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ABSTRACT 

This paper proposes the representation through the 

model of the High Level Parallel Compositions or 

CPANs, of the communication / interaction patterns 

denominated Pipeline and Farm, and their usefulness in 

combinatorial optimization problems within the 

classification of NP-hard problems such as grouping 

fragments of DNA sequences and assembly of these 
fragments to construct gnome; through a Structured 

Parallel Programming approach based on the concept of 

Parallel Objects. The Pipeline and Farm models are 

shown as CPANs under the Object Orientation 

paradigm and with them it is proposed the creation of a 

new CPAN that combines and uses the previous ones to 

solve the problem of obtaining and assembling Strings 

of DNA. Each CPAN proposal contains a set of 

predefined synchronization constraints between 

processes (maximum parallelism, mutual exclusion and 

synchronization of producer-consumer type), as well as 
the use of synchronous, asynchronous and 

asynchronous future modes of communication. We 

show the algorithm that solves the assembly of DNA 

sequences, their design and implementation as CPAN 

and the performance metrics in their parallel execution 

using multicores. 

 

Keywords: CPAN, High Level Parallel Compositions, 

Parallel Structured Programming, Parallel Objects, 

Pipeline, Farm, DNA, Contigs, Genome. 

 

1. INTRODUCTION 

Currently within the parallel programming one of the 

open problems of major interest is the lack of 

acceptance structured parallel programming 

environments of use to develop applications. Structured 

parallelism is a type of parallel programming based on 

communication/interaction patterns (pipelines, farms, 

trees, etc.) that are predefined among the processes of a 

user application. Patterns also encapsulate parallel parts 

of the application, in such way that the user will only 

program the sequential code of the application. Many 

proposals of environments exist for the development of 
applications and structured parallel programs (Bacci, 

Danelutto, Pelagatti and Vaneschi 1999; Darlington 

1993), but until now only a very limited circle of expert 

programmers use them. In the literature there are 

several proposals and all agree on the importance of 

determining a complete set of patterns and try to define 

a semantics for them (De Simone 1997). At moment, in 

HPC, a great interest exists in structured-parallel 

environments research, as the ones previously 

mentioned. The trend is the use of object-oriented 

programming approaches. It has been shown that 

defining parallel objects for the development of new 

methodological proposals, models and parallel 

programming communication patterns has generated 
good results (Corradi and Leonardi 1991; Corradi and 

Zambonelli 1995). HLPCs or CPANs are parallel 

patterns defined and logically structured that, once 

identified in terms of their components and of their 

communication, can be adopted in the practice and be 

available as high level abstractions in user applications 

within an OO-programming environment (Brinch 

Hansen 1993). The process interconnection structures of 

most common parallel execution patterns, such as 

pipelines and farms can be built using CPANs, within 

the work environment of POs that is the one used to 
detail the structure of a CPAN implementation. With 

them, problems like the assembly of DNA strings 

proposed in this paper can be solved. Finding the 

solution to these types of problems has become 

indispensable in research in biology and in many fields 

such as medical diagnosis, biotechnology, forensic 

biology, virology, applied biology and bioinformatics 

among others. The problem of the assembly of DNA 

strings enters the so-called NP-Hard, because it is a 

problem of combinatorial optimization in which diverse 

heuristics and met heuristics have been proposed to 
assemble sequences of DNA strings and to provide 

essential information to understand the species and their 

mechanisms of life including the human species. This 

work shows the implementation of a grouping algorithm 

that evaluates a set of DNA sequence fragments as a 

CPAN. The CPAN represents a Farm where worker 

processes are themselves Pipeline CPANs. The 

algorithm determines subgroups of fragments by DNA 

sequences matching found, which have a high 

probability of being aligned in an assembly task. Each 

worker process of CPAN Farm works in parallel with 

the other worker processes that are generated with a 
group of fragments of DNA sequences that are 

internally constructed as graphs represented through the 

CPAN Pipeline and through an in-depth search the new 

groups of DNA sequences are generated, which must be 

processed by some assembly technique to form the 

contigs of a genome that has been sequenced covering 
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most of its structure but missing a fragment to be 

completed. Finally the design of an experiment is 

shown through the use of the new CPAN generated 

called Cpan GraphADN, with genomes of viruses and 

bacteria available on the web. The pseudo random 

synthetic readings created to form contigs are shown 
and the execution performance of this proposal is 

obtained for eight genomes with an Intel Core i8 

processor, a video accelerator card with 1664 CUDA 

cores and a clock frequency of 1178 MHz. 

2. HIGH LEVEL PARALLEL COMPOSITIONS 

(CPAN) 

HLPCs or CPANs are parallel patterns defined and 

logically structured that, once identified in terms of 

their components and of their communication, can be 

adopted in the practice and be available as high level 

abstractions in user applications within an OO-

programming environment (Rossainz 2005, Rossainz 
and Capel 2008). The process interconnection structures 

of most common parallel execution patterns, such as 

pipelines, farms and trees can be built using CPANs, 

within the work environment of POs that is the one used 

to detail the structure of a CPAN implementation, for 

details see (Rossainz and Capel 2012). A CPAN comes 

from the composition of a set three object types: an 

object manager that represents the CPAN itself and 

makes an encapsulated abstraction out of it that hides 

the internal structure. The object manager controls a set 

of objects references, which address the object collector 
and several stage objects and represent the CPAN 

components whose parallel execution is coordinated by 

the object manager (figure 2). The objects stage are 

objects of a specific purpose, in charge of encapsulating 

a client-server type interface that settles down between 

the manager and the slave-objects. These objects do not 

actively participate in the composition of the CPAN, but 

are considered external entities that contain the 

sequential algorithm that constitutes the solution of a 

given problem. Additionally, they provide the necessary 

inter-connection to implement the semantics of the 

communication pattern which definition is sought. In 
other words, each stage should act a node of the graph 

representing the pattern that operates in parallel with the 

other nodes. Depending on the particular pattern that the 

implemented CPAN follows, any stage of it can be 

directly connected to the manager and/or to the other 

component stages. In collector object we can see an 

object in charge of storing the results received from the 

stage objects to which is connected, in parallel with 

other objects of CPAN composition. That is to say, 

during a service request the control flow within the 

stages of a CPAN depends on the implemented 
communication pattern. When the composition finishes 

its execution, the result does not return to the manager 

directly, but rather to an instance of the collector class 

that is in charge of storing these results and sending 

them to the manager, which will finally send the results 

to the environment, which in its turn sends them to a 

collector object as soon as they arrive, without being 

necessary to wait for all the results that are being 

obtained (Rossainz and Capel 2012).  If we observe the 

scheme as a black box, the graphic diagram of a CPAN 

representation would be the one that is shown in Figure 

1. 

 

 
Figure 1: Graphical representation of a CPAN as black-

box 

 

In summary, a CPAN is composed of an object manager 

that represents the CPAN itself, some stage objects and 

an object of the class Collector, for each petition that 

should be managed within the CPAN. Also, for each 

stage, a slave object will be in charge of implementing 

the necessary functionalities to solve the sequential 

version of the problem being solved (Figure 2).  
 

 
Figure 2: Internal structure of CPAN. Composition of 

its components 

 

Figure 2 shows the pattern CPAN in general, without 

defining any explicit parallel communication pattern. 

The box that includes the components, represents the 

encapsulated CPAN, internal boxes represent compound 

objects (collector, manager and objects stages), as long 

as the circles are the objects slaves associated to the 

stages. The continuous lines within the CPAN suppose 

that at least a connection should exist between the 
manager and some of the component stages. Same thing 

happens between the stages and the collector. The 

dotted lines mean more than one connection among 

components of the CPAN. For details CPAN model, see 

(Rossainz and Capel 2014).Manager, collector and 

stages are included in the definition of a Parallel Object 

(PO), (Corradi 1991). Parallel Objects are active 
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objects, which is equivalent to say that these objects 

have intrinsic execution capability (Corradi 1991). 

Applications that deploy the PO pattern can exploit the 

inter-object parallelism as much as the internal or intra-

object parallelism. A PO-instance object has a similar 

structure to that of an object in Smalltalk, and 
additionally defines a scheduling politics, previously 

determined that specifies the way in which one or more 

operations carried out by the instance synchronize 

(Danelutto and Orlando 1995; Corradi 1991). 

Synchronization policies are expressed in terms of 

restrictions; for instance, mutual exclusion in 

reader/writer processes or the maximum parallelism 

allowed for writer processes. Parallel objects support 

multiple inheritance in the CPAN model. Parallel 

objects define 3 communication modes: The 

synchronous communication mode stops the client 

activity until it receives the answer of its request from 
the active server object (Andrews 2000), The 

asynchronous communication does not delay the client 

activity. The client simply sends the request to the 

active object server and its execution continues 

afterwards (Andrews 2000) and the asynchronous future 

will delay client activity when the method's result is 

reached in the client's code to evaluate an expression. 

For details see (Lavander and Kafura 1995). 

 

3. THE CPAN PIPELINE 

It represents the aforementioned pipeline technique of 
parallel processing as a HLPC or CPAN, applicable to a 

wide range of problems that are partially sequential 

intrinsically. The CPAN Pipe guarantees the 

parallelization of sequential code using the pattern 

PipeLine. 

 

3.1. The technique of the Pipeline 

Using the technique of the Pipeline, the idea is to divide 

the problem in a series of tasks that have to be 

completed, one after another, see figure 3. In a pipeline 

each task can be executed by a process, thread or 

processor for separate (De Simone 1997; Wilkinson and 
Allen 1999). 

 

 
Figure 3: Pipeline 

 

The processes of the pipeline are sometimes called 

stages of the pipeline (Roosta 1999). Each stage can 

contribute to the solution of the total problem and it can 

pass the information that is necessary to the following 

stage of the pipeline. This type of parallelism is seen 

many times as a form of functional decomposition. The 

problem is divided in separate functions that can be 

executed individually, but with this technique, the 
functions are executed in succession (Barry and Allen 

1999). The technique of parallel processing pipeline is 

then presented as a High Level Parallel Composition 

applicable to solving a range of problems that are 

partially sequential in nature, so that the Pipe CPAN 

guarantees code parallelization of sequential algorithm 

using the pattern Pipeline. 

 

3.2. Representation of the Pipeline as a CPAN 
The Figure 4 represents the parallel pattern of 

communication Pipeline as a CPAN. The details of the 

implementation can be consulted in (Rossainz, Capel 

and Domínguez 2015).  

 

 
Figure 4:  The CPAN of a Pipeline 

 

Once the objects are created and properly connected 

according to the parallel pattern Pipeline, then you have 

a CPAN for a specific type of parallel pattern, and can 

be resolved after the allocation of objects associated 

with slave stages. 

 

4. THE CPAN FARM 

The technique of the parallel processing of the farm as a 

HLPC or CPAN is shown here. The so named farm 

parallel pattern of interaction is made up of a set of 

independent processes, called worker processes, and a 
process that controls them, called the process controller 

(Roosta 1999) and (Rossainz and Capel 2008). The 

worker processes are executed in parallel until all of 

them reach a common objective. The process controller 

is in charge of distributing the work and of controlling 

the progress of the farm until the solution of the 

problem is found (Barry and Allen 1999). Figure 5 

shows the pattern of the farm. 

 

 
Figure 5: Farm with a controller and five workers 
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4.1. Representation of the Farm as a CPAN 

The representation of parallel pattern farm as a CPAN is 

shown in Figure 6. The details of the implementation 

can be consulted in (Rossainz and Capel 2012). 

 

 
Figure 6: The CPAN of a farm 

 

5. REPRESENTATION OF THE GENOME IN 

AN ORGANISM 

The hereditary information of living beings is stored in 

a molecule of deoxyribonucleic acid called DNA. This 

molecule consists of two strands of nucleotides that 

form a structure, similar to a twisted ladder, called a 

double helix, see Figure 7 (Dias 2011). 
 

 
Figure 7: DNA structure, double helix 

 

Each strand of DNA is composed of several nucleotides 

that are molecules formed by a nitrogenous base, a 

sugar that contains five molecules of carbon and a 

phosphoric acid. There are four types of nitrogen bases: 

adenine (A), guanine (G), cytosine (C) and thymine (T). 

In the double helix the nitrogenous bases are paired 

through bridges of hydrogen, giving the circumstance 

that the A always joins the T and the G to the C (Dias 
2011). This is called base pairs (bp). 

 

Chromosomes are filament-like structures that are 

inside the nucleus of a cell and contain the genetic 

material of a species, see Figure 8 taken from 

(Samiksha 2016). Each organism has a certain number 

of chromosomes per cell. Humans, for example, have 

46 chromosomes. 
 

 
Figure 8: Structure of a chromosome (Samiksha 2016) 

 

Along the DNA strand there are sequences of 

nitrogenous bases containing genetic information. These 

sequences are called genes and are responsible for 

telling cells how, when and where to produce all the 

necessary structures for life. All cells in the same 

organism have the same genetic information (Días 

2011). 

Genome is therefore the complete set of genetic 
information contained in the chromosome. Both the 

genome and the DNA sequences belonging to it are 

measured by counting their number of base pairs (bp). 

For very long sequences, as for a complete genome, 

kbp, Mbp and Gbp are used. According to the species, 

the genome may be composed of hundreds of thousands 

to billions of base pairs. However, the length of the 

genome is not related to the degree of complexity of a 

species. There are similar organisms that may differ in 

the size of their genomes and more complex organisms 

that may have smaller genomes than other simpler ones. 
The number of genes in a genome also has no relation 

to the size of the genome. But, the number of 

chromosomes can influence the number of base pairs of 

a given species. With all this we have that, the exact 

representation of the genome is formed of 3 parts: the 

assembly of DNA sequences, correction of error and the 

formation of contigs and scaffolding. 

 

5.1. The sequence assembly of DNA 

One of the initial problems in genome study is the 

measurement of the similarity of DNA sequences within 

the same genome but also within different genomes of 
equal species or within genomes of different species. 

The set of readings of DNA sequences in the analysis of 

a gnome is disordered. To obtain the original DNA 

fragment, all sequences obtained correctly must be 

fitted. This process is called sequence assembly and 

aims to determine the correct order of fragments of the 
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sequenced DNA. The output of the assembly is a set of 

contigs that are formed by the alignment of the input 

sequences, see Figure 9 taken from (Cañizares, Blanca 

and Ziarsolo 2015). The number of contigs is well 

below the number of fragments of entry, since each 

contig can be formed by several fragments. When 
assembling a set of fragments it is unlikely that all the 

fragments will form part of the resulting contigs. These 

sequences that do not form any contig are called 

singletons (Días 2011; Hernandez, Olmos and Olvera 

2016). 

 

 
Figure 9: Terminology in the assembly sequence 

(Cañizares, Blanca and Ziarsolo 2015) 

 

A contig is a set of overlapping DNA segments that 
together represent a consensus region of DNA. A 

supercontig is an even longer sequence than a contig, 

formed by the union of two or more contigs. The union 

of two or more supercontigs forms a scaffold. Several 

scaffolds finally create the structure of the chromosome 

see Figure 10 taken from (Monya 2012). 

 

 
Figure 10: Genome assembly 

1. Fragment DNA and sequence: A series of readings 

are made by the machines called sequencers. 

Readings are small fragments of DNA. 

2. Find overlaps between reads: To assemble the 

sequence, the splices between the DNA fragments 

obtained are found. With this information a map is 
created to assemble longer sequences. 

3. Assemble overlaps into contigs: A continuous 

sequence of DNA is generated that has been 

assembled through the spliced DNA fragments, and 

larger fragments of the DNA are being created. 

4. Assemble contigs into scaffolds: A sequence 

formed by the union of one or more contigs is 

created. In a scaffold it is not required that there is 

an overlap between contigs (not so for the latter) to 

assemble longer strings. 

 

6. ASSEMBLY OF DNA SEQUENCES USING 

CPANS 

DNA sequencing is the process of determining the 

precise order of nucleotides within a DNA molecule. It 

includes any method or technology that is used to 

determine the order of the four bases: adenine, guanine, 

cytosine, and thymine in a strand of DNA (Masoudi-

Nejad et al. 2013). The advent of rapid DNA 

sequencing methods has greatly accelerated biological 

and medical research and discovery. The rapid speed of 

sequencing attained with modern DNA sequencing 

technology has been instrumental in the sequencing of 
complete DNA sequences, or genomes of numerous 

types and species of life, including the human genome 

and other complete DNA sequences of many animal, 

plant, and microbial species (Pareek et al., 2011). In this 

regard use of CPANs for grouping DNA sequence 

fragments from the parallelization of a clustering 

algorithm to evaluate a set of fragments are made, 

which have a high probability of being aligned in an 

assembly task (DanishAli and Farooqui, 2013). The 

algorithm finds the splices between the fragments using 

the Myers algorithm and links them in a graph. Then an 

in-depth search is done in the graph to form the groups 
and send them as a result (Blelloch and Guy 1996),  

(The Myers algorithm performs search matching of 

substrings using a deterministic automaton: Read all the 

characters of the text one by one and modify in each 

step some variables that allow to identify the possible 

occurrences. Some similar algorithms are: Knuth-

Morris-Pratt, Shift-Or, Shift-And).  

The assembly of DNA strings is proposed as a 

combinatorial optimization problem and is classified as 

NP-hard and is based on the paradigm divide-and-

conquer using a structure type farm, so that the 
computational cost of finding the sequence alignments 

and its splice is substantially reduced with respect to its 

sequential version. The number of processes required to 

process the fragments of DNA sequences of a specific 

genome such as that of a virus or bacteria is determined 

by the splice of the strings found by the sequential 

solution algorithm, which looks in parallel for overlaps 

in the remaining fragments. Two sub-strings of each 
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fragment are taken for comparison with other 

fragments; and thus, particular splices are located and 

associated with the processes (a process for each splice 

sequence of DNA strings). A splice graph is then 

generated that shows the relationship between pairs of 

nodes (processes), as well as the lack of communication 
among others. The set of nodes (processes) of the graph 

that are inter-related are grouped together within a 

worker process pattern farm. Each set of related nodes 

in the graph are independent and represent the grouping 

of fragments found.  

 

6.1. Parallelization algorithm for the assembly of 

DNA sequences by an example 

Given a genome which we will assume has been 

sequenced covering most of the structure, but missing a 

small fragment: 

 

 
Figure 11: Sequenced genome 

 

Figure 11 shows the genome where it is assumed that 

the reading of the part underlining was not obtained. 

Assembling the readings of this genome is expected to 

obtain two contigs by not having been able to read the 

complete sequence (table 1). 

 

Table 1: Read Contigs 

 
As a result of the readings we obtain the list of 

fragments shown in table 2, where the splices are 

highlighted, the prefixes marked in green, the suffixes 

in red and in bold the splices that are overlapped by a 

suffix and prefix of other strings. A prefix and a suffix 

represent strings of length pb. The unmarked parts have 

no overlap, which indicates that those sections were 

read only once. The size of the desired splice is 

selected, for this example a splice of length 6 is used, 

the prefix and suffix of each string must be compared to 

the rest of the complete strings. 
 

 

 

 

 

 

 

 

 

Table 2: Fragments Read 

 
 
The first column of the table shows the number of 

processes needed to process the fragments in a parallel 

way in the CPAN, which will be grouped later forming 

the working processes within the FARM of the CPAN, 

each of which will be constituted by a pipeline of 

related processes. Each of the nine processes is mapped 

to work with a string and look for overlaps in the 

remaining fragments. Two substrings (prefix and suffix) 

of each fragment are taken to compare them with the 

other fragments, thus obtaining the results shown in 

table 3, using the algorithm Myers. 

 
Table 3: Result of the Myers algorithm by fragment 

 
 

The calculation of the overlaps is stored in a list for 

each process, where the incidence of overlaps is added 

at the end. The results of the exhaustive search are 

shown in Table 3. The results where splices in the prefix 

or suffix are found contain the location of the splicing 
within the indices of the string. Table 4 shows the list 

that represents the splicing graph constructed using the 

Myers algorithm. It can be seen that there is no 

relationship between the pair of nodes (5,6) and there is 

no arc between the nodes {1,2,3,4,5} and {6,7,8,9}. The 

graph obtained is shown in Figure 12 and will be 

represented in the CPAN with a process farm with 

worker processes and a controller process (figure 13). 

Each worker process is a CPAN Pipeline that represents 

each graph of the figure 12. The slave object associated 

with each CPAN FARM will perform an in-depth search 

to output the corresponding strings for each group. 
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Table 4: Graphs with found splices 

 
 

This is shown in Figure 12. It shows the number of 
groups formed (graphs) and the elements that belong to 

each group. For more details see (Hernández, Olmos 

and Olvera 2016).  

 

 
Figure 12: Graph splices 

 

Finally the groups formed by this algorithm are shown 

in Table 5. This result can be put in a DNA sequence 

assembler to form the initial contigs of Table 1. 

 

Table 5: Groups obtained by in-depth search 

 
 

Similarly, the relationships between nodes within each 

worker FARM process can be represented as the 
patterns Pipeline. A double communication precisely 

represents the splices found in the DNA sequences. In 

Figure 13 is shown the representation of graph-splices 

as a CPAN.  

 

 
Figure 13: The CpanGraphADN 

 

The new CPAN named CpanGraphADN is structured as 

a FARM of n-worker processes, i.e., n-fragments of 

DNA sequences and each worker process is itself a two 

directions-communication pipeline CPAN formed by m-
stages where each stage of CpanPipe represents a splice 

sequence of DNA strings connected with both, the 

previous stage as the next stage. The collector object 

receives the number of formed groups and the elements 

that belong to each of the formed groups. With the latter 

information collected, a in-depth search is performed to 

locate these items and obtain the sequence groups 

formed by the sequential algorithm assigned to each of 

the CPAN’s slave objects With this result, the user can 

use an assembly of DNA sequences to try to complete a 

particular genome or to finish an incomplete sequence 

of DNA strings of some animal or plant type species. In 
summary:  

1. Two substrings are taken from each fragment of 

DNA sequences found to compare them with the 

remaining fragments. The splices are located and 

are associated with processes within a working 

process of CPAN Farm, in the new 

CpanGraphADN of figure 13. 

2. The represented graph is processed in a Cpan Farm 

worker process using a Cpan Pipe and eliminates 

repetitions in the Cpan Farm Collector process once 

worker processes send their result to it. 
3. It creates the hierarchy contigs, scaffolds, DNA 

sequence 

 

6.2. CpanGraphADN utility, experiments and results 

An experiment was designed by using the 

CpanGraphADN with genomes of viruses and bacteria 

available on the web see Table 6, whose data were 

obtained from European Nucleotide Archive, ENA 

http://www.ebi.ac.uk. Sequencer readings were 

simulated to create pseudo-random synthetic readings, 
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so that the number of contigs can be formed, see (Vera 

and Gonzalez 2014). 

 

Table 6: Genome used by the CpanGraphADN for 

experimentation 

 
 

The CPAN used a fragmented genome, and the resulting 

fragments were pooled ensuring the same number of 

groups readings and the follower contigs results were 
obtained, see table 7. However, it should be noticed that 

the same number of genomes groups on the contigs was 

not always obtained. Thus, in the last three contigs that 

read the genome, only 4 groups were obtained by 

grouping the simulated fragments readings in CPAN. 

Similarly, for the second genome only two groups were 

obtained and only one contig was read. For the 

remaining genomes, the number of expected readings 

searches (of different lengths) by the CPAN was 

obtained. 

 
Table 7: DNA sequence groups found by the CPAN 

 
 

7. PERFORMANCE 

Finally, the execution time of CpanGraphADN is shown 

in Figure 14 and Scalability of the speedup found is 

shown in figures 15 to 22. The plot shows the number 

of processes deployed for the calculation of eight 
genomes in an experiment conducted on a computer 

with Intel Core i8 processor, and using a video 

accelerator card with 1,664 CUDA cores and clock 

frequency 1,178 MHz. 

 

 
Figure 14: Runtime CpanGraphADN 

 

 
Figure 15: Scalability of the speedup found for the 

CpanGraphADN for the genome Abalone herpesvirus 

victoria 

 

 
Figure 16: Scalability of the speedup found for the 

CpanGraphADN for the genome Adoxophyes orana 

granulovirus 
 

 

 
Figure 17: Scalability of the speedup found for the 

CpanGraphADN for the genome Adoxophyes orana 
nucleopolyhedrovirus 
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Figure 18: Scalability of the speedup found for the 

CpanGraphADN for the genome African swine fever 

virus benin 
 

 
Figure 19: Scalability of the speedup found for the 

CpanGraphADN for the genome Feline coronavirus 
 

 
Figure 20: Scalability of the speedup found for the 

CpanGraphADN for the genome Shirimp white spot 

syndrome virus 
 

 
Figure 21: Scalability of the speedup found for the 

CpanGraphADN for the genome Trichoplusia ni 

ascovirus 2c 
 

 
Figure 22: Scalability of the speedup found for the 

CpanGraphADN for the genome Vaccinia virus GLV-

1h68 
 

8. CONCLUSIONS 

We have presented a method of design concurrent 

applications based on the CPAN construction that has 

been shown susceptible to be used in different platforms 

(not only with C ++ and POSIX threads).  The CPANs 

have been exercised: Pipe and Farm extracted from a 

larger library and have shown their utility as 

communication patterns between concurrent processes, 

which can be used by programmers with little 

experience in Parallel Programming. The implemented 
CPANS can be exploited, thanks to the adoption of the 

approach oriented to objects. Well-known algorithms 

that solve sequential problems in algorithms 

parallelizable have transformed and with them the 

utility of CPANS has been proven. 

We have presented as a case study the parallel 

calculation of the DNA sequences for 8 genomes and it 

has been demonstrated efficient, observing Amdahl 

acceleration, for a restricted range of the number of 

processors. In the future, more efficient methods will be 

used to solve the assembly problem: pairing of DNA 
fragments sequences and voracious algorithms on 

representation graphs to solve the splices instead of the 

divide & conquer technique. 

 

REFERENCES 

Andrews G.R., 2000. Foundations of Multithreaded, 

Parallel, and Distributed Programming, Addison-

Wesley 

Bacci, Danelutto, Pelagatti, Vaneschi, 1999. SklE: A 

Heterogeneous Environment for HPC 

Applications. Parallel Computing 25.  
Blelloch, Guy E., 1996. Programming Parallel 

Algorithms. Comunications of the ACM. Volume 

39, Number 3. 

Brinch Hansen, 1993. Model Programs for 

Computational Science: A programming 

methodology for multicomputers, Concurrency: 

Practice and Experience, Volume 5, Number 5. 

Barry W., Allen M., 1999. Parallel Programming. 

Techniques and Applications Using Networked 

Workstations and Parallel Computers. Prentice 

Hall. ISBN 0-13-671710-1. 

Cañizares Sales J., Blanca J., Ziarsolo P. 2015. 
Ensamblaje y mapeo de secuencias tipo Sanger. 

Bioinformatics & Genomics Group. Polytechnic 

Proceedings of the European Modeling and Simulation Symposium, 2017 
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds. 

16



University of Valencia. Valencia, España. 

https://bioinf.comav.upv.es/courses/intro_bioinf/en

samblaje.html  

Corradi A., Leonardi L., 1991. PO Constraints as tools 

to synchronize active objects. Journal Object 

Oriented Programming 10, pp. 42-53. 
Corradi A, Leonardo L, Zambonelli F., 1995. 

Experiences toward an Object-Oriented Approach 

to Structured Parallel Programming. DEIS 

technical report no. DEIS-LIA-95-007.  

Danelutto, M.; Orlando, S; et al., 1995. Parallel 

Programming Models Based on Restricted 

Computation Structure Approach. Technical 

Report-Dpt. Informatica. Universitá de Pisa. 

DanishAli, S. and Farooqui, Z. 2013. Approximate 

Multiple Pattern String Matching using Bit 

Parallelism: A Review. International Journal of 

Computer Applications, Volume 74, No.19: pp.47-
51. 

Darlington et al., 1993, Parallel Programming Using 

Skeleton Functions. Proceedings PARLE’93, 

Munich (D). 

De Simone, et al. 1997. Designs Patterns for Parallel 

Programming. PDPTA International Conference. 

Días J.D. 2011. Estrategia de solución al problema de la 

anotación de secuencias de ADN mediante la 

metodología CommonKADS. Disertación Master 

en Inteligencia Artificial. Facultad de Informática. 

Universidad Complutense de Madrid. Madrid, 
España. 

Hernandez R., Olmos I., Olvera A. 2016. Agrupación de 

fragmentos de secuencias de ADN a partir de 

Técnicas paralelas para tareas de ensamblaje de 

genomas. Disertacion de Tesis de Licenciatura. 

Universidad Autónoma de Puebla. México. 

Lavander G.R., Kafura D.G. 1995. A Polimorphic 

Future and First-class Function Type for 

Concurrent Object-Oriented Programming. 

Journal of Object-Oriented Systems. 

http://citeseerx.ist.psu.edu/viewdoc/download?doi

=10.1.1.477.7088&rep=rep1&type=pdf  
Masoudi-Nejad, A., Narimani, Z. and Hosseinkhan, N. 

2013. Next Generation Sequencing and Sequence 

Assembly. SpringerBriefs in Systems Biology.  

Monya Baker, 2012. De novo genome assembly: what 

every biologist should know. Nature America Inc, 

Volume 9. No. 4: Pp. 333-337. ISSN: 1548-7091. 

http://www.nature.com/nmeth/journal/v9/n4/full/n

meth.1935.html 

Pareek, C., Smoczynski, R. and Tretyn, A. 2011. 

Sequencing technologies and genome sequencing. 

Journal of Applied Genetics, Volume 52, No.4: 
pp.413-435. 

Roosta, Séller, 1999. Parallel Processing and Parallel 

Algorithms. Theory and Computation. Springer. 

Rossainz, M., 2005. Una Metodología de Programación 

Basada en Composiciones Paralelas de Alto Nivel 

(CPANs). Universidad de Granada, PhD 

dissertation, 02/25/2005. 

Rossainz, M., Capel M., 2008. A Parallel Programming 

Methodology using Communication Patterns 

named CPANS or Composition of Parallel Object. 

20TH European Modeling & Simulation 

Symposium.Campora S. Giovanni. Italy. 

Rossainz, M., Capel M., 2012. Compositions of Parallel 
Objects to Implement Communication Patterns. 

XXIII Jornadas de Paralelismo. SARTECO 2012. 

Septiembre de 2012. Elche, España. 

Rossainz M., Capel M., 2014. Approach class library of 

high level parallel compositions to implements 

communication patterns using structured parallel 

programming. 26TH European Modeling & 

Simulation Symposium.Campora Bordeaux, 

France. 

Rossainz M, Capel M., Domínguez P., 2015. Pipeline as 

high level parallel composition for the 

implementation of a sorting algorithm. 27TH 
European Modeling & Simulation 

Symposium.Campora Bergeggi, Italy. 

Samiksha S., 2016. Structure of Chromosome: Size and 

Share.YourArticleLibrary.com. 

http://www.yourarticlelibrary.com/biology/structur

e-of-chromosome-size-and-share-474-words/6648/ 

Vera, F. and González, B. 2014. LPS: una estrategia de 

ensambles de secuencias cortas de ADN, 

Disertacion de examen de master. Instituto 

Nacional de Astrofsica, Óptica y Electrónica, 

Tonantzintla Pue., Mexico. 
Wilkinson B., Allen M., 1999. Parallel Programming 

Techniques and Applications Using Networked 

Workstations and Parallel Computers. Prentice-

Hall. USA. 

 

Proceedings of the European Modeling and Simulation Symposium, 2017 
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds. 

17

https://bioinf.comav.upv.es/courses/intro_bioinf/ensamblaje.html
https://bioinf.comav.upv.es/courses/intro_bioinf/ensamblaje.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.7088&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.7088&rep=rep1&type=pdf
http://www.nature.com/nmeth/foxtrot/svc/authoremailform?doi=10.1038/nmeth.1935&file=/nmeth/journal/v9/n4/full/nmeth.1935.html&title=De+novo+genome+assembly%3A+what+every+biologist+should+know&author=Monya+Baker
http://www.nature.com/nmeth/journal/v9/n4/full/nmeth.1935.html
http://www.nature.com/nmeth/journal/v9/n4/full/nmeth.1935.html
http://www.yourarticlelibrary.com/biology/structure-of-chromosome-size-and-share-474-words/6648/
http://www.yourarticlelibrary.com/biology/structure-of-chromosome-size-and-share-474-words/6648/

