
ADVANCED APPROACHES TO SOLVING

CRITICAL AND COMPLEX PRODUCTION SCHEDULING PROBLEMS

Marco Better(a), James P. Kelly(b), Manuel Laguna(c), Ross Palmer(d)

(a),(b),(d) OptTek Systems, Inc., 2241 Seventeenth Street, Boulder, CO, 80302, USA
(c) University of Colorado at Boulder, Leeds School of Business, CB419, Boulder, CO, 80309, USA

(a)better@opttek.com, (b)kelly@opttek.com, (d)palmer@opttek.com

(c)laguna@colorado.edu

ABSTRACT

For food manufacturing, processing and packaging

companies whose processes exhibit high levels of

complexity, creating optimal production schedules can

provide a source of competitive advantage. For these

companies, production costs often represent a significant

portion of their total product cost, multiple products often

share manufacturing infrastructure and resources, and

production schedules are required on a timely basis. Our

scheduling approach takes advantage of robust, custom

optimization and simulation to satisfy this growing need in

the food operations market.

We have developed a sophisticated production scheduling

solution approach that combines mathematical

programming, metaheuristic optimization, and simulation

to craft optimal or near-optimal production schedules in a

timely, reliable and effective manner. In this paper, we

describe our approach in detail and provide computational

results for a moderately-sized liquid food processing

facility.

Keywords: production scheduling, parallel machines,

simulation optimization, food processing, packaging

1. INTRODUCTION

Existing solution approaches for production process

scheduling typically focus on two basic questions:

• When should a specific task be scheduled?

• What resources should be assigned to perform the task?

In many cases, these questions can be answered by

applying simple, rule-based heuristics, such as sequencing

tasks by earliest due date, or by the length of their

processing times. More complex rules can be used based

on combining two or more simple rules into ratios or

products, but the basic concept remains the same.

Although appealing for their simplicity and intuitive nature

(i.e., it is intuitive to order tasks based on when they are

due), these methods usually produce inferior results

because they tend to ignore other attributes of the tasks,

such as penalties for tardiness, interactions with other

tasks, availability of resources to perform all the work,

changeover and setup times and costs, etc.

In more complex situations, optimization-based

approaches can be used. These methods use mathematical

programming techniques to find the optimal solution – an

assignment of tasks or flows to a production line and a

sequence of those tasks or flows – to maximize or minimize

some metric, like throughput, makespan, or operating cost.

The complexity of most real-world systems renders the

application of exact optimization methods impractical,

either because the time to obtain the optimal solution

would be excessive, or because such systems are too

complex to be mathematically formulated. In this case,

what is needed is a combination of mathematical methods

combined with heuristic solution techniques and, often,

simulation modeling approaches.

We propose OptPro, a sophisticated production scheduling

solution approach that goes beyond rule-based systems to

enable optimal decision making through powerful

algorithmic and analytical techniques. Our proposed

approach meets a growing need from companies with

complex planning, design and operational scheduling

requirements. These companies are typically dissatisfied

with their current scheduling capabilities, and are seeking

Proceedings of the International Food Operations and Processing Simulation Workshop, 2017
ISBN 978-88-97999-86-7; Bruzzone, Longo and Vignali Eds.

59

mailto:better@opttek.com
mailto:kelly@opttek.com
mailto:palmer@opttek.com
mailto:laguna@colorado.edu

to develop a competitive advantage through optimal

scheduling.

1.1. Optimized Production Scheduling

At a recent meeting, a process engineer for a food plant

manufacturing design consultancy was discussing why he

liked “greenfield” design problems (completely new

design unencumbered by existing infrastructure). He

found such problems to be “easy” because, as he said,

“there is so much flexibility that many solutions will

work.” On the surface, this sounds reasonable. But the

problem with this perspective is that although it may be

easy to find a solution that “works,” finding the best

solution might be quite difficult. When the number of

choices is large (the definition of flexibility), the number

of possible different solutions can be enormous.

Optimization is the preferred approach to find the best

solution in these types of situations. In today’s competitive

environment, it is unwise to settle for less than an optimal

solution. This paper discusses how production scheduling

optimization can produce the best possible outcomes for

those operations where a good schedule may provide a

competitive advantage.

Though the industries they come from are diverse,

potential users of this approach usually share a common set

of characteristics, including, but not limited to:

• Production costs represent a significant portion of the

total cost of their product(s);

• Real-time, daily or weekly schedules need to be obtained

quickly;

• Multiple products share common processing

infrastructure and resources;

• The types and quantities of products to produce do not

vary significantly from one period to the next;

• Construction of a new plant, or a plant expansion, is

being planned.

1.2. Advanced Optimization Approaches

The production planning and production scheduling

academic literature is very vast, and includes many pure

optimization and hybrid optimization-based approaches to

food production scheduling. Recent surveys (Jahangirian,

et al. 2010) and (Smith 2003) identify more than 20

implementations involving discrete event simulation

approaches, with more than a dozen others involving

alternative types of simulation. Numerous other

implementations involve mixed integer programming

formulations (Wari and Zhu 2016) and metaheuristics

(Abakarov, et al. 2009). However, these implementations

either make severe simplifications of the processes they are

trying to represent, consider only portions of a complete

process, or do not provide an integrated system capacity

and job sequencing framework. We have developed a

sophisticated production scheduling solution that utilizes

mathematical programming, metaheuristic optimization

techniques, and simulation to craft optimal or near-optimal

system capacity designs and production schedules in a

timely, reliable and effective manner.

Our approach is not designed for situations where using

straight-forward rules such as FIFO or EDD would suffice.

It is for those operations where multiple products compete

for common resources, such as production infrastructure

and materials; it is for those companies where a good

production schedule can turn into a competitive advantage;

it is for companies who seek to optimize and automate their

plant design and production schedule, or to maximize the

benefit derived from their operational processing

decisions. In manufacturing settings, the approach enables

optimal decision making by simultaneously optimizing

scheduling, sequencing, line-assignment, capacity and

layout decisions to meet forecasted customer demands.

In general, the approach simultaneously solves a set of

optimization problems. Depending on the goal of the

operation, multiple objective functions can be

simultaneously addressed, such as:

• Maximizing throughput

• Maximizing equipment utilization

• Minimizing makespan or total processing time

• Minimizing operational costs and capital expenditures

Regardless of the objectives, the approach can also handle

several physical and logical constraints that may come into

play in a production schedule, such as:

• Maximum time to complete production

• Lower and upper bounds on the number of units – and/or

capacity – of each equipment type (i.e., machines, tanks,

pumps, jigs, etc.)

• Lower and upper bounds on the number of personnel

required to operate the plant

• Changeover and setup times and costs related to how

particular jobs are sequenced in the schedule (i.e.,

switching from high charge to low charge, switching

from one flavor to a different flavor; preparing a batch

for processing, etc.)

• Cost and budget constraints

Proceedings of the International Food Operations and Processing Simulation Workshop, 2017
ISBN 978-88-97999-86-7; Bruzzone, Longo and Vignali Eds.

60

We demonstrate the benefits of our proposed approach on

a real-world food processing example, and discuss future

work related to expansion of the methodology into other

potential food processing operations.

2. PROBLEM DESCRIPTION, FORMULATIONS,

AND HEURISTIC APPROACHES

More than an “off-the-shelf”, one-size-fits-all solution,

OptPro is a custom solution approach to complex

production and process scheduling situations. These

complex situations arise in many types of industrial

manufacturing settings, including pharmaceuticals,

construction materials, automotive assembly, oil refinery,

and food operations. In the latter, some of the more

complex systems encountered relate to the processing of

liquid foods. The reasons for the complexity of liquid

foods processing operations are multiple, and include the

following, to name a few:

1. These are continuous flow systems, where flow rates and

line capacities are dynamic and depend on upstream and

downstream constraints;

2. Flow of different product types occurs on shared

resources (i.e., pipes, tanks, coolers, mixers, fillers, etc.)

which usually require cleaning during changeovers; in

many cases, changeover times and costs are dependent

on the sequencing of flows, thus creating the need for a

good sequencing algorithm;

3. Products often have short shelf-lives such that storage

capacity and time, as either work-in-process or as

finished goods, are limited. Therefore, there is a need to

process raw materials as quickly as possible to minimize

the probability of the product “standing around” in the

different stages of the system;

4. Disruptions in operations usually involve stopping all

upstream flows from the point of disruption, creating

costly product losses and production delays.

For these reasons, an efficient schedule of the operation is

critical to ensure the highest utilization rates for the plant

equipment, while minimizing product losses and operating

costs, and ensuring timely delivery of products to the

retailers (e.g., grocery stores).

We are generally interested in optimizing three aspects of

the operation. (1) the assignment of runs (product flows)

to a line (i.e., a set of equipment units); (2) the sequencing

of runs on each line; and, (3) the capacity of each line (i.e.,

the number of units and/or size per unit of each equipment

type). We first provide a solution approach to the first two

aspects, and then focus on the third.

2.1. The Assignment and Sequencing Problem

The best way to approach these problems is to begin with

customer demand. Expressing the problem in terms of the

stock keeping units (SKUs) required by the customers

provides a way to define meaningful units of flow

throughout the process. Let’s illustrate this idea with a

simple example. In this example, we will assume that

production consists of a single step; i.e., we treat all steps

in the process as a “black box”.

We have a production facility that faces daily demand for

five products, each having a specific volume required. In

addition, each product’s flow can be assigned to one of

three available production lines, and production must be

completed within 24 hours.

We can represent these SKUs as shown in Table 1.

Table 1: Daily SKU demand and production data

SKU

ID

Daily

Demand

(lbs)

Feasible

Lines

Maximum

Rate

(lbs/min)

Processing

Time

(min)

1 66,000 1, 2 150 440

2 27,000 1, 2 150 180

3 90,000 1, 2, 3 75 1,200

4 48,000 1, 2, 3 75 640

5 60,000 2, 3 75 800

Column 1 in Table 1 contains the SKU identifier; Column

2 shows daily demand for each product, in pounds, that

must be produced by the end of the day; Column 3 contains

all feasible assignments of each SKU to a specific

production line (for example, SKU 1 can be processed on

either Line 1 or Line 2 but not on Line 3; similarly, SKU 5

can be processed on either Line 2 or Line 3, but not on

Line 1); Column 4 denotes the maximum production rate,

in pounds per minute, of each SKU on the production line.

Tables 2 and 3 contain data corresponding to changeovers.

In Table 2, the cost factors related to product changeovers

are given. These cost factors represent the cost required to

clean the line and change settings in preparation for the

next SKU. We assume that cleaning the line has a cost of

2, and changing a setting has a cost of 1. For example, if a

line is running production of SKU 1, and needs to change

to SKU 3, the cost factor is 1 because it requires a setting

change only; however, if the inverse is true – that is, the

line is running production of SKU 3 and needs to change

to SKU 1 – then both, a settings change and a line cleaning

are required, so the cost factor is 3 (see red-circled figures

Proceedings of the International Food Operations and Processing Simulation Workshop, 2017
ISBN 978-88-97999-86-7; Bruzzone, Longo and Vignali Eds.

61

in the table). In Table 3, we show the setup time, in

minutes, required during a changeover from one SKU to

another.

Table 2: Changeover cost factors

 TO

F
R

O
M

SKU 1 2 3 4 5

1 0 0 1 1 1

2 2 0 1 2 3

3 3 2 0 0 2

4 3 3 2 0 2

5 1 3 2 2 0

Table 3: Setup times

 TO

F
R

O
M

SKU 1 2 3 4 5

1 0 0 60 60 60

2 120 0 60 120 180

3 180 120 0 0 120

4 180 180 120 0 120

5 60 180 120 120 0

This simple example can be formulated as a mathematical

optimization program. For simplicity, let’s assume that our

only objective is to minimize the operating cost of running

the facility.

To solve the problem, we know the following:

• 𝑁 = the number of SKUs to be scheduled;

• 𝑀 = the number of lines available for production;

• 𝑐𝑖𝑗 = the cost associated to changing from SKU 𝑖 to SKU

𝑗 on a line (changeover cost);

• 𝑠𝑖𝑗 = the setup time required when changing from SKU 𝑖

to SKU 𝑗 on a line (setup time);

• 𝑝𝑖 = the processing time for SKU 𝑖;

• 𝐵 = some large scalar, at least greater than the maximum

allowable makespan.

We will set variable 𝑥𝑖𝑗𝑘 equal to 1 if SKU 𝑖 directly

precedes SKU 𝑗 on Line 𝑘, and equal to 0 otherwise. We

will set variable 𝑡𝑗 as the start time for SKU 𝑖. Assuming,

for simplicity, that the only costs we need to worry about

are changeover costs, we can express the objective function

as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑐𝑖𝑗 𝑥𝑖𝑗𝑘

𝑀

𝑘=1

𝑁

𝑗=1

𝑁

𝑖=1

 (1)

The schedule is subject to the following constraints:

∑ ∑ 𝑥𝑖𝑗𝑘 = 1 ∀𝑗 = 1, … , 𝑁 (2)

𝑀

𝑘=1

𝑁

𝑖=0

∑ 𝑥𝑖ℎ𝑘 − ∑ 𝑥ℎ𝑗𝑘 = 0 ∀ℎ = 1 … 𝑁,

𝑁

𝑗=0,
ℎ≠𝑗

𝑁

𝑖=0,
ℎ≠1

∀𝑘 = 1, … , 𝑀 (3)

∑ 𝑥0𝑗𝑘 ≤ 1 ∀𝑘 = 1, … , 𝑀 (4)

𝑁

𝑗=1

𝑡𝑗 ≥ 𝑡𝑖 + 𝑠𝑖𝑗 + 𝑝𝑖 + (∑ 𝑥𝑖𝑗𝑘 − 1)𝐵 ∀ 𝑖, 𝑗

𝑀

𝑘=1

 (5)

𝑠𝑖 ≥ 0 ∀ 𝑖 = 1, … , 𝑁 (6)

𝑥𝑖𝑗𝑘 ∈ {0,1} ∀𝑖, 𝑗 = 0, … , 𝑁 ∀𝑘 = 1, … , 𝑀 (7)

Equation 1 is the objective function that will be minimized,

and it computes the total changeover costs. Equation 2

ensures that every job is assigned to a line. Here, we only

need to worry about feasible assignments. Equation 3

makes sure that if SKU 𝑖 directly precedes SKU 𝑗, the

opposite is not possible. In Equation 4 we make sure that

if a job is assigned to a line, there is a SKU that occurs first

in the sequence (i,e., it cannot be preceded by another

SKU). Equation 5 computes the latest possible start time

for SKU 𝑗, by making sure it is no later than the start time

of SKU 𝑖, which directly precedes it, plus the processing

time for SKU 𝑖, plus any setup time required when

changing from SKU 𝑖 to SKU 𝑗. Equation 6 ensures that

no start time can be a negative value, and Equation 7 states

that the sequencing variables 𝑥𝑖𝑗𝑘 are binary.

This mathematical program can be solved to optimality as

a mixed integer program. Given the data shown in Tables

1 and 2, the optimal solution is obtained when SKUs 1 and

2 are processed sequentially on Line 1, SKUs 3 and 4 are

processed sequentially on line 2, and SKU 5 is processed

on Line 3, producing a Total Cost = 0. The problem with

this solution is that the makespan (total time to complete

all jobs) is 1,840 minutes. This solution is shown in Figure

1.a. If we assume we must complete all jobs within a day’s

time, this solution is not acceptable.

We need to add a variable, which we will call 𝐶𝑚𝑎𝑥, to

represent the maximum completion time of all jobs. Then,

we denote 𝐶𝑖 as the completion time for SKU 𝑖. We then

add the following constraints to our mathematical program:

Proceedings of the International Food Operations and Processing Simulation Workshop, 2017
ISBN 978-88-97999-86-7; Bruzzone, Longo and Vignali Eds.

62

𝐶𝑖 = 𝑡𝑖 + 𝑝𝑖 ∀𝑖 = 1, … , 𝑁 (8)

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑖 ∀𝑖 = 1, … , 𝑁 (9)

Finally, to guarantee that all production is completed

within one day (1,440 minutes), we add a final constraint:

𝐶𝑚𝑎𝑥 ≤ 1,440 (10)

Solving this complete formulation results in the optimal

solution shown in Figure 1.b., where Total Cost = 2, by

sequencing SKUs 1, 2 and 4 on Line 1; SKU 3 on Line 2;

and SKU 5 on Line 3. We now achieve a makespan of

1,380 minutes (on Line 1), but at a sacrifice in terms of cost

due to the changeover required by switching production

from SKU 2 to SKU 4 on Line 1. In the figure, the

changeover is represented by the red bi-directional arrow.

Figure 1. Optimal schedules

Implicit in the above formulation is that SKUs cannot be

split, such that we can schedule part of a SKU on one line

and the other part on another. Under some conditions,

splitting SKUs might provide additional flexibility that

may enable a reduced makespan, or the achievement of

other desired goals, like maximizing equipment utilization.

It is evident, however, that the formulation is applicable to

SKU splits, by simply considering splits as additional

SKUs. Thus, we can split each SKU into p equal-sized

pieces, where each piece becomes a new SKU itself, and

re-solve the problem.

The parallel machine scheduling problem with sequence-

dependent costs and setups belongs to the class of NP-hard

problems (Karp 1972), and solution times for even

moderately sized such problems can be very large. When

we consider splitting SKUs, we may quickly find ourselves

with a very large scheduling problem in our hands. Let’s

consider, for example, that we split each of the five SKUs

in our example into two equal pieces. Now we have a

11x11 matrix of sequencing variables on each line. With

three splits, the new matrix will be of dimension 16x16x3.

Thus, the number of variables and constraints will grow

rapidly with respect to the number of splits (Xing and

Zhang 2000). Many heuristic methods have been

developed to solve this problem; see (Vilarinho and Santos

2010), for a good survey of proposed methods. We

propose an approach that relies on a greedy procedure with

randomized starts.

2.2. An Effective Metaheuristic

We shift our attention to problems where SKUs can be split

into p equal pieces. We seek solutions that minimize

completion time while maximizing equipment utilization

(the reason will become apparent later, when we discuss

capacity requirements). As stated above, even moderately-

sized problems cannot be solved to optimality in

reasonable time. Client requirements often make it

necessary to obtain a good solution in a matter of minutes,

hence the need to develop an efficient solution method.

A metaheuristic is a “problem-independent algorithmic

framework that provides a set of guidelines or strategies to

develop heuristic optimization algorithms.” (Glover and

Sorensen, Metaheuristics 2013) As such, metaheuristic

algorithms rely on heuristics, and are “designed

specifically to find a solution that is good enough in a

computing time that is small enough”. (Glover and

Sorensen, Metaheuristics 2013) Thus, metaheuristics are

employed in complex cases where exact methods cannot be

applied, or where their application would be impractical.

The production scheduling of SKUs on parallel lines is

such a case. To find high-quality solutions to this problem

in a reasonable time, we developed a metaheuristic

algorithm, which combines a greedy construction heuristic

with a randomized start procedure. We will now describe

the method in detail.

To balance the solution in terms of completion time and

equipment utilization, we use a compound objective

function, as follows.

Let T denote the tardiness of a schedule, defined as a

percentage; for example, if the required completion time is

1,440 minutes, and a solution has a makespan that runs

over by 100 minutes, then T = 100/1,440 = 6.94%.

Let U denote the average percent utilization rate of the

equipment, such that 𝑢𝑖 = 1 −
𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑖𝑚𝑒
 for equipment

unit i. If this unit has been idle for 60 minutes, and it is

available daily for 1,200 minutes from the time it starts

production before it needs to shut down for maintenance,

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Line 1

Line 2

Line 3

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Line 1

Line 2

Line 3

a.

b.

Proceedings of the International Food Operations and Processing Simulation Workshop, 2017
ISBN 978-88-97999-86-7; Bruzzone, Longo and Vignali Eds.

63

then 𝑢𝑖 = 1 −
60

1,200
= 95%. Assuming we have Q units of

equipment, then we compute U as

 𝑈 =
1

𝑄
∑ 𝑢𝑖𝑖 𝑓𝑜𝑟 𝑖 = 1, … , 𝑄

The method is designed to find the schedule that minimizes

the function 𝑤1𝑇 − 𝑤2𝑈, where 𝑤1 and 𝑤2 are weights

assigned to each term, and 𝑤1 ≫ 𝑤2. In other words, we

consider the tardiness more critical than the utilization

metric. In general terms, the method proceeds as follows:

Step 1. Construct an initial sequence and Evaluate the

schedule

Step 2. Randomly order all SKUs into a list O

Step 3. Going down list O:

 For SKU i = 1 to N

a. Consider every possible insert into the current

sequence

b. Evaluate insert

c. Pick best improving insert

d. Move to next SKU

Step 4. At end of list O, if improving insert was found go

back to Step 2; otherwise STOP

(Evaluate denotes a method where the current solution is

evaluated in terms of the objective function. Depending on

the complexity of the system, this might involve a simple

computation or a more detailed simulation of the system.)

This greedy method picks the best (improving) move at

each step. We have defined a move as an insert. If we

refer to Figure 2, a valid move is obtained by taking SKU 1

out of Line 2 and inserting it into Line 1, as shown. This

particular insert creates the need for a setup (red two-way

arrow) and a cleaning (black two-way arrow) on Line 1.

Figure 2. Example of an insert move

Moves in metaheuristic algorithms are common in what is

typically called “local search” or “neighborhood search,”

where immediate (local) neighbors of a solution are

evaluated, by creating single-move changes. Local search

methods tend to get “stuck” in suboptimal regions, so it is

necessary to provide a way to explore more of the solution

space. Based on principles from Tabu search (Glover

1989), we developed a method designed to escape

suboptimal regions. To achieve that, we repeatedly run the

method described above for a set number I of iterations,

where Step 1 is randomized. In other words, we create a

set I of random initial sequences, and apply Steps 2-4 to

each. If I is large, there is a better chance that the method

will converge to the optimal solution, but processing time

will increase, so we need to pick I such that a we can obtain

a good solution in a maximum allotted time. Later, in

Section 3, we discuss some computational results.

2.3. Optimizing System Capacity

So far, we have focused our attention on a method that

optimizes the schedule for a given facility configuration.

What happens when the facility is still in its design stages

and has not been built yet? Process design engineers often

call this a “greenfield” case because everything in it has yet

to be defined.

In these cases, the typical approach is to design the facility

first, and then – given the design – determine an optimal

schedule. However, the decoupling of the design step from

the scheduling step produces potentially suboptimal

solutions, with unnecessary overestimation of capital

expenditure and operating expense estimates. Consider,

for example, a liquid flow system. You are considering

building a plant in a new location. Your marketing

department has provided you with estimated daily

customer demand for the new facility. Given these

estimates and your prior experience you decide that the

design includes a need for four storage tanks of 100,000

liters each to handle work in process inventory. Then, you

proceed to optimally schedule production given the design.

With this approach, you failed to recognize that there is a

schedule that does slightly worse in terms of total

makespan, but only requires three storage tanks. In terms

of the return on investment, this solution would have been

highly superior.

Our approach handles the design step iteratively with the

scheduling case. Each iteration consists of a system

capacity optimization step followed by a production

schedule optimization step, as shown in Figure 3.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Line 1

Line 2

Line 3

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Line 1

Line 2

Line 3

Insert:
SKU 4 from Line 2

into Line 1

Proceedings of the International Food Operations and Processing Simulation Workshop, 2017
ISBN 978-88-97999-86-7; Bruzzone, Longo and Vignali Eds.

64

The system capacity optimization step utilizes OptQuest®,

a general-purpose metaheuristic optimizer developed by

OptTek Systems, Inc. (www.opttek.com) OptQuest is a

black box optimizer based on scatter search and tabu search

methodologies (Laguna 2011), designed to provide an

effective tool to optimize complex systems arising in

industry.

In our context, OptQuest will suggest a set of input values

that represent a facility configuration – i.e., number and

capacity of storage tanks, number and capacity of coolers,

number and capacity of mixers, number of machine

operators, etc. OptQuest will then call upon the production

scheduling optimization algorithm to evaluate the quality

of the suggested configuration in terms of an objective

function that is directly relevant to the system’s capacity.

This process will continue in a loop until certain stopping

conditions are met.

Figure 3. Capacity and schedule optimization procedure

2.4. Multi-objective optimization

In a greenfield case, it might be useful to craft an objective

function that directly addresses the minimization of capital

expenditures in addition to minimizing operating expenses

and/or makespan. The coupling of both steps makes it

possible to find an optimal schedule and, therefore, optimal

performance for each design. Thus, we can make use of

special features in OptQuest to obtain solutions that a

decoupled approach would likely ignore.

For example, instead of enforcing a hard constraint on the

allowed production time, we may penalize a solution that

exceeds it. This enables us to obtain solutions where the

savings in capital expenditures would greatly outweigh any

costs associated with the excess processing time. In fact,

we can simultaneously optimize the system with respect to

two or more objectives that may be at odds with each other.

For instance, we can seek a solution that produces a facility

design and production schedule that minimizes capital

expenditures, while simultaneously minimizing makespan

and operating costs. We call this “multi-objective

optimization.”

Multi-objective optimization is very useful in many

practical situations involving multiple conflicting

objectives. (Deb 2014) In our example, for instance, it is

desirable to minimize capital expenditures and to also

minimize total production time (makespan). However,

decreasing capital expenditures will generally result in

longer production times. We would like to find a schedule

that minimizes both objectives at once. Let us assume that

the graph in Figure 4 represents the tradeoff between these

two objectives. In the graph, the vertical y-axis represents

the level of capital expenditures, and the horizontal x-axis,

the total time required to finish a production run. As

shown, production times are lowest when capital

expenditures are quite high (it is important to note that after

a certain point, increasing the capital expenditures will not

have any effect on production time.) Initially, the curve is

almost vertical, and capital expenditures can be reduced

without a large increase in production time. After a certain

point, however, the capacity of the system becomes

progressively tighter, and the curve levels off. With such

a complete description of the trade space, the production

planning engineer can make an informed decision about

how much immediate capital expenditures to trade for a

decrease in total production time.

Figure 4. Pareto frontier

Our multi-objective optimization algorithms provide a

complete picture of this multi-objective trade space, which

we call the pattern frontier. Points on the frontier for which

no improvement can be made to one objective without

making another objective worse.

System Capacity
Optimization

Production
Scheduling

Optimization

Suggest
Configuration

Find Best
Schedule

Report System
Performance

C
a

p
it

al
 e

xp
e

n
d

it
u

re
s

Total production time

Proceedings of the International Food Operations and Processing Simulation Workshop, 2017
ISBN 978-88-97999-86-7; Bruzzone, Longo and Vignali Eds.

65

http://www.opttek.com/

3. COMPUTATIONAL RESULTS

To test our method, we used a real-world case provided by

a client. The case involves a small liquid food production

facility with one separator, and six filling machines (a

simplified schematic of the facility is provided in Figure 5.)

Demand is specified by 17 SKUs of different product types

and package sizes. In the plant, raw material reception

occurs daily. Raw material storage tanks are directly filled

by through pipes from the reception area. These are then

pumped into the separator. After separation, the raw

material is separated into a refined material we call “pulp,”

and a waste byproduct. The byproduct is stored until it can

be dispatched at the end of the day. Pulp is mixed with

flavoring and stored until a filling machine is available. In

the final step of the process, filling machines fill containers

of a prespecified size with pulp of the appropriate flavor.

A SKU is defined by the combination of flavored pulp and

container size.

Figure 5. Liquid foods plant schematic

To evaluate the method, we conducted 8 distinct tests, and

measured the time to completion and the quality of the

solution in terms of makespan, equipment utilization, and

capital expenditure (Capex) costs, where applicable. The

tests and their respective results are described in Table 4.

Table 4. Evaluation tests

Type Obj Time Mksp Util Capex

1 SA U 7 99.1% 85% N/A

2 SAE U 15 99.1% 85% N/A

3 SM M 11 97.4% 95% N/A

4 SME M 9 97.4% 96% N/A

5 CA C 57 98.7% 84% 20%

6 CAE C 82 98.8% 85% 20%

7 CM C, M 45 97.6% 96% 41%

8 CME C, M 55 97.6% 96% 52%

In Column 2 of Table 4, we label the type of test as follows:

• S: Sequence only  the plant configuration is given,

such that the equipment quantities and capacities are

fixed;

• C: Capacity  equipment quantities and capacities are

variable, so the algorithm must find optimal settings;

• A: Average:  weekly production is averaged over 7

days, such that one-seventh of the weekly demand must

be completed in each day;

• M: Makespan minimizing schedule  total weekly

production must be completed as soon as possible;

• E: Expanded  the number of SKUs is doubled to 34,

but the demand per SKU is halved, to test the flexibility

of the algorithm to larger quantities of SKUs, but

guaranteeing that a feasible schedule exists.

Thus, if Column 2 contains the abbreviation: “CAE,” it

means that the test is of type “Capacity, Average,

Expanded”. This means that the test involves a system

capacity case, which requires optimizing both, plant

capacity as well as the production schedule, for a daily

average demand equal to one-seventh of the total weekly

demand for each SKU, and the number of SKUs will be 34,

but the demand for a SKU will be half that of the original

SKU.

Column 3, shows the primary objective(s) of the test case.

The objectives are abbreviated as follows: U = equipment

utilization (maximized); M = makespan (minimized);

C = capex (minimized). Time, in Column 4, reflects the

computer run time – in seconds – to obtain the best

solution. Columns 5 through 7 display the values of all

applicable metrics of system performance, such as

Makespan (in minutes per day for “Average” cases or per

week for “Makespan-minimizing” cases), Utilization and

Capex, respectively. These are all expressed as

percentages. Thus, makespan is reported as a percentage

of the maximum allowable production time (i.e., 1,440

minutes per day for tests involving an “Average”

production requirement, and 10,080 minutes per week for

tests involving a “Makespan-minimizing” production

requirement. For the “Capacity” cases, we forced the

system capacity optimization to stop after 500 iterations of

the OptQuest algorithm.

As the results show, though simple, our method produces

high-quality solutions in very short computational time.

This makes the method well-qualified not only in strategic

production design and planning situations, but in real-time,

operational scheduling. It is also useful for purposes of re-

optimizing a schedule in the event of a major disruption in

production (e.g., a machine breakdown). This last case is

Raw Material
Storage

Byproduct
Dispatch

Raw Material
Reception

Separation Mixing

Pulp
Storage

Filling and
Packaging

Proceedings of the International Food Operations and Processing Simulation Workshop, 2017
ISBN 978-88-97999-86-7; Bruzzone, Longo and Vignali Eds.

66

of critical interest in many settings, where the usual

reaction is to continue with the planned schedule and

“work around” the disruption, which often leads to

increased operating costs and excess product waste.

(Mordechai 2015) By enabling the schedule to be re-

optimized in a matter of seconds the disruption and its

estimated duration can be addressed directly in the new

schedule – thus minimizing these negative effects – and

production can resume immediately.

4. CONCLUSIONS

In this study, we have described an effective approach to

optimize the capacity and production schedule of a specific

type of manufacturing operation – liquid foods. However,

our approach is highly flexible and can be applied in

virtually any complex production process. For instance,

the metaheuristic described in Section 2.2 can be further

enhanced or modified to accommodate other situations,

and different solution approaches can be applied to

different systems based on particularities of each system.

In the production of discrete solids, for instance, we would

apply a method that, in addition to assigning and

sequencing production runs on lines, would also optimize

batch production sizes of each product. Likewise, in a port

operation where the scheduling of container loading and

unloading activities is critical, we would focus on

optimizing the placement of in-transit containers in three-

dimensional space such that a loading and unloading

schedule would minimize the number of moves necessary

to access a specific container.

No matter how complex and diverse the situation, we can

tackle it. What is truly unique about our method is a robust

general-purpose optimization engine such as OptQuest

carefully combined with decades of expertise in the

optimization, mathematical modeling, and simulation

arenas, which enables us to create custom software

designed to work with OptQuest to solve highly complex

aspects of a production system, by directly addressing the

specific goals, requirements, and constraints of the system.

No off-the-shelf tool can do that.

REFERENCES

Abakarov, A., Y. Sushkov, S. Almonacid, and R. Simpson.

2009. "Thermal processing optimization through a

modified adaptive random search." Journal of Food

Engineering 200-209.

Deb, Kalyanmoy. 2014. "Multi-objective optimization." In

Search Methodologies, by Edmund K Burke and

Graham Kendall, 403-449. New York: Springer US.

Glover, Fred. 1989. "Tabu Search - Part 1." ORSA Journal

on Computing 1 (2): 190-206.

Glover, Fred, and Kenneth Sorensen. 2013.

"Metaheuristics." In Encyclopedia of Operations

Research and Management Science, by Saul I. Gass

and Michael C. Fu (eds), 960-970. New York:

Springer US.

Jahangirian, Mohsen, Tillal Eldabi, Aisha Naseer, Lampros

K Stergioulas, and Terry Young. 2010. "Simulation

in manufacturing and business: A review."

European Journal of Operational Research 1-13.

Karp, Richard M. 1972. "Reducibility among

combinatorial problems." Edited by James W.

Thatcher, Jean D. Bohlinger Raymond E. Miller.

Complexity of Computer Computations. Yorktown

Heights, NY: Springer US. 85-103.

Laguna, Manuel. 2011. "OptQuest - Optimization of

Complex Systems." OptTek Systems, Inc. 5 9.

Accessed 5 23, 2017. http://www.opttek.com

Mordechai, Yael. 2015. Optimization and

reoptimization in scheduling problems. Masters

Thesis, Haifa: Israel Institute of Technology.

Smith, Jeffrey S. 2003. "Survey on the Use of

Simulation for Manufacturing System Design

and Operation." Journal of Manufacturing

Systems 157-171.

Vilarinho, Pedro M, and F Charrua Santos. 2010. "The

problem of scheduling in parallel machines: a

case study." Proceedings of the World

Congress on Engineering. London, UK: WCE.

Wari, Ezra, and Weihang Zhu. 2016. "Multi-week

MILP scheduling for an ice cream processing

facility." Computers and Chemical

Engineering 141-156.

Xing, Wengxun, and Jiawei Zhang. 2000. "Parallel

machine scheduling with splitting jobs."

Discrete Applied Mathematics 103 (2): 259-

269.

Proceedings of the International Food Operations and Processing Simulation Workshop, 2017
ISBN 978-88-97999-86-7; Bruzzone, Longo and Vignali Eds.

67

