
COMBINING LOGISTIC CONTAINER TERMINAL SIMULATION AND
DEVICE EMULATION USING AN OPEN-SOURCE JAVA FRAMEWORK

Dipl.-Inf. P. Joschko(a), Dipl.-Wirt.-Inf. C. Brandt(b), Prof. Dr.-Ing. B. Page(c)

(a), (c) University of Hamburg, Department of Informatics
(b)Hamburger Hafen und Logistik AG

(a)joschko@informatik.uni-hamburg.de, (b)brandt-c@hhla.de, (c)page@informatik.uni-hamburg.de

ABSTRACT
In this paper we intend to show that the open-source
simulation framework DESMO-J can be used not only
for logistic investigations - as it was being used by
many during the last years - but also for evaluating and
testing control systems. Therefore we propose to
implement model components of container terminals in
such a way that they can be used in logistic simulation
as well as in device emulation test beds. This paper
outlines our experience in extending DESMO-J for a
broad range of applications in the context of container
terminals and our experience in developing reusable
model components for simulation and emulation. While
Java-based DESMO-J is a product of the University of
Hamburg, the functional container terminal extension,
called COCoS, we present in this paper has been
developed by the Hamburger Hafen and Logistik AG.

Keywords: discrete simulation framework, logistic
simulation, device emulation, container terminal

1. INTRODUCTION

1.1. Hamburg Container Terminals
With a container handling rate of 9.7 million TEU in
2008, Hamburg accommodates one of the ten largest
container ports worldwide and accordingly the second
largest within Europe, right behind Rotterdam. This
capacity is to be expanded to 18 million TEU in the
next couple of years.
 Hamburger Hafen und Logistik AG (HHLA) is one
of the leading port logistics groups in the European
North Range. With its Container, Intermodal and
Logistics segments, HHLA is positioned vertically
along the transport chain. Efficient container terminals,
high-capacity transport systems and a full range of
logistics services form a complete network between the
overseas port and its European hinterland.
 HHLA operates three container terminals which
were responsible for more than two thirds of the overall
container handling in Hamburg in 2008. One of them is
the HHLA Container Terminal Altenwerder (CTA)
which is considered to be a state of the art terminal
worldwide. The northern section of the CTA is shown
in Figure 1. Since the container dispatching processes at

the CTA are almost fully automated, a particularly
significant relevance is attached to the integration of
container handling technology and IT-based control
systems.
 Increasing handling rates require highly efficient
dispatching strategies for container vessels and
hinterland traffic. Not only that every deceleration
would bring financial damage to terminal carriers and
forwarding companies but additionally, an interruption
in container handling process would immediately cause
congestions in metropolitan area traffic because of
nearby autobahns and city center.
 These requirements stress the importance of using
efficient methods for improving and validating the
evolution of terminal layout, logistic handling strategies
or control systems. The University of Hamburg and
HHLA have been collaborating on developing
simulation techniques to solve such terminal-specific
problems for many years.

Figure 1: Northern section of Container Terminal
Altenwerder (Brandt 2007)

1.2. Container Terminal Simulation
According to (Steenken et al. 2004) a multi modal
container terminal can be considered as an open system.
The waterside (ships) and the landside (trains, trucks)
have always been the two main interfaces to its
environment. But distinct container terminals may
significantly vary in types and quantity of handling
equipment, terminal layout or grade of automation of
handling processes. Besides these physical aspects there
are also many individual types of supporting and

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 106

surrounding IT-Systems as well as planning and control
strategies integrated therein. The fact that these and
further aspects need to comply with various specific
requirements of terminal operations finally leads to a
considerable number of planning and optimization
problems that emerge and evolve throughout a container
terminal's life cycle. According to (Saanen 2001) this
life cycle may be divided into three main phases:

1. Conceptual, functional and technical design
2. Implementation and Realization
3. Commissioning and Operation
In practice, the phases may overlap significantly

and may be interconnected by iterative feedback loops,
for instance if an existing terminal receives a redesign
due to new requirements.

Simulation is to be used if experimentation with
the real system is too expensive, complex or dangerous,
which applies to container terminals in particular.
Therefore simulation has become an important method
in analysis and optimization of container terminal
operations in the recent past (Steenken et al. 2004). Just
like the planning problems mentioned above, the
application of simulation may be attributed to the
phases of a container terminal's life cycle and may be
differentiated accordingly as illustrated in Figure 2.

Strategic simulation mainly points at problems of
terminal design and is applied in phase (1)
correspondingly. Different logistic concepts, decision
rules or optimization algorithms that address problems
of operational terminal planning within phase (2) and
(3) deserve close comparison by means of operative
simulation studies before they can be put into
production on an existing terminal. Tactical simulation
stands for an integration of simulation models within
the terminal's IT-systems in order to generate solutions
for operational and on line planning problems in phase
(2) and (3). This integration is also referred to as
simulation optimization or optimization via simulation.
While strategic, operational and tactical simulation are
directly focused on, mainly logistical, planning
problems within a terminal's life cycle, phase (2)
particularly requires simulation techniques for the
purpose of development and validation of terminal
operation systems by emulating terminal equipment, IT-
systems or human behavior.

1.3. Outline
Section 2 details the comparison between simulation
and emulation in order to extract differences and
similarities. Section 3 concentrates on the simulation
framework DESMO-J and explains its main
functionality, its software architecture, how it can be
extended and how it has been used in harbor simulation
so far. Section 4 concentrates on COCoS, the extension
HHLA uses in order to develop simulation models
based on DESMO-J. Section 5 describes how
DESMO-J and COCoS fit the requirements presumed in
section 2 by referring to concrete model
implementations. Section 6 finally discusses the

experiences made in combining logistic simulation and
device emulation by presenting benefits and limitations.

Figure 2: Correlation of simulation and emulation with
container terminal planning problems and life cycle

2. SIMULATION VS. EMULATION
In principle there are two different application scenarios
for using simulation in context of container terminals.
The traditional one is executing logistic simulation
experiments to compare different handling strategies or
to investigate the terminal layout. A completely
different approach is to use simulation technique for
testing terminal operating systems (TOS). We speak of
emulation in this context. We depict differences of
simulation and emulation in this section.

2.1. Definition
The main difference between logistic simulation and
device emulation is that not the modelled system – the
terminal – is subject of the investigation, but a control
system, in this case a real TOS which is linked to the
model. Emulation is used to imitate a real system; it
offers an interface so that the control system cannot
distinguish between a model and reality. This intends to
already examine operability of a TOS before the
employment at a real terminal. We denote emulation to
be a subset of simulation.

(Auinger et al. 1999) proposed using simulated
systems in combination with real systems in different
ways. Figure 3 illustrates the different possibilities to
combine simulation models with reality. Arrow 1
describes testing all components in live respectively
prototype mode, not using simulation at all. This is the
most realistic way of testing, but also the most
expensive, furthermore dysfunctions can cause
maximum damage. Arrow 2 is near to classical
simulation view, without interaction with reality. This
can be used for logistical simulation described above.
Arrow 3 shows a kind of simulation called Reality-in-
the-loop or Real-Time-Control. Here the material
terminal hardware is tested with a model of a control

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 107

system. (Schütt and Hartmann 2000) described how
HHLA tested AGVs (Automated Guided Vehicles) with
a virtual control system during CTA’s planning phase.
Arrow 4 describes the way of coupling simulation with
reality which we call emulation and this paper is about:
A simulated terminal system is piloted by a real TOS,
so that the TOS can be tested with help of a terminal
model.

Figure 3: Possible combinations of reality and
simulation (based upon Auinger et al. 1999)

2.2. General Requirements
Logistic simulation is often embossed by bird’s eye
view; we look at the behavior of a terminal in general,
so we can abstract from many details and implement the
model with a top-down approach. In contrast, device
emulation always depends on worm’s eye view. We
have to implement models with a bottom-up approach
that is to say that all activities on the terminal have to be
mapped from the view of emulated components, for
instance quay cranes or AGVs.
 Beyond this, the needed level of detail for
emulation requires more time and effort than
conventional simulation models. For example, in
logistic simulation models, only the time span is
relevant, which a quay crane needs for picking up a
container on landside and setting it down onto the ship,
but when testing a TOS with help of emulation models,
a lot of intermediate steps have to be modeled auxiliary.
For example, a dual-trolley quay crane owns two
trolleys, which get individual briefings by TOS and
have to interact for dispatching the container (see
section 5.2 for details). The TOS needs information
about the exact position of these trolleys, for this reason
modeling the kinematic behavior of mobile devices
becomes necessary. Therefore, the technical
characteristics of the devices have to be investigated
and mapped exactly into the model, which is
unnecessary in simulation models at all.
 Fundamentally in emulation, interfaces for
communicating with the Control System (in case of
harbor simulation: the TOS) are needed. In general,
these are the same interfaces, which are implemented by
local device drivers of real terminal components. In
most cases, we deal with TCP/IP-based socket

communication, and there is a set of telegram types,
which have to be implemented. These telegrams may
brief the device for doing a selected task or may request
the status of the device. In other direction, telegrams
which have to be sent from the device to the TOS may
contain the status of the device, signal finished jobs or
announce error states.
 This leads us to another main difference between
simulation and emulation. In simulation experiments,
time spans that do not include any events will be
skipped; duration of a simulation run depends on CPU-
speed. By contrast in emulation, the advancement of
simulation time has to be adjusted to real-time. Since
the TOS is a real-time system, which assumes that the
processing of jobs consumes time, and since we do not
want to change this behavior for testing the TOS, we
need to slow down simulation. The challenge of doing
this is to find an approach, which delays the
advancement of execution time, and nevertheless allows
the insertion of new processes which were
commissioned by the TOS over the communication
interface; i.e., if the next scheduled process is estimated
to start in a selected time span, the emulation model
may not advise the thread to sleep until just before the
end of this time span, because it is possible that a new
upcoming task will have to be started prior to the
process the scheduler is currently waiting for.

2.3. Manual- or automatic-driven experiments
The way of executing emulation experiments, differs
fundamentally from logistic simulation experiments.
Because of real-time conditions, the number of executed
experiments is substantially smaller, and the analysis of
results is extended by methods that are inappropriate in
logistic simulation. In the following, we distinguish two
types of experiments: manually driven and
automatically driven tests.
 During the course of the manual experiments, a
human tester takes the role of the dock workers and
operators of package items. He achieves certain tasks,
and examines whether the TOS is reacting correctly to
his interactions. Therefore, the model has to provide
another interface, which is used for user interaction. All
the actions, which dock workers and operators may
accomplish on the terminal and thus are not induced by
the TOS, like lashing a container or entering a danger
area, have to be mapped to this interface. Additionally,
all information about component states, which could be
in interest for the tester, has to be accessible via this
interface. We call it the manual interaction interface.
 The tester should get access to this interface in
scope of a Graphical User Interface (GUI). This can be
realized via buttons, dropdown boxes and input fields,
which should give feedback to user action. In this
context, the visualization of temporary state of model
becomes substantial. This can either be table-based
summing-ups of model components. Or, which is quite
more ergonomic, via 2d- or 3d-animations enriched by
additional information boxes. Since the status of
emulated devices has to appear just in time, a

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 108

concurrent animation is urgently needed, in contrast to
logistical simulation experiments, where a post-process
animation is adequate.
 Beside these manual tests, also automatic tests are
to be possible. In case of testing a new version of a
TOS, each time a lot of standardized workflows have to
be validated. This needs not to be done by human
testers. Therefore, another component has to be added,
which automatically acts on the manual interaction
interface. The behavior of this component has to be
described by an easy changeable set of rules. We do not
need any animation here, but we have to insert logging
mechanisms, which outruns the trace logging of
conventional simulation loggings in the level of detail,
so that dysfunctions of the TOS can be found via an
additional analysis component.

2.4. Combination
There are many intersections of the requirements of
logistic simulation and device emulation, so a reuse of
model components can help saving time and money.
(Vorderwinkler et al. 1999) already proposed reusing
simulation components from planning phases for device
emulation. But some fundamental differences should
not be disregarded.

According to section 2.3 device emulation and
logistic simulation differ in their requirements. Table 1
summarizes the most important differences. However
simulation and emulation models may share many
aspects of model structure and implementation and
accordingly requirements on underlying simulation
frameworks. Note, that the behavior and the tasks of
terminal components like quay cranes are basically the
same in simulation and emulation. The aim of our
investigations was to investigate whether a reuse of
model components in logistic simulation as well as in
device emulation is advantageous particularly in
container terminal domain.

Table 1: differences between emulation and simulation

Logistic Simulation Device Emulation
bird’s eye or worm’s eye

perspective
worm’s eye perspective

keep model as simple as
possible

high level of detail

closed system needs interfaces for
interacting with other

systems
simulation time

advancement depends on
CPU speed

simulation time
advancement depends on

real time
huge number of

experiments
smaller number of

experiments
automatic-driven

experiments
manual- or automatic-

driven experiments
analysis depends on
reports, post-process

animation

concurrent animation
and/or exhaustive logging

3. DESMO-J

3.1. Main Functionality
DESMO-J (Discrete Event Simulaton Modeling in
Java) is a simulation framework targeted at developers
of discrete-event simulation models (Page and Kreutzer
2005). It offers an exhaustive environment to ease
implementation of event-oriented, process-oriented or
transaction-oriented models using the object-oriented
high level language Java. As specialty, a combination of
these different simulation world-views is possible, too.
DESMO-J was developed by Department of Informatics
at University of Hamburg and published under APL 2.0,
which is a common open-source license. Binaries,
source code, API and a tutorial can be found on
http://www.desmo-j.de.

DESMO-J clearly separates between model and
experiment. Experiments are realized via several black
box elements, which are ready-for-use for executing
simulation runs, like the Experiment class which
encapsulates experimentation functionality, the
Simulation Scheduler or the Simulation Clock.
Therefore the modeler only has to implement the model
itself and does not have to care about implementing the
technical framework. DESMO-J also allows creating
hierarchical model composition, since models can be
embedded into other models as so-called sub-models.

Models are implemented via deriving several
white-box components. The main task the modeler has
to solve at this, is mapping model activity to events (in
event-oriented worldview) or to processes (in process-
oriented worldview). Events and processes are to
describe activity of model components, and can be
scheduled on simulation scheduler. Entities describe
dynamic model components. In event-oriented
worldview, an entity’s state can be changed by events.
In process-oriented worldview, processes are derived
from entities, which means a process is an active entity
itself, which can interact with other entities, and change
its state on its own.

Additionally, there are a lot of helpful components,
which can be used in the model building process
without derivation, e.g. there are different kinds of
queues for waiting entities, or a set of stochastic
distributions, which can be used to generate pseudo-
random numbers. Since the user can specify a seed for
random-number generation, a replay even of stochastic-
driven simulation runs is possible. There are several
objects, which can be used for reporting and analysis of
experimentation runs, e.g. there are statistic classes like
counter, time series or histogram, and report classes
which generate reports in a selected format (e.g. HTML
or XML) for model components, which are of interest
for the user (e.g. entities or queues). The user also may
implement statistic or reporting-classes on its own.

3.2. Implementation Language
DESMO-J bases on the object-oriented language Java,
which addresses a large community of programmers.
Firstly, all of our students have a Java-programming

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 109

expertise, so teaching simulation with help of DESMO J
is in line with their curriculum. Furthermore, many
companies focus on the usage of Java, too, because
advantages of Java are e.g. the portability across diverse
platforms, the huge amount on reusable libraries (e.g.
the Java API, GUI-libraries like SWING or even third
party libraries like DESMO-J) or the robustness since
there are no dangling pointers or memory leaks like e.g.
in C++. Furthermore, because of its handy syntax and
the large amount of developing tools, implementing
simulation models using Java-language reach a
satisfactory tradeoff between ergonomics and
flexibility. For example there is the Javadocs-tool for
easy creation of documentations or there are open-
source, extendable Integrated Development
Environments like Eclipse, which offer more features
for manipulating code than most code-editors of
commercial simulation tools do.

Although, the Java Virtual Machine cannot deliver
the performance as models compiled to machine code
for the underlying platform, note that commercial
simulation tools often use scripting languages, which
are definitely slower than the pre-compiled java-byte
code of DESMO-J.
 The current version 2.1.4b of DESMO-J bases on
the newest Java version 1.6, so it includes state-of-the-
art programming methods like Generics (e.g. Queues
can act as specialized queues for selected entities, which
primarily induces type safety) or other advanced
concepts.

3.3. Expandability
A very important aspect in using DESMO-J is its
expandability. It is possible to integrate DESMO-J into
other software frameworks, as well as to extend it by
additional class libraries. In order to ease modeling and
simulation in special application domains, it makes
sense to develop domain-specific extensions, which
provide objects for that particular domain. These can be
quite general, more technical extensions like FAMOS,
which permits Multi-Agent-Based simulation with
DESMO-J (Knaak 2006), or very specialized
approaches, for example to use a DESMO derivate as
simulation component to simulate business production
processes and calculate ecological input/output-balances
(Wohlgemuth 2005). There are several DESMO-J
extensions, which are beyond the scope of this paper,
however. Because of the flexibility of ASL 2.0,
DESMO-J is licensed under, it is possible to implement
extensions or changes without licensing it under an
open-source license. Therefore, companies like HHLA
have the possibility to develop their own extensions,
which have not to be published obligatorily, just like the
extension presented in this paper.

3.4. Harbor simulation with DESMO-J
At HMS 2003, we presented our first DESMO-J harbor
extensions for our research projects in harbour logistics
(Page and Neufeld 2003). This class library offers three
types of objects: There are dynamic, mobile, temporary

objects like ships, trucks and trains; dynamic, mobile,
permanent objects like cranes and van carriers; and
stationary, permanent objects like holding areas, gates,
jetties and yards. While the stationary objects are
mostly implemented as derivation of DESMO-J’s
queues, the mobile objects are derived from DESMO
J’s processes. The framework distinguishes between the
material flow, which deals with transportation and
turnover over material goods, and the information flow,
which deals with handling of job briefings. We
examined the practicability of these early concepts in an
empirical investigation within Containerterminal
Burchardkai in Hamburg in co-operation with HHLA.
Because these extensions are good for logistic
investigations but too abstract for the purposes of
emulating container terminals devices, we present a new
harbor extension for DESMO-J called COCoS in this
paper. However since HMS 2003, DESMO-J was used
to implement harbour models by several authors. We
give a summary on selected articles of foreign parties in
the following.

 (Asperen et al. 2004) investigated the impact of
arrival processes, using the example of a chemical
plant’s jetty in Rotterdam (Netherlands). They assumed
that a company can affect the ship arrival times with
help of tactical sales plans and compared four different
arrival processes. Initially they used a commercial
simulation tool for their investigations, later on in the
project they changed to DESMO J. They assigned the
following reasons: Limitations in scripting language of
the commercial tool made it very hard to implement
complex models, while Java-based DESMO J offered
much more flexibility. In addition, communication with
other components did not work satisfyingly, while
DESMO J did not have any problems in that, which was
very important for our intention of connecting a TOS to
an emulation model, too. Last but not least they stressed
the better runtime performance of DESMO-J (Aspeeren
et al. 2004).

A team at the Christian-Albrecht-University in
Kiel (Germany) compared different dispatching
strategies for AGVs at CTA in co-operation with
HHLA. With help of DESMO J, they built up a “simple
model with short run times which can easily be
configured and produces realistic results” (Briskorn and
Hartmann 2005).The subject of their investigations
were two variants of job assignment. In the first case,
only AGVs were considered which were currently idle;
in the second case, they also considered AGVs which
would finish their task within a certain time. These
strategies were tested within five different scenarios,
with 100 simulation runs per scenario and strategy.
(Briskorn and Hartmann 2005; Briskorn et al 2007)

A working-group at the Bleking Institiute of
Technology (Sweden) was very experienced with
simulating logistic aspects of horizontal transport of
container terminals. For example they identified the
number of cassette-based AGVs that were required to
achieve an optimal workload for quay crane for a given
terminal (Henesey et al 2006a); they evaluated

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 110

dispatching strategies for AGVs (Kosowski and Persson
2006); and compared cassette-based to traditional AGV-
Systems (Henesey et al 2006b). They declared that they
preferred DESMO-J, since it allowed the suitable
approach to implement terminal components as process
entities, which had their own life-cycles, properties and
behavior, and which coordinated their tasks using
Contract Net protocol. Furthermore, simulation
experiments were able to be executed via command
prompt and reports were created automatically
(Kosowski and Persson 2006, p. 31; Henesey et al
2006a).

 All these authors used DESMO-J for logistic
simulation; we did not find any indications that
DESMO-J had been used in emulation context so far.
Therefore, the intention in our paper is to show, that
using DESMO-J as emulation engine is definitely
possible.

4. COCOS
As well as the examples for a usage of DESMO-J in
harbour-simulation mentioned above, the COCoS-
framework developed in (Brandt 2007) has originally
been designed for logistic container terminal-
simulation. This relationship and correlating
application-domains are illustrated in Figure 4.

As an extension of DESMO-J for the development
of integrated container terminal simulation models,
COCoS can be used to compare different terminal-
layouts or to evaluate the impact of different handling
equipment or control strategies on key figures of
terminal productivity. COCoS provides black and white
box concepts for modelling and implementing such
models.

Figure 4: COCoS and Application-Domains (Brandt
2007)

4.1. Framework-architecture
A container terminal can be conceptually reduced to a
collection of enclosed subsystems that are connected by
an information and a material flow. Accordingly
container terminal simulation models should be

composed of enclosed model-components representing
theses subsystems (Simulation Building Blocks, see
Verbraeck (2004)). To achieve this aim COCoS
provides an integration architecture for the combination,
connection and communication between reusable model
components as well as a basic architecture for the
components themselves.
 Basic relationships within the framework-
architecture are shown in Figure 5. Components
representing enclosed terminal subsystems are
characterized as functional components (see section
4.2). Unlike these, the framework's technical
components do not represent parts of the simulated
system but provide services for pure technical aspects of
a simulation model such as visualization or statistics.
These reusable functional and technical components
have been built upon the framework's core which
contains all basic framework elements and upon several
system libraries which form the framework's
technological foundation.

Figure 5: Framework architecture of COCoS (Brandt
2007)

4.2. Functional components
Functional components represent the container terminal
subsystems such as quay-cranes, gantry cranes or
horizontal transport systems. COCoS defines the
architecture of functional components to assure their
integrability and reuse in the context of different
container terminal simulation models.

Multi-tier architectures can lead to advantages in
loose coupling and reuse of software components.
COCoS's functional components follow this important
principle by implementing a three-layered architecture
in order to transfer the mentioned advantages to the
context of container terminal simulation. Hence each
layer encapsulates a prominent scope typically existing
in a container terminal simulation model, especially to
refine a model wide separation of logical and physical
aspects as described in (Pidd and Castro 1998).

The logical layer is responsible for planning
decisions, resource management and task-handling
mechanisms such as task-splitting, task-optimization or
task-allocation. Through this the logical layer connects
a functional component to a model's information flow.

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 111

In contrast, the material flow layer implements the
physical aspects of a functional component. In terms of
container terminal simulation, the material flow layer is
mainly responsible for the handling and transportation
of containers, thereby consuming simulation time for
these physical operations. The communication layer
serves as an extension point for adding additional
interfaces to a functional component that are not
supported by the standardized model architecture. This
feature becomes especially important when embedding
a functional component within a device emulator as
described in section 5.2. But a functional component
doesn't require all of the layers described above, given
that pure information flow components that only
provide the coordination of functionality, that may also
be required in constructing a container terminal
simulation model.

According to (Pidd and Castro 1998) the fast and
secure development of complex simulation models
through combination of model components especially
requires a coupling scheme which specifies the
communication between model components as well as
the way they are connected. Therefore, COCoS
contains mechanisms for the loose coupling of of
functional components within an integrated container
terminal simulation model or more precisely within the
model's information and material flow. These aspects
are to be described within the next two sections.

4.3. Information flow modeling
More than simply providing the basic elements needed
for the development of container terminal simulation
models, COCoS also supports the conceptual modelling
process itself by providing a generic task-handling
concept that standardizes the model's information flow
as a flow of generic task-objects carrying sets of task-
attributes.
 Functional model components serve as task-
handlers and primarily communicate by assigning tasks
to each other accordingly. The underlying hierarchical
model structure is defined by a model-wide XML-based
task-model which can be considered as an executable
coupling scheme within the model's information flow.
More precisely a task-model specifies how super-tasks
are split into sub-tasks and how task-attributes have to
be passed on or generated thereby. The task-model also
specifies targets for the generated sub-tasks as well as
intermediate sequential relations. During their
processing, the start and the completion of tasks are
reported to their original sender. In order to execute a
task model, COCoS provides black-box components
which process the XML-based task-model-definition
during experimentation.
 By that task-models can be used to conceptually
model the main information flow within an integrated
container terminal simulation in an early phase of model
development, which has also been proposed in
(Robinson 2006).

4.4. Material flow modeling
The model's material flow is finally responsible for
physical execution of tasks generated by the
information flow. COCoS complements the described
principles of information flow modeling by providing
black- and white-box components for modeling and
implementing these physical processes within a
functional component's material flow layer. COCoS
also contains basic resource classes like horizontal
transporters routed on a graph based path net or crane
components that can be combined to complex crane
systems including a precise kinematic simulation. All
these components follow DESMO-J's process oriented
modeling style as it is set as default for implementation
of functional components in COCoS. Material flow
resources and their operational states are managed by
the component's material flow layer making them
available to the logical layer which then assigns tasks to
these resources. Besides this connection to the
information flow, material flow layers are
interconnected by linking physical component layouts
within an integrated terminal layout in order to facilitate
container transportation in between components. This is
realized by synchronous and asynchronous handover
mechanisms that serve as the only coupling mechanism
between functional components or their material flow
layers respectively.

4.5. Technical components and model integration
Technical components are not part of the model logic
and therefore do not follow the described architecture of
functional components. Nevertheless COCoS defines
architectural principles for important technological
model aspects as well as for the support of the
development of reusable and exchangeable technical
components. The most important aspects are model
visualization, model statistics, graphical user interfaces
(GUI) or logging. In addition COCoS makes use of
aspect oriented programming techniques (AOP) to
separate technical and logical concerns as far as
possible during the development process.

Functional and technical components are
integrated to a container terminal simulation model by
extending a centric COCoS model class. This model
class is a direct descendant of the DESMO-J model
class and thus provides the connection to DESMO-J's
experimentation environment and simulation engine. It
also serves as a model context for included functional
components by offering common technical and
functional services such as visualization, object and
layout management or the input of scenario data.

5. COCOS APPLIED
At first this section briefly summarizes how COCoS has
been used for the development of logistic simulation
models and then proceeds with a more detailed
description of the framework’s application in
developing device emulators.

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 112

5.1. Logistic Simulation with COCoS
As mentioned above COCoS has originally been
developed for modeling and implementing integrated
container terminal simulation models for the
investigation of logistic problems. The process of
developing such models can be summed up as follows:

1. Modeling the information flow in the form of a
model-wide task-model

2. Selection or development of appropriate
functional components for the task model's
execution

3. Selection or development of technical
components for statistic analysis, visualization,
user-interface et cetera.

4. Integration of functional and technical
components within a COCoS-Model that is
controlled by the task-model.

By iterating through these steps and varying model
components and model configuration accordingly,
different options of terminal design or control strategies
can be explored.

Figure 6 shows a screenshot of a simple proof-of-
concept-model during eperimentaion. The model
features a simple pathnet based horizontal transport
component, a single trolley quaycrane component and a
storage-crane component as well as technical
components that provide services for animation, logging
and collecting task-based model statistics in a relational
database. While the COCoS-Control-Center serves as
graphical user interface to the model, DESMO-J's
simulation engine is driving model execution inside.

Although most of these components are kept very
simple, the model is able to show that COCoS's
integration concepts work excellent for modeling,
assembling and execution of logistic simulation models.

Figure 6: Logistic simulation model implemented with
COCoS

5.2. Emulation with COCoS
Beyond this usage on logistic problems, functional
terminal-components such as quay cranes or gantry
cranes can be extended to device emulators by
increasing detail level and adding specific
communication- or user-interfaces. Related concepts

have been proved in practice and will be described in
this section.

5.2.1. General concepts
Different general, mainly technical features needed for
device emulation had to be integrated directly into
COCoS. Slowing down simulation time is a prominent
example, since implementation of real-time
functionality into DESMO-J has been in progress, but is
not yet part of the official published DESMO-J release.
To bridge this, COCoS was extended by a simple but
adequate real-time control process that synchronizes
real-time and simulation time by means of an adjustable
time-synchronization cycle. Derived from DESMO-J’s
white-box simulation process, the simulation time
control process basically linearises the discrete event
oriented simulation time variation by constantly
(re-)scheduling real-time consuming sleep-events.
These sleep events are completely independent from the
remaining functional model logic, rather their only
purpose is to fill up the models discretionary time gaps.
Within each cycle the advances of simulation time and
real time are compared measuring the time divergence
that is generated by computing time for model
execution which is not reflected by the simulation time
at all. This divergence is factored into the calculation of
the next sleep delay in order to prevent simulation time
and real time from continuously diverging. Cycle time
and accuracy of this process as well as an arbitrary
acceleration factor can be configured through model
parameters. These parameters indicate the maximum
response-time for the emulated devices for messages on
their communication layer. For logistic simulation
experiments real-time functionality can be turned off,
but it can also be used to observe model behaviour by
enabling real time visualization.

The second fundamental feature of an emulation
framework is a concept for communication with an
control systems and a human tester who want to
manipulate a device emulator during run time. Since,
we neither wanted to predefine the technical interface
nor message types supported, we aimed for an abstract
solution here. In addition to information flow layer and
material flow layer, we implemented optional
communication layers, which could be freely assigned
when instantiating the device emulator. For example,
there are communication layers for communicating via
TCP-connection or via JMS-messages. These layers
interpret incoming messages; depending on that, they
choose a method to call on a device-specific task
adapter, which creates the tasks according to the
message. Logging the traffic on communication
interface can be very helpful for debugging both the
model and the TOS. The task adapter is also used by
manual interaction interface, so that the human tester
can directly insert tasks. If an event occurs which
possibly postulates an outgoing message, the
information flow layer will have to detect if a
communication layer is allocated, and in this case call
the according method on its interface.

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 113

5.2.2. Emulating a dual-trolley quay crane
As an instance, we outline the model-building process
of a dual-trolley quay crane in this section. In Hamburg,
these crane types are located at CTA. The two trolleys
for handling containers are characteristic.

There is a manually driven main-trolley, which can
reach every position under the quay crane, i.e. the ship
or the quay lanes. Thus, the main-trolley is able to work
autonomously without interacting with the second
trolley. The driver of the main-trolley is also able to
move the whole quay crane along the quay, which
allows him to pick up all the containers from a ship in
sequence. The second trolley is an automatic-driven
portal-trolley, which gets its instructions directly from
the TOS. It can only reach quayside transfer lanes and a
special platform, called lashing platform, where it can
set down the containers, which he picked up from the
transfer lanes. From there, the main-trolley can retrieve
them to set them down on ship. On the lashing platform,
there are working people, who are preparing containers
for transport; none of the trolleys is allowed to enter this
danger area, if people are left on the platform.

This model component depicts the need of the
manual interaction interface (see section 2.3). The
behaviour of the lashing platform crew, the driving of
the main-trolley and the possibility of deactivating the
portal-trolley, everything has to be mapped in scope of
this interface. Figure 7 shows the GUI of the COCoS’
experimentation environment. Currently, there is a
simple concurrent animation window showing a dual-
trolley quay crane, one window containing some status
information, and several windows providing access to
the manual interaction interface. Thus, there are two
possibilities to create tasks: Creation by the TOS via
communication layer or by the human tester via GUI.

Figure 7: COCoS User Interface for device emulation)

A device like a dual trolley quay crane consists of

several device parts, such as trolleys, lifts or spreaders.
These device parts can be found on other terminal
components, too. For example a van carrier contains a
lift as well as a spreader, but their kinematic
characteristics differ from the quay crane’s lift and
spreader. These detail information often is irrelevant in
simulation studies, but in scope of emulation they are of
much importance. That is why, we designed our model
components of reusable and exchangeable device parts,
which can be configured via XML-files. So there is the

possibility to use very detailed device parts mapping the
exact kinematic behaviour for emulation, or more
simple device parts, whose time consumption depends
on stochastic distributions for simulation experiments.

6. CONCLUSION
Combining logistic simulation and device emulation
without overcharging the COCoS framework and the
developed quay crane component was a challenging
task. At first, it was important to clearly separate the
component's layers for an efficient embedding of
different communication interfaces. We supported this
approach by developing a generic task adapter that
could be used to translate arbitrary messages to COCoS
task objects. This task adapter was also used to connect
the manual interaction interface that was required for
manually driven experiments. To satisfy the real-time
requirements of device emulation we implemented an
adequate time control process as a part of COCoS.

With real-time functionality a concurrent
animation of simulation state became possible. This was
urgently needed for manual device testing, but also
pointed out to be very helpful for building, debugging
and observing logistic simulation models.

Besides these more technical aspects, the main
problem in combining logistic simulation model
building and device emulation model building was the
level of detail to decide on. To combine logistic
simulation and device emulation, a precondition was to
take worm`s eye perspective and build up model
components in process-oriented world view, which is
adequate in such cybernetic models at all. Nevertheless,
there remain some substantial differences in
requirements on detail level. For example, in logistic
simulation the movements of components could be
approximated via calculating time consumption by
means of stochastic distributions, while exact
kinematics are required in emulation context. Since
devices managed by the material flow layer of a
functional model component are exchangeable, it is
advisable to use less detailed devices in simulation
context, but more detailed devices in emulation context.

By bridging the described differences and
combining logistic simulation and emulation it becomes
possible to share the advantages of component based
software development between the building processes
of logistic container terminal simulation and device
emulation models. Synergy effects emerging from
exchanging and reusing functional and technical model
components reduce effort and costs of model
development and lead to improved model quality and a
consolidated model architecture. It could be shown that
DESMO-J and COCoS provide an extendible basis for
this synergistic combination.

REFERENCES
Asperen, E. van, R. Dekker, M. Polman, H. de Swaan

Arons. 2004. Arrival processes in port modeling:

insights from a case study. Available from:

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 114

http://publishing.eur.nl/ir/repub/asset/1275/ei2004
16.pdf [accessed 31. March 2009]

Auinger, F., Vorderwinkler, M., Buchtela, G., 1999.
Interface driven domain-independent modelling
architecture for „soft-commissioning“ and
„Reality in the Loop“. Proceedings of the 1999

Winter Simulation Conference, pp. 798-805,
December 5-8, Phoenix (Arizona, USA).

Brandt, C., 2008. Entwurf und Implementierung eines

Frameworks zur Entwicklung von

Containerterminal-Gesamtmodellen mit

DESMO-J. Thesis (Diploma), University of
Hamburg.

Briskorn, D., Hartmann, S., 2005. Simulating
dispatching strategies for automated container
terminals. Proceedings of the Annual International

Conference of the German Operations Research

Society (GOR). September 7-9, Bremen
(Germany).

Briskorn, D., Drexl, A., Hartmann, S., 2007. Inventory-
based dispatching of automated guided vehicles on
container terminals. In: Kim, K.H., Günther, H.
eds. Container Terminals and Cargo Systems.
Berlin, Heidelberg, New York: Springer.

Henesey, L., Aslam, K., Khurum, M., 2006a. Task
Coordination of Automated Guided Vehicles in a
Container Terminal. Proceedings of 5th

International Conference on Computer

Applications and Information Technology in the

Maritime Industries. 2006, Oud Poelgeest
(Netherlands).

Henesey, L., Davidsson, P., Persson, J.A., 2006b.
Comparison and Evaluation of Two Automated
Guided Vehicle Systems in the Transhipment of
Containers at a Container Terminal, In: Henesey,
L., 2006. Multi-Agent-Systems for Containter

Terminal Management. Thesis (PhD), Blekinge
Institute for Technology, 204-226.

Knaak, N., Kruse, S., Page, B., 2006. An Agent-Based
Simulation tool for modelling sustainable logistic
systems. Proceedings of the iEMSs Third Biennial

Meeting 2006. July 9-13, Burlington (Vermont,
USA).

Kosowski, P., Persson, O., 2006. Development and

evaluation of dispatching strategies for the IPSI™

AGV system. Thesis (Master), Blekinge Institute of
Technology.

Page, B., Kreutzer, W., 2005. Simulating Discrete Event

Systems. Aachen: Shaker Verlag.
Page, B., Neufeld, E., 2003. Extending an object-

oriented discrete event simulation framework in
Java for harbour logistics. Proceedings of

International Workshop on Harbour, Maritime &

Multimodal Logistics Modelling and Simulation,
pp. 79-85. September 18-20, Riga (Latvia).

Pidd, M., Castro, B., 1998. Hierarchical modular
modelling in discrete simulation. Proceedings of

the 1998 Winter Simulation Conference, pp. 383–
389. December 13-16, Washington D.C. (USA).

Robinson, S., 2006. Conceptual Modeling For
Simulation: Issues And Research Requirements.
Proceedings of the 2006 Winter Simulation

Conference, pp. 792–800. December 3-6, Montery
(California, USA).

Schütt, H., Hartmann, S., 2000. Simulation in Planung,
Realisierung und Betrieb am Beispiel des
Container-Terminals Altenwerder. In: Möller, D.
ed. Simulationstechnik, 14. Symposium. Hamburg:
SCS, 425–430.

Steenken, D., Voss, S., Stahlbock, R, 2004. Container
terminal operations and operations research – a
classification and literature review. In: OR

Spectrum 26, pp. 3–49. Berlin, Heidelberg, New
York: Springer.

Vorderwinkler, M., Eder, T., Steringer, R., and
Schleicher, M., 1999. An Architecture for Soft-
Commissioning – Verifying Control Software by
Linking Discrete Event Simulators to Real World
Control Systems. Proceedings of 13th European

Simulation Multiconference, pp. 191-198. June 1-
4, Warsaw (Poland).

Verbraeck, A., 2004. Component-based distributed
simulations: the way forward? Proceedings of the

18th workshop on Parallel and distributed

simulation, pp. 141–148. May 16-19, Kufstein
(Austria).

Wohlgemuth, V. 2005. Komponentenbasierte

Unterstützung von Methoden der Modellbildung

und Simulation im Einsatzkontext des

betrieblichen Umweltschutzes. Thesis (PhD).
University of Hamburg. Aachen: Shaker.

AUTHORS BIOGRAPHY
Bernd Page holds degrees in Applied Computer
Science from the Technical University of Berlin,
Germany, and from Stanford University, USA. As
professor for Applied Computer Science at the
University of Hamburg he researches and teaches in the
field of Computer Simulation as well as in
Environmental Informatics.

Philip Joschko studied Computer Science and
Psychology at the University of Hamburg. Since he
holds a diploma (MSc) degree in Computer Science he
works as a research assistant and PhD candidate within
the Center of Architecture and Design of IT-Systems at
the workgroup of Prof. Dr. Page. Research interests are
discrete event simulation, cooperative model building
processes and the EU emission trading system.

Christopher Brandt studied Information Systems at
the University of Hamburg with an emphasis on logistic
simulation and distributed information systems. He
holds a diploma (MSc) in information systems received
for his thesis in which he developed the COCoS-
framework for HHLA. Right now he works as a
software architect for HHLA in the area of simulation,
operations research and business intelligence.

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 115

