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ABSTRACT 

For food manufacturing, processing and packaging 

companies whose processes exhibit high levels of 

complexity, creating optimal production schedules can 

provide a source of competitive advantage.  For these 

companies, production costs often represent a significant 

portion of their total product cost, multiple products often 

share manufacturing infrastructure and resources, and 

production schedules are required on a timely basis.  Our 

scheduling approach takes advantage of robust, custom 

optimization and simulation to satisfy this growing need in 

the food operations market. 

We have developed a sophisticated production scheduling 

solution approach that combines mathematical 

programming, metaheuristic optimization, and simulation 

to craft optimal or near-optimal production schedules in a 

timely, reliable and effective manner.  In this paper, we 

describe our approach in detail and provide computational 

results for a moderately-sized liquid food processing 

facility. 

Keywords: production scheduling, parallel machines, 

simulation optimization, food processing, packaging 

1. INTRODUCTION 

Existing solution approaches for production process 

scheduling typically focus on two basic questions: 

• When should a specific task be scheduled? 

• What resources should be assigned to perform the task? 

In many cases, these questions can be answered by 

applying simple, rule-based heuristics, such as sequencing 

tasks by earliest due date, or by the length of their 

processing times.  More complex rules can be used based 

on combining two or more simple rules into ratios or 

products, but the basic concept remains the same.  

Although appealing for their simplicity and intuitive nature 

(i.e., it is intuitive to order tasks based on when they are 

due), these methods usually produce inferior results 

because they tend to ignore other attributes of the tasks, 

such as penalties for tardiness, interactions with other 

tasks, availability of resources to perform all the work, 

changeover and setup times and costs, etc. 

In more complex situations, optimization-based 

approaches can be used.  These methods use mathematical 

programming techniques to find the optimal solution – an 

assignment of tasks or flows to a production line and a 

sequence of those tasks or flows – to maximize or minimize 

some metric, like throughput, makespan, or operating cost. 

The complexity of most real-world systems renders the 

application of exact optimization methods impractical, 

either because the time to obtain the optimal solution 

would be excessive, or because such systems are too 

complex to be mathematically formulated.  In this case, 

what is needed is a combination of mathematical methods 

combined with heuristic solution techniques and, often, 

simulation modeling approaches. 

We propose OptPro, a sophisticated production scheduling 

solution approach that goes beyond rule-based systems to 

enable optimal decision making through powerful 

algorithmic and analytical techniques.  Our proposed 

approach meets a growing need from companies with 

complex planning, design and operational scheduling 

requirements.  These companies are typically dissatisfied 

with their current scheduling capabilities, and are seeking 

Proceedings of the International Food Operations and Processing Simulation Workshop, 2017 
ISBN 978-88-97999-86-7; Bruzzone, Longo and Vignali Eds.

59

mailto:better@opttek.com
mailto:kelly@opttek.com
mailto:palmer@opttek.com
mailto:laguna@colorado.edu


to develop a competitive advantage through optimal 

scheduling.   

1.1. Optimized Production Scheduling 

At a recent meeting, a process engineer for a food plant 

manufacturing design consultancy was discussing why he 

liked “greenfield” design problems (completely new 

design unencumbered by existing infrastructure).   He 

found such problems to be “easy” because, as he said, 

“there is so much flexibility that many solutions will 

work.”  On the surface, this sounds reasonable.  But the 

problem with this perspective is that although it may be 

easy to find a solution that “works,” finding the best 

solution might be quite difficult.  When the number of 

choices is large (the definition of flexibility), the number 

of possible different solutions can be enormous.  

Optimization is the preferred approach to find the best 

solution in these types of situations.  In today’s competitive 

environment, it is unwise to settle for less than an optimal 

solution.  This paper discusses how production scheduling 

optimization can produce the best possible outcomes for 

those operations where a good schedule may provide a 

competitive advantage. 

Though the industries they come from are diverse, 

potential users of this approach usually share a common set 

of characteristics, including, but not limited to: 

• Production costs represent a significant portion of the 

total cost of their product(s); 

• Real-time, daily or weekly schedules need to be obtained 

quickly; 

• Multiple products share common processing 

infrastructure and resources; 

• The types and quantities of products to produce do not 

vary significantly from one period to the next; 

• Construction of a new plant, or a plant expansion, is 

being planned. 

 

1.2. Advanced Optimization Approaches 

The production planning and production scheduling 

academic literature is very vast, and includes many pure 

optimization and hybrid optimization-based approaches to 

food production scheduling. Recent surveys (Jahangirian, 

et al. 2010) and (Smith 2003) identify more than 20 

implementations involving discrete event simulation 

approaches, with more than a dozen others involving 

alternative types of simulation.  Numerous other 

implementations involve mixed integer programming 

formulations (Wari and Zhu 2016) and metaheuristics 

(Abakarov, et al. 2009).  However, these implementations 

either make severe simplifications of the processes they are 

trying to represent, consider only portions of a complete 

process, or do not provide an integrated system capacity 

and job sequencing framework.   We have developed a 

sophisticated production scheduling solution that utilizes 

mathematical programming, metaheuristic optimization 

techniques, and simulation to craft optimal or near-optimal 

system capacity designs and production schedules in a 

timely, reliable and effective manner. 

Our approach is not designed for situations where using 

straight-forward rules such as FIFO or EDD would suffice.  

It is for those operations where multiple products compete 

for common resources, such as production infrastructure 

and materials; it is for those companies where a good 

production schedule can turn into a competitive advantage; 

it is for companies who seek to optimize and automate their 

plant design and production schedule, or to maximize the 

benefit derived from their operational processing 

decisions.  In manufacturing settings, the approach enables 

optimal decision making by simultaneously optimizing 

scheduling, sequencing, line-assignment, capacity and 

layout decisions to meet forecasted customer demands. 

In general, the approach simultaneously solves a set of 

optimization problems.  Depending on the goal of the 

operation, multiple objective functions can be 

simultaneously addressed, such as: 

• Maximizing throughput 

• Maximizing equipment utilization 

• Minimizing makespan or total processing time 

• Minimizing operational costs and capital expenditures 

Regardless of the objectives, the approach can also handle 

several physical and logical constraints that may come into 

play in a production schedule, such as: 

• Maximum time to complete production 

• Lower and upper bounds on the number of units – and/or 

capacity – of each equipment type (i.e., machines, tanks, 

pumps, jigs, etc.) 

• Lower and upper bounds on the number of personnel 

required to operate the plant 

• Changeover and setup times and costs related to how 

particular jobs are sequenced in the schedule (i.e., 

switching from high charge to low charge, switching 

from one flavor to a different flavor; preparing a batch 

for processing, etc.) 

• Cost and budget constraints 
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We demonstrate the benefits of our proposed approach on 

a real-world food processing example, and discuss future 

work related to expansion of the methodology into other 

potential food processing operations. 

2. PROBLEM DESCRIPTION, FORMULATIONS, 

AND HEURISTIC APPROACHES 

More than an “off-the-shelf”, one-size-fits-all solution, 

OptPro is a custom solution approach to complex 

production and process scheduling situations. These 

complex situations arise in many types of industrial 

manufacturing settings, including pharmaceuticals, 

construction materials, automotive assembly, oil refinery, 

and food operations.  In the latter, some of the more 

complex systems encountered relate to the processing of 

liquid foods.  The reasons for the complexity of liquid 

foods processing operations are multiple, and include the 

following, to name a few: 

1. These are continuous flow systems, where flow rates and 

line capacities are dynamic and depend on upstream and 

downstream constraints; 

2. Flow of different product types occurs on shared 

resources (i.e., pipes, tanks, coolers, mixers, fillers, etc.) 

which usually require cleaning during changeovers; in 

many cases, changeover times and costs are dependent 

on the sequencing of flows, thus creating the need for a 

good sequencing algorithm; 

3. Products often have short shelf-lives such that storage 

capacity and time, as either work-in-process or as 

finished goods, are limited.  Therefore, there is a need to 

process raw materials as quickly as possible to minimize 

the probability of the product “standing around” in the 

different stages of the system; 

4. Disruptions in operations usually involve stopping all 

upstream flows from the point of disruption, creating 

costly product losses and production delays. 

For these reasons, an efficient schedule of the operation is 

critical to ensure the highest utilization rates for the plant 

equipment, while minimizing product losses and operating 

costs, and ensuring timely delivery of products to the 

retailers (e.g., grocery stores). 

We are generally interested in optimizing three aspects of 

the operation.  (1) the assignment of runs (product flows) 

to a line (i.e., a set of equipment units); (2) the sequencing 

of runs on each line; and, (3) the capacity of each line (i.e., 

the number of units and/or size per unit of each equipment 

type).  We first provide a solution approach to the first two 

aspects, and then focus on the third. 

2.1.   The Assignment and Sequencing Problem 

The best way to approach these problems is to begin with 

customer demand.  Expressing the problem in terms of the 

stock keeping units (SKUs) required by the customers 

provides a way to define meaningful units of flow 

throughout the process.  Let’s illustrate this idea with a 

simple example.  In this example, we will assume that 

production consists of a single step; i.e., we treat all steps 

in the process as a “black box”. 

We have a production facility that faces daily demand for 

five products, each having a specific volume required.  In 

addition, each product’s flow can be assigned to one of 

three available production lines, and production must be 

completed within 24 hours. 

We can represent these SKUs as shown in Table 1. 

Table 1: Daily SKU demand and production data 

SKU 

ID 

Daily 

Demand 

(lbs) 

Feasible 

Lines 

Maximum 

Rate 

(lbs/min) 

Processing 

Time 

(min) 

1 66,000 1, 2 150 440 

2 27,000 1, 2 150 180 

3 90,000 1, 2, 3 75 1,200 

4 48,000 1, 2, 3 75 640 

5 60,000 2, 3 75 800 

 

Column 1 in Table 1 contains the SKU identifier; Column 

2 shows daily demand for each product, in pounds, that 

must be produced by the end of the day; Column 3 contains 

all feasible assignments of each SKU to a specific 

production line (for example, SKU 1 can be processed on 

either Line 1 or Line 2 but not on Line 3; similarly, SKU 5 

can be processed on either Line 2 or Line 3, but not on 

Line 1); Column 4 denotes the maximum production rate, 

in pounds per minute, of each SKU on the production line. 

Tables 2 and 3 contain data corresponding to changeovers.  

In Table 2, the cost factors related to product changeovers 

are given.  These cost factors represent the cost required to 

clean the line and change settings in preparation for the 

next SKU.  We assume that cleaning the line has a cost of 

2, and changing a setting has a cost of 1.  For example, if a 

line is running production of SKU 1, and needs to change 

to SKU 3, the cost factor is 1 because it requires a setting 

change only; however, if the inverse is true – that is, the 

line is running production of SKU 3 and needs to change 

to SKU 1 – then both, a settings change and a line cleaning 

are required, so the cost factor is 3 (see red-circled figures 
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in the table).  In Table 3, we show the setup time, in 

minutes, required during a changeover from one SKU to 

another. 

Table 2: Changeover cost factors 

  TO 

F
R

O
M

 

SKU 1 2 3 4 5 

1 0 0 1 1 1 

2 2 0 1 2 3 

3 3 2 0 0 2 

4 3 3 2 0 2 

5 1 3 2 2 0 

 

Table 3: Setup times 

  TO 

F
R

O
M

 

SKU 1 2 3 4 5 

1 0 0 60 60 60 

2 120 0 60 120 180 

3 180 120 0 0 120 

4 180 180 120 0 120 

5 60 180 120 120 0 

 

This simple example can be formulated as a mathematical 

optimization program.  For simplicity, let’s assume that our 

only objective is to minimize the operating cost of running 

the facility.   

To solve the problem, we know the following: 

• 𝑁 = the number of SKUs to be scheduled; 

• 𝑀 = the number of lines available for production; 

• 𝑐𝑖𝑗  = the cost associated to changing from SKU 𝑖 to SKU 

𝑗 on a line (changeover cost); 

• 𝑠𝑖𝑗  = the setup time required when changing from SKU 𝑖 

to SKU 𝑗 on a line (setup time); 

• 𝑝𝑖  = the processing time for SKU 𝑖; 

• 𝐵 = some large scalar, at least greater than the maximum 

allowable makespan. 

We will set variable 𝑥𝑖𝑗𝑘  equal to 1 if SKU 𝑖 directly 

precedes SKU 𝑗 on Line 𝑘, and equal to 0 otherwise.  We 

will set variable 𝑡𝑗 as the start time for SKU 𝑖.  Assuming, 

for simplicity, that the only costs we need to worry about 

are changeover costs, we can express the objective function 

as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑐𝑖𝑗 𝑥𝑖𝑗𝑘

𝑀

𝑘=1

𝑁

𝑗=1

𝑁

𝑖=1

                                             (1) 

The schedule is subject to the following constraints: 

∑ ∑ 𝑥𝑖𝑗𝑘 = 1    ∀𝑗 = 1, … , 𝑁                                          (2)

𝑀

𝑘=1

𝑁

𝑖=0

 

∑ 𝑥𝑖ℎ𝑘 − ∑ 𝑥ℎ𝑗𝑘 = 0   ∀ℎ = 1 … 𝑁,

𝑁

𝑗=0,
ℎ≠𝑗

𝑁

𝑖=0,
ℎ≠1

∀𝑘 = 1, … , 𝑀                                         (3) 

∑ 𝑥0𝑗𝑘 ≤ 1  ∀𝑘 = 1, … , 𝑀                                                (4)

𝑁

𝑗=1

 

𝑡𝑗 ≥ 𝑡𝑖 + 𝑠𝑖𝑗 + 𝑝𝑖 + (∑ 𝑥𝑖𝑗𝑘 − 1)𝐵  ∀ 𝑖, 𝑗

𝑀

𝑘=1

                     (5) 

𝑠𝑖 ≥ 0     ∀ 𝑖 = 1, … , 𝑁                                                         (6) 

𝑥𝑖𝑗𝑘 ∈ {0,1} ∀𝑖, 𝑗 = 0, … , 𝑁 ∀𝑘 = 1, … , 𝑀                      (7) 

Equation 1 is the objective function that will be minimized, 

and it computes the total changeover costs.  Equation 2 

ensures that every job is assigned to a line.  Here, we only 

need to worry about feasible assignments.  Equation 3 

makes sure that if SKU 𝑖 directly precedes SKU 𝑗, the 

opposite is not possible.  In Equation 4 we make sure that 

if a job is assigned to a line, there is a SKU that occurs first 

in the sequence (i,e., it cannot be preceded by another 

SKU).  Equation 5 computes the latest possible start time 

for SKU 𝑗, by making sure it is no later than the start time 

of SKU 𝑖, which directly precedes it, plus the processing 

time for SKU 𝑖, plus any setup time required when 

changing from SKU 𝑖 to SKU 𝑗.  Equation 6 ensures that 

no start time can be a negative value, and Equation 7 states 

that the sequencing variables 𝑥𝑖𝑗𝑘  are binary. 

This mathematical program can be solved to optimality as 

a mixed integer program.  Given the data shown in Tables 

1 and 2, the optimal solution is obtained when SKUs 1 and 

2 are processed sequentially on Line 1, SKUs 3 and 4 are 

processed sequentially on line 2, and SKU 5 is processed 

on Line 3, producing a Total Cost = 0.  The problem with 

this solution is that the makespan (total time to complete 

all jobs) is 1,840 minutes.  This solution is shown in Figure 

1.a.  If we assume we must complete all jobs within a day’s 

time, this solution is not acceptable. 

We need to add a variable, which we will call 𝐶𝑚𝑎𝑥, to 

represent the maximum completion time of all jobs.  Then, 

we denote 𝐶𝑖 as the completion time for SKU 𝑖.  We then 

add the following constraints to our mathematical program: 

Proceedings of the International Food Operations and Processing Simulation Workshop, 2017 
ISBN 978-88-97999-86-7; Bruzzone, Longo and Vignali Eds.

62



𝐶𝑖 = 𝑡𝑖 + 𝑝𝑖    ∀𝑖 = 1, … , 𝑁                                                  (8) 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑖    ∀𝑖 = 1, … , 𝑁                                                  (9) 

Finally, to guarantee that all production is completed 

within one day (1,440 minutes), we add a final constraint: 

𝐶𝑚𝑎𝑥 ≤ 1,440                                                                    (10) 

Solving this complete formulation results in the optimal 

solution shown in Figure 1.b., where Total Cost = 2, by 

sequencing SKUs 1, 2 and 4 on Line 1; SKU 3 on Line 2; 

and SKU 5 on Line 3.  We now achieve a makespan of 

1,380 minutes (on Line 1), but at a sacrifice in terms of cost 

due to the changeover required by switching production 

from SKU 2 to SKU 4 on Line 1.  In the figure, the 

changeover is represented by the red bi-directional arrow. 

 
Figure 1. Optimal schedules 

Implicit in the above formulation is that SKUs cannot be 

split, such that we can schedule part of a SKU on one line 

and the other part on another.  Under some conditions, 

splitting SKUs might provide additional flexibility that 

may enable a reduced makespan, or the achievement of 

other desired goals, like maximizing equipment utilization.  

It is evident, however, that the formulation is applicable to 

SKU splits, by simply considering splits as additional 

SKUs.  Thus, we can split each SKU into p equal-sized 

pieces, where each piece becomes a new SKU itself, and 

re-solve the problem. 

The parallel machine scheduling problem with sequence-

dependent costs and setups belongs to the class of NP-hard 

problems (Karp 1972), and solution times for even 

moderately sized such problems can be very large.  When 

we consider splitting SKUs, we may quickly find ourselves 

with a very large scheduling problem in our hands. Let’s 

consider, for example, that we split each of the five SKUs 

in our example into two equal pieces.  Now we have a 

11x11 matrix of sequencing variables on each line.  With 

three splits, the new matrix will be of dimension 16x16x3.    

Thus, the number of variables and constraints will grow 

rapidly with respect to the number of splits (Xing and 

Zhang 2000).  Many heuristic methods have been 

developed to solve this problem; see (Vilarinho and Santos 

2010), for a good survey of proposed methods.  We 

propose an approach that relies on a greedy procedure with 

randomized starts. 

2.2.   An Effective Metaheuristic 

We shift our attention to problems where SKUs can be split 

into p equal pieces.  We seek solutions that minimize 

completion time while maximizing equipment utilization 

(the reason will become apparent later, when we discuss 

capacity requirements).  As stated above, even moderately-

sized problems cannot be solved to optimality in 

reasonable time.  Client requirements often make it 

necessary to obtain a good solution in a matter of minutes, 

hence the need to develop an efficient solution method. 

A metaheuristic is a “problem-independent algorithmic 

framework that provides a set of guidelines or strategies to 

develop heuristic optimization algorithms.” (Glover and 

Sorensen, Metaheuristics 2013)  As such, metaheuristic 

algorithms rely on heuristics, and are “designed 

specifically to find a solution that is good enough in a 

computing time that is small enough”. (Glover and 

Sorensen, Metaheuristics 2013)  Thus, metaheuristics are 

employed in complex cases where exact methods cannot be 

applied, or where their application would be impractical.  

The production scheduling of SKUs on parallel lines is 

such a case.  To find high-quality solutions to this problem 

in a reasonable time, we developed a metaheuristic 

algorithm, which combines a greedy construction heuristic 

with a randomized start procedure.  We will now describe 

the method in detail. 

To balance the solution in terms of completion time and 

equipment utilization, we use a compound objective 

function, as follows. 

Let T denote the tardiness of a schedule, defined as a 

percentage; for example, if the required completion time is 

1,440 minutes, and a solution has a makespan that runs 

over by 100 minutes, then T = 100/1,440 = 6.94%. 

Let U denote the average percent utilization rate of the 

equipment, such that 𝑢𝑖 = 1 −
𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑖𝑚𝑒
 for equipment 

unit i.  If this unit has been idle for 60 minutes, and it is 

available daily for 1,200 minutes from the time it starts 

production before it needs to shut down for maintenance, 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Line 1

Line 2

Line 3

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Line 1

Line 2

Line 3

a.

b.
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then 𝑢𝑖 = 1 −
60

1,200
= 95%.  Assuming we have Q units of 

equipment, then we compute U as 

 𝑈 =
1

𝑄
∑ 𝑢𝑖𝑖  𝑓𝑜𝑟 𝑖 = 1, … , 𝑄 

The method is designed to find the schedule that minimizes 

the function 𝑤1𝑇 − 𝑤2𝑈, where 𝑤1 and 𝑤2 are weights 

assigned to each term, and 𝑤1 ≫ 𝑤2.  In other words, we 

consider the tardiness more critical than the utilization 

metric.  In general terms, the method proceeds as follows: 

Step 1.  Construct an initial sequence and Evaluate the 

schedule 

Step 2. Randomly order all SKUs into a list O 

Step 3. Going down list O: 

 For SKU i = 1 to N 

a. Consider every possible insert into the current 

sequence 

b. Evaluate insert  

c. Pick best improving insert 

d. Move to next SKU 

Step 4. At end of list O, if improving insert was found go 

back to Step 2; otherwise STOP 

(Evaluate denotes a method where the current solution is 

evaluated in terms of the objective function.  Depending on 

the complexity of the system, this might involve a simple 

computation or a more detailed simulation of the system.) 

This greedy method picks the best (improving) move at 

each step.  We have defined a move as an insert.  If we 

refer to Figure 2, a valid move is obtained by taking SKU 1 

out of Line 2 and inserting it into Line 1, as shown.  This 

particular insert creates the need for a setup (red two-way 

arrow) and a cleaning (black two-way arrow) on Line 1.   

 

Figure 2.  Example of an insert move 

Moves in metaheuristic algorithms are common in what is 

typically called “local search” or “neighborhood search,” 

where immediate (local) neighbors of a solution are 

evaluated, by creating single-move changes.  Local search 

methods tend to get “stuck” in suboptimal regions, so it is 

necessary to provide a way to explore more of the solution 

space.  Based on principles from Tabu search (Glover 

1989), we developed a method designed to escape 

suboptimal regions.  To achieve that, we repeatedly run the 

method described above for a set number I of iterations, 

where Step 1 is randomized.  In other words, we create a 

set I of random initial sequences, and apply Steps 2-4 to 

each.  If I is large, there is a better chance that the method 

will converge to the optimal solution, but processing time 

will increase, so we need to pick I such that a we can obtain 

a good solution in a maximum allotted time.  Later, in 

Section 3, we discuss some computational results. 

2.3. Optimizing System Capacity 

So far, we have focused our attention on a method that 

optimizes the schedule for a given facility configuration.  

What happens when the facility is still in its design stages 

and has not been built yet?  Process design engineers often 

call this a “greenfield” case because everything in it has yet 

to be defined.   

In these cases, the typical approach is to design the facility 

first, and then – given the design – determine an optimal 

schedule.  However, the decoupling of the design step from 

the scheduling step produces potentially suboptimal 

solutions, with unnecessary overestimation of capital 

expenditure and operating expense estimates.  Consider, 

for example, a liquid flow system.  You are considering 

building a plant in a new location. Your marketing 

department has provided you with estimated daily 

customer demand for the new facility.  Given these 

estimates and your prior experience you decide that the 

design includes a need for four storage tanks of 100,000 

liters each to handle work in process inventory.  Then, you 

proceed to optimally schedule production given the design.  

With this approach, you failed to recognize that there is a 

schedule that does slightly worse in terms of total 

makespan, but only requires three storage tanks.  In terms 

of the return on investment, this solution would have been 

highly superior. 

Our approach handles the design step iteratively with the 

scheduling case.  Each iteration consists of a system 

capacity optimization step followed by a production 

schedule optimization step, as shown in Figure 3. 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Line 1

Line 2

Line 3

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Line 1

Line 2

Line 3

Insert:
SKU 4 from Line 2

into Line 1
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The system capacity optimization step utilizes OptQuest®, 

a general-purpose metaheuristic optimizer developed by 

OptTek Systems, Inc. (www.opttek.com)  OptQuest is a 

black box optimizer based on scatter search and tabu search 

methodologies (Laguna 2011), designed to provide an 

effective tool to optimize complex systems arising in 

industry. 

In our context, OptQuest will suggest a set of input values 

that represent a facility configuration – i.e., number and 

capacity of storage tanks, number and capacity of coolers, 

number and capacity of mixers, number of machine 

operators, etc.  OptQuest will then call upon the production 

scheduling optimization algorithm to evaluate the quality 

of the suggested configuration in terms of an objective 

function that is directly relevant to the system’s capacity.  

This process will continue in a loop until certain stopping 

conditions are met. 

 

Figure 3. Capacity and schedule optimization procedure 

 

2.4. Multi-objective optimization 

In a greenfield case, it might be useful to craft an objective 

function that directly addresses the minimization of capital 

expenditures in addition to minimizing operating expenses 

and/or makespan.  The coupling of both steps makes it 

possible to find an optimal schedule and, therefore, optimal 

performance for each design.  Thus, we can make use of 

special features in OptQuest to obtain solutions that a 

decoupled approach would likely ignore. 

For example, instead of enforcing a hard constraint on the 

allowed production time, we may penalize a solution that 

exceeds it.  This enables us to obtain solutions where the 

savings in capital expenditures would greatly outweigh any 

costs associated with the excess processing time.  In fact, 

we can simultaneously optimize the system with respect to 

two or more objectives that may be at odds with each other.  

For instance, we can seek a solution that produces a facility 

design and production schedule that minimizes capital 

expenditures, while simultaneously minimizing makespan 

and operating costs.  We call this “multi-objective 

optimization.”   

Multi-objective optimization is very useful in many 

practical situations involving multiple conflicting 

objectives. (Deb 2014)  In our example, for instance, it is 

desirable to minimize capital expenditures and to also 

minimize total production time (makespan).  However, 

decreasing capital expenditures will generally result in 

longer production times.  We would like to find a schedule 

that minimizes both objectives at once.  Let us assume that 

the graph in Figure 4 represents the tradeoff between these 

two objectives.  In the graph, the vertical y-axis represents 

the level of capital expenditures, and the horizontal x-axis, 

the total time required to finish a production run.  As 

shown, production times are lowest when capital 

expenditures are quite high (it is important to note that after 

a certain point, increasing the capital expenditures will not 

have any effect on production time.)  Initially, the curve is 

almost vertical, and capital expenditures can be reduced 

without a large increase in production time.  After a certain 

point, however, the capacity of the system becomes 

progressively tighter, and the curve levels off.  With such 

a complete description of the trade space, the production 

planning engineer can make an informed decision about 

how much immediate capital expenditures to trade for a 

decrease in total production time. 

 
Figure 4.  Pareto frontier 

Our multi-objective optimization algorithms provide a 

complete picture of this multi-objective trade space, which 

we call the pattern frontier.  Points on the frontier for which 

no improvement can be made to one objective without 

making another objective worse. 
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3. COMPUTATIONAL RESULTS 

To test our method, we used a real-world case provided by 

a client.  The case involves a small liquid food production 

facility with one separator, and six filling machines (a 

simplified schematic of the facility is provided in Figure 5.)  

Demand is specified by 17 SKUs of different product types 

and package sizes.  In the plant, raw material reception 

occurs daily.  Raw material storage tanks are directly filled 

by through pipes from the reception area.  These are then 

pumped into the separator.  After separation, the raw 

material is separated into a refined material we call “pulp,” 

and a waste byproduct.  The byproduct is stored until it can 

be dispatched at the end of the day.  Pulp is mixed with 

flavoring and stored until a filling machine is available.  In 

the final step of the process, filling machines fill containers 

of a prespecified size with pulp of the appropriate flavor.  

A SKU is defined by the combination of flavored pulp and 

container size. 

 
Figure 5. Liquid foods plant schematic 

To evaluate the method, we conducted 8 distinct tests, and 

measured the time to completion and the quality of the 

solution in terms of makespan, equipment utilization, and 

capital expenditure (Capex) costs, where applicable.  The 

tests and their respective results are described in Table 4. 

 

Table 4. Evaluation tests 

# Type Obj Time Mksp Util Capex 

1 SA U 7 99.1% 85% N/A 

2 SAE U 15 99.1% 85% N/A 

3 SM M 11 97.4% 95% N/A 

4 SME M 9 97.4% 96% N/A 

5 CA C 57 98.7% 84% 20% 

6 CAE C 82 98.8% 85% 20% 

7 CM C, M 45 97.6% 96% 41% 

8 CME C, M 55 97.6% 96% 52% 

 

In Column 2 of Table 4, we label the type of test as follows: 

• S: Sequence only  the plant configuration is given, 

such that the equipment quantities and capacities are 

fixed; 

• C: Capacity  equipment quantities and capacities are 

variable, so the algorithm must find optimal settings; 

• A: Average:  weekly production is averaged over 7 

days, such that one-seventh of the weekly demand must 

be completed in each day; 

• M: Makespan minimizing schedule  total weekly 

production must be completed as soon as possible; 

• E: Expanded  the number of SKUs is doubled to 34, 

but the demand per SKU is halved, to test the flexibility 

of the algorithm to larger quantities of SKUs, but 

guaranteeing that a feasible schedule exists. 

Thus, if Column 2 contains the abbreviation: “CAE,” it 

means that the test is of type “Capacity, Average, 

Expanded”.  This means that the test involves a system 

capacity case, which requires optimizing both, plant 

capacity as well as the production schedule, for a daily 

average demand equal to one-seventh of the total weekly 

demand for each SKU, and the number of SKUs will be 34, 

but the demand for a SKU will be half that of the original 

SKU. 

Column 3, shows the primary objective(s) of the test case.  

The objectives are abbreviated as follows:  U = equipment 

utilization (maximized); M = makespan (minimized); 

C = capex (minimized).  Time, in Column 4, reflects the 

computer run time – in seconds – to obtain the best 

solution.  Columns 5 through 7 display the values of all 

applicable metrics of system performance, such as 

Makespan (in minutes per day for “Average” cases or per 

week for “Makespan-minimizing” cases), Utilization and 

Capex, respectively.  These are all expressed as 

percentages.  Thus, makespan is reported as a percentage 

of the maximum allowable production time (i.e., 1,440 

minutes per day for tests involving an “Average” 

production requirement, and 10,080 minutes per week for 

tests involving a “Makespan-minimizing” production 

requirement.  For the “Capacity” cases, we forced the 

system capacity optimization to stop after 500 iterations of 

the OptQuest algorithm. 

As the results show, though simple, our method produces 

high-quality solutions in very short computational time.  

This makes the method well-qualified not only in strategic 

production design and planning situations, but in real-time, 

operational scheduling. It is also useful for purposes of re-

optimizing a schedule in the event of a major disruption in 

production (e.g., a machine breakdown).  This last case is 
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of critical interest in many settings, where the usual 

reaction is to continue with the planned schedule and 

“work around” the disruption, which often leads to 

increased operating costs and excess product waste. 

(Mordechai 2015)  By enabling the schedule to be re-

optimized in a matter of seconds the disruption and its 

estimated duration can be addressed directly in the new 

schedule –  thus minimizing these negative effects – and 

production can resume immediately. 

4. CONCLUSIONS 

In this study, we have described an effective approach to 

optimize the capacity and production schedule of a specific 

type of manufacturing operation – liquid foods.  However, 

our approach is highly flexible and can be applied in 

virtually any complex production process.  For instance, 

the metaheuristic described in Section 2.2 can be further 

enhanced or modified to accommodate other situations, 

and different solution approaches can be applied to 

different systems based on particularities of each system.  

In the production of discrete solids, for instance, we would 

apply a method that, in addition to assigning and 

sequencing production runs on lines, would also optimize 

batch production sizes of each product.  Likewise, in a port 

operation where the scheduling of container loading and 

unloading activities is critical, we would focus on 

optimizing the placement of in-transit containers in three-

dimensional space such that a loading and unloading 

schedule would minimize the number of moves necessary 

to access a specific container. 

No matter how complex and diverse the situation, we can 

tackle it.  What is truly unique about our method is a robust 

general-purpose optimization engine such as OptQuest 

carefully combined with decades of expertise in the 

optimization, mathematical modeling, and simulation 

arenas, which enables us to create custom software 

designed to work with OptQuest to solve highly complex 

aspects of a production system, by directly addressing the 

specific goals, requirements, and constraints of the system.  

No off-the-shelf tool can do that.
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