parameters indicate the maximum 
response-time for the emulated devices for messages on 
their communication layer. For logistic simulation 
experiments real-time functionality can be turned off, 
but it can also be used to observe model behaviour by 
enabling real time visualization. 

The second fundamental feature of an emulation 
framework is a concept for communication with an 
control systems and a human tester who want to 
manipulate a device emulator during run time. Since, 
we neither wanted to predefine the technical interface 
nor message types supported, we aimed for an abstract 
solution here. In addition to information flow layer and 
material flow layer, we implemented optional 
communication layers, which could be freely assigned 
when instantiating the device emulator. For example, 
there are communication layers for communicating via 
TCP-connection or via JMS-messages. These layers 
interpret incoming messages; depending on that, they 
choose a method to call on a device-specific task 
adapter, which creates the tasks according to the 
message. Logging the traffic on communication 
interface can be very helpful for debugging both the 
model and the TOS. The task adapter is also used by 
manual interaction interface, so that the human tester 
can directly insert tasks. If an event occurs which 
possibly postulates an outgoing message, the 
information flow layer will have to detect if a 
communication layer is allocated, and in this case call 
the according method on its interface. 
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5.2.2. Emulating a dual-trolley quay crane 
As an instance, we outline the model-building process 
of a dual-trolley quay crane in this section. In Hamburg, 
these crane types are located at CTA. The two trolleys 
for handling containers are characteristic.   

There is a manually driven main-trolley, which can 
reach every position under the quay crane, i.e. the ship 
or the quay lanes. Thus, the main-trolley is able to work 
autonomously without interacting with the second 
trolley. The driver of the main-trolley is also able to 
move the whole quay crane along the quay, which 
allows him to pick up all the containers from a ship in 
sequence. The second trolley is an automatic-driven 
portal-trolley, which gets its instructions directly from 
the TOS. It can only reach quayside transfer lanes and a 
special platform, called lashing platform, where it can 
set down the containers, which he picked up from the 
transfer lanes. From there, the main-trolley can retrieve 
them to set them down on ship. On the lashing platform, 
there are working people, who are preparing containers 
for transport; none of the trolleys is allowed to enter this 
danger area, if people are left on the platform.  

This model component depicts the need of the 
manual interaction interface (see section 2.3). The 
behaviour of the lashing platform crew, the driving of 
the main-trolley and the possibility of deactivating the 
portal-trolley, everything has to be mapped in scope of 
this interface. Figure 7 shows the GUI of the COCoS’ 
experimentation environment. Currently, there is a 
simple concurrent animation window showing a dual-
trolley quay crane, one window containing some status 
information, and several windows providing access to 
the manual interaction interface. Thus, there are two 
possibilities to create tasks: Creation by the TOS via 
communication layer or by the human tester via GUI. 

 

 
Figure 7: COCoS User Interface for device emulation) 

 
A device like a dual trolley quay crane consists of 

several device parts, such as trolleys, lifts or spreaders. 
These device parts can be found on other terminal 
components, too. For example a van carrier contains a 
lift as well as a spreader, but their kinematic 
characteristics differ from the quay crane’s lift and 
spreader. These detail information often is irrelevant in 
simulation studies, but in scope of emulation they are of 
much importance. That is why, we designed our model 
components of reusable and exchangeable device parts, 
which can be configured via XML-files. So there is the 

possibility to use very detailed device parts mapping the 
exact kinematic behaviour for emulation, or more  
simple device parts, whose time consumption depends 
on stochastic distributions for simulation experiments.  
 
6. CONCLUSION 
Combining logistic simulation and device emulation 
without overcharging the COCoS framework and the 
developed quay crane component was a challenging 
task. At first, it was important to clearly separate the 
component's layers for an efficient embedding of 
different communication interfaces. We supported this 
approach by developing a generic task adapter that 
could be used to translate arbitrary messages to COCoS 
task objects. This task adapter was also used to connect 
the manual interaction interface that was required for 
manually driven experiments. To satisfy the real-time 
requirements of device emulation we implemented an 
adequate time control process as a part of COCoS. 

With real-time functionality a concurrent 
animation of simulation state became possible. This was 
urgently needed for manual device testing, but also 
pointed out to be very helpful for building, debugging 
and observing logistic simulation models. 

Besides these more technical aspects, the main 
problem in combining logistic simulation model 
building and device emulation model building was the 
level of detail to decide on. To combine logistic 
simulation and device emulation, a precondition was to 
take worm`s eye perspective and build up model 
components in process-oriented world view, which is 
adequate in such cybernetic models at all. Nevertheless, 
there remain some substantial differences in 
requirements on detail level. For example, in logistic 
simulation the movements of components could be 
approximated via calculating time consumption by 
means of stochastic distributions, while exact 
kinematics are required in emulation context. Since 
devices managed by the material flow layer of a 
functional model component are exchangeable, it is 
advisable to use less detailed devices in simulation 
context, but more detailed devices in emulation context. 

By bridging the described differences and 
combining logistic simulation and emulation it becomes 
possible to share the advantages of component based 
software development between the building processes 
of logistic container terminal simulation and device 
emulation models. Synergy effects emerging from 
exchanging and reusing functional and technical model 
components reduce effort and costs of model 
development and lead to improved model quality and a 
consolidated model architecture. It could be shown that 
DESMO-J and COCoS provide an extendible basis for 
this synergistic combination. 
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