
USE OF CPANS FOR GROUPING DNA SEQUENCE FRAGMENTS IN THE

CONSTRUCTION OF GNOMES

M. Rossainz-López
(a)

, Manuel I. Capel
(b)

, R. Hernández-Munive
(a)

, I. Olmos-Pineda
(a)

 , J. A. Olvera-López
(a)

(a) Faculty of Computer Science, Autonomous University of Puebla, San Claudio Avenue and South 14th Street,

San Manuel, Puebla, Puebla, 72000, México
(b) Software Engineering Department, College of Informatics and Telecommunications ETSIIT,

University of Granada, Daniel Saucedo Aranda s/n, Granada 18071, Spain

(a)rossainz@cs.buap.mx, (b)manuelcapel@ugr.es, (a) azhu116@gmail.com, (a)iolmos@cs.buap.mx, (a)aolvera@cs.buap.mx

ABSTRACT

This paper proposes the representation through the

model of the High Level Parallel Compositions or

CPANs, of the communication / interaction patterns

denominated Pipeline and Farm, and their usefulness in

combinatorial optimization problems within the

classification of NP-hard problems such as grouping

fragments of DNA sequences and assembly of these
fragments to construct gnome; through a Structured

Parallel Programming approach based on the concept of

Parallel Objects. The Pipeline and Farm models are

shown as CPANs under the Object Orientation

paradigm and with them it is proposed the creation of a

new CPAN that combines and uses the previous ones to

solve the problem of obtaining and assembling Strings

of DNA. Each CPAN proposal contains a set of

predefined synchronization constraints between

processes (maximum parallelism, mutual exclusion and

synchronization of producer-consumer type), as well as
the use of synchronous, asynchronous and

asynchronous future modes of communication. We

show the algorithm that solves the assembly of DNA

sequences, their design and implementation as CPAN

and the performance metrics in their parallel execution

using multicores.

Keywords: CPAN, High Level Parallel Compositions,

Parallel Structured Programming, Parallel Objects,

Pipeline, Farm, DNA, Contigs, Genome.

1. INTRODUCTION

Currently within the parallel programming one of the

open problems of major interest is the lack of

acceptance structured parallel programming

environments of use to develop applications. Structured

parallelism is a type of parallel programming based on

communication/interaction patterns (pipelines, farms,

trees, etc.) that are predefined among the processes of a

user application. Patterns also encapsulate parallel parts

of the application, in such way that the user will only

program the sequential code of the application. Many

proposals of environments exist for the development of
applications and structured parallel programs (Bacci,

Danelutto, Pelagatti and Vaneschi 1999; Darlington

1993), but until now only a very limited circle of expert

programmers use them. In the literature there are

several proposals and all agree on the importance of

determining a complete set of patterns and try to define

a semantics for them (De Simone 1997). At moment, in

HPC, a great interest exists in structured-parallel

environments research, as the ones previously

mentioned. The trend is the use of object-oriented

programming approaches. It has been shown that

defining parallel objects for the development of new

methodological proposals, models and parallel

programming communication patterns has generated
good results (Corradi and Leonardi 1991; Corradi and

Zambonelli 1995). HLPCs or CPANs are parallel

patterns defined and logically structured that, once

identified in terms of their components and of their

communication, can be adopted in the practice and be

available as high level abstractions in user applications

within an OO-programming environment (Brinch

Hansen 1993). The process interconnection structures of

most common parallel execution patterns, such as

pipelines and farms can be built using CPANs, within

the work environment of POs that is the one used to
detail the structure of a CPAN implementation. With

them, problems like the assembly of DNA strings

proposed in this paper can be solved. Finding the

solution to these types of problems has become

indispensable in research in biology and in many fields

such as medical diagnosis, biotechnology, forensic

biology, virology, applied biology and bioinformatics

among others. The problem of the assembly of DNA

strings enters the so-called NP-Hard, because it is a

problem of combinatorial optimization in which diverse

heuristics and met heuristics have been proposed to
assemble sequences of DNA strings and to provide

essential information to understand the species and their

mechanisms of life including the human species. This

work shows the implementation of a grouping algorithm

that evaluates a set of DNA sequence fragments as a

CPAN. The CPAN represents a Farm where worker

processes are themselves Pipeline CPANs. The

algorithm determines subgroups of fragments by DNA

sequences matching found, which have a high

probability of being aligned in an assembly task. Each

worker process of CPAN Farm works in parallel with

the other worker processes that are generated with a
group of fragments of DNA sequences that are

internally constructed as graphs represented through the

CPAN Pipeline and through an in-depth search the new

groups of DNA sequences are generated, which must be

processed by some assembly technique to form the

contigs of a genome that has been sequenced covering

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

8

mailto:rossainz@cs.buap.mx
mailto:manuelcapel@ugr.es
mailto:iolmos@cs.buap.mx
mailto:aolvera@cs.buap.mx

most of its structure but missing a fragment to be

completed. Finally the design of an experiment is

shown through the use of the new CPAN generated

called Cpan GraphADN, with genomes of viruses and

bacteria available on the web. The pseudo random

synthetic readings created to form contigs are shown
and the execution performance of this proposal is

obtained for eight genomes with an Intel Core i8

processor, a video accelerator card with 1664 CUDA

cores and a clock frequency of 1178 MHz.

2. HIGH LEVEL PARALLEL COMPOSITIONS

(CPAN)

HLPCs or CPANs are parallel patterns defined and

logically structured that, once identified in terms of

their components and of their communication, can be

adopted in the practice and be available as high level

abstractions in user applications within an OO-

programming environment (Rossainz 2005, Rossainz
and Capel 2008). The process interconnection structures

of most common parallel execution patterns, such as

pipelines, farms and trees can be built using CPANs,

within the work environment of POs that is the one used

to detail the structure of a CPAN implementation, for

details see (Rossainz and Capel 2012). A CPAN comes

from the composition of a set three object types: an

object manager that represents the CPAN itself and

makes an encapsulated abstraction out of it that hides

the internal structure. The object manager controls a set

of objects references, which address the object collector
and several stage objects and represent the CPAN

components whose parallel execution is coordinated by

the object manager (figure 2). The objects stage are

objects of a specific purpose, in charge of encapsulating

a client-server type interface that settles down between

the manager and the slave-objects. These objects do not

actively participate in the composition of the CPAN, but

are considered external entities that contain the

sequential algorithm that constitutes the solution of a

given problem. Additionally, they provide the necessary

inter-connection to implement the semantics of the

communication pattern which definition is sought. In
other words, each stage should act a node of the graph

representing the pattern that operates in parallel with the

other nodes. Depending on the particular pattern that the

implemented CPAN follows, any stage of it can be

directly connected to the manager and/or to the other

component stages. In collector object we can see an

object in charge of storing the results received from the

stage objects to which is connected, in parallel with

other objects of CPAN composition. That is to say,

during a service request the control flow within the

stages of a CPAN depends on the implemented
communication pattern. When the composition finishes

its execution, the result does not return to the manager

directly, but rather to an instance of the collector class

that is in charge of storing these results and sending

them to the manager, which will finally send the results

to the environment, which in its turn sends them to a

collector object as soon as they arrive, without being

necessary to wait for all the results that are being

obtained (Rossainz and Capel 2012). If we observe the

scheme as a black box, the graphic diagram of a CPAN

representation would be the one that is shown in Figure

1.

Figure 1: Graphical representation of a CPAN as black-

box

In summary, a CPAN is composed of an object manager

that represents the CPAN itself, some stage objects and

an object of the class Collector, for each petition that

should be managed within the CPAN. Also, for each

stage, a slave object will be in charge of implementing

the necessary functionalities to solve the sequential

version of the problem being solved (Figure 2).

Figure 2: Internal structure of CPAN. Composition of

its components

Figure 2 shows the pattern CPAN in general, without

defining any explicit parallel communication pattern.

The box that includes the components, represents the

encapsulated CPAN, internal boxes represent compound

objects (collector, manager and objects stages), as long

as the circles are the objects slaves associated to the

stages. The continuous lines within the CPAN suppose

that at least a connection should exist between the
manager and some of the component stages. Same thing

happens between the stages and the collector. The

dotted lines mean more than one connection among

components of the CPAN. For details CPAN model, see

(Rossainz and Capel 2014).Manager, collector and

stages are included in the definition of a Parallel Object

(PO), (Corradi 1991). Parallel Objects are active

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

9

objects, which is equivalent to say that these objects

have intrinsic execution capability (Corradi 1991).

Applications that deploy the PO pattern can exploit the

inter-object parallelism as much as the internal or intra-

object parallelism. A PO-instance object has a similar

structure to that of an object in Smalltalk, and
additionally defines a scheduling politics, previously

determined that specifies the way in which one or more

operations carried out by the instance synchronize

(Danelutto and Orlando 1995; Corradi 1991).

Synchronization policies are expressed in terms of

restrictions; for instance, mutual exclusion in

reader/writer processes or the maximum parallelism

allowed for writer processes. Parallel objects support

multiple inheritance in the CPAN model. Parallel

objects define 3 communication modes: The

synchronous communication mode stops the client

activity until it receives the answer of its request from
the active server object (Andrews 2000), The

asynchronous communication does not delay the client

activity. The client simply sends the request to the

active object server and its execution continues

afterwards (Andrews 2000) and the asynchronous future

will delay client activity when the method's result is

reached in the client's code to evaluate an expression.

For details see (Lavander and Kafura 1995).

3. THE CPAN PIPELINE

It represents the aforementioned pipeline technique of
parallel processing as a HLPC or CPAN, applicable to a

wide range of problems that are partially sequential

intrinsically. The CPAN Pipe guarantees the

parallelization of sequential code using the pattern

PipeLine.

3.1. The technique of the Pipeline

Using the technique of the Pipeline, the idea is to divide

the problem in a series of tasks that have to be

completed, one after another, see figure 3. In a pipeline

each task can be executed by a process, thread or

processor for separate (De Simone 1997; Wilkinson and
Allen 1999).

Figure 3: Pipeline

The processes of the pipeline are sometimes called

stages of the pipeline (Roosta 1999). Each stage can

contribute to the solution of the total problem and it can

pass the information that is necessary to the following

stage of the pipeline. This type of parallelism is seen

many times as a form of functional decomposition. The

problem is divided in separate functions that can be

executed individually, but with this technique, the
functions are executed in succession (Barry and Allen

1999). The technique of parallel processing pipeline is

then presented as a High Level Parallel Composition

applicable to solving a range of problems that are

partially sequential in nature, so that the Pipe CPAN

guarantees code parallelization of sequential algorithm

using the pattern Pipeline.

3.2. Representation of the Pipeline as a CPAN
The Figure 4 represents the parallel pattern of

communication Pipeline as a CPAN. The details of the

implementation can be consulted in (Rossainz, Capel

and Domínguez 2015).

Figure 4: The CPAN of a Pipeline

Once the objects are created and properly connected

according to the parallel pattern Pipeline, then you have

a CPAN for a specific type of parallel pattern, and can

be resolved after the allocation of objects associated

with slave stages.

4. THE CPAN FARM

The technique of the parallel processing of the farm as a

HLPC or CPAN is shown here. The so named farm

parallel pattern of interaction is made up of a set of

independent processes, called worker processes, and a
process that controls them, called the process controller

(Roosta 1999) and (Rossainz and Capel 2008). The

worker processes are executed in parallel until all of

them reach a common objective. The process controller

is in charge of distributing the work and of controlling

the progress of the farm until the solution of the

problem is found (Barry and Allen 1999). Figure 5

shows the pattern of the farm.

Figure 5: Farm with a controller and five workers

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

10

4.1. Representation of the Farm as a CPAN

The representation of parallel pattern farm as a CPAN is

shown in Figure 6. The details of the implementation

can be consulted in (Rossainz and Capel 2012).

Figure 6: The CPAN of a farm

5. REPRESENTATION OF THE GENOME IN

AN ORGANISM

The hereditary information of living beings is stored in

a molecule of deoxyribonucleic acid called DNA. This

molecule consists of two strands of nucleotides that

form a structure, similar to a twisted ladder, called a

double helix, see Figure 7 (Dias 2011).

Figure 7: DNA structure, double helix

Each strand of DNA is composed of several nucleotides

that are molecules formed by a nitrogenous base, a

sugar that contains five molecules of carbon and a

phosphoric acid. There are four types of nitrogen bases:

adenine (A), guanine (G), cytosine (C) and thymine (T).

In the double helix the nitrogenous bases are paired

through bridges of hydrogen, giving the circumstance

that the A always joins the T and the G to the C (Dias
2011). This is called base pairs (bp).

Chromosomes are filament-like structures that are

inside the nucleus of a cell and contain the genetic

material of a species, see Figure 8 taken from

(Samiksha 2016). Each organism has a certain number

of chromosomes per cell. Humans, for example, have

46 chromosomes.

Figure 8: Structure of a chromosome (Samiksha 2016)

Along the DNA strand there are sequences of

nitrogenous bases containing genetic information. These

sequences are called genes and are responsible for

telling cells how, when and where to produce all the

necessary structures for life. All cells in the same

organism have the same genetic information (Días

2011).

Genome is therefore the complete set of genetic
information contained in the chromosome. Both the

genome and the DNA sequences belonging to it are

measured by counting their number of base pairs (bp).

For very long sequences, as for a complete genome,

kbp, Mbp and Gbp are used. According to the species,

the genome may be composed of hundreds of thousands

to billions of base pairs. However, the length of the

genome is not related to the degree of complexity of a

species. There are similar organisms that may differ in

the size of their genomes and more complex organisms

that may have smaller genomes than other simpler ones.
The number of genes in a genome also has no relation

to the size of the genome. But, the number of

chromosomes can influence the number of base pairs of

a given species. With all this we have that, the exact

representation of the genome is formed of 3 parts: the

assembly of DNA sequences, correction of error and the

formation of contigs and scaffolding.

5.1. The sequence assembly of DNA

One of the initial problems in genome study is the

measurement of the similarity of DNA sequences within

the same genome but also within different genomes of
equal species or within genomes of different species.

The set of readings of DNA sequences in the analysis of

a gnome is disordered. To obtain the original DNA

fragment, all sequences obtained correctly must be

fitted. This process is called sequence assembly and

aims to determine the correct order of fragments of the

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

11

sequenced DNA. The output of the assembly is a set of

contigs that are formed by the alignment of the input

sequences, see Figure 9 taken from (Cañizares, Blanca

and Ziarsolo 2015). The number of contigs is well

below the number of fragments of entry, since each

contig can be formed by several fragments. When
assembling a set of fragments it is unlikely that all the

fragments will form part of the resulting contigs. These

sequences that do not form any contig are called

singletons (Días 2011; Hernandez, Olmos and Olvera

2016).

Figure 9: Terminology in the assembly sequence

(Cañizares, Blanca and Ziarsolo 2015)

A contig is a set of overlapping DNA segments that
together represent a consensus region of DNA. A

supercontig is an even longer sequence than a contig,

formed by the union of two or more contigs. The union

of two or more supercontigs forms a scaffold. Several

scaffolds finally create the structure of the chromosome

see Figure 10 taken from (Monya 2012).

Figure 10: Genome assembly

1. Fragment DNA and sequence: A series of readings

are made by the machines called sequencers.

Readings are small fragments of DNA.

2. Find overlaps between reads: To assemble the

sequence, the splices between the DNA fragments

obtained are found. With this information a map is
created to assemble longer sequences.

3. Assemble overlaps into contigs: A continuous

sequence of DNA is generated that has been

assembled through the spliced DNA fragments, and

larger fragments of the DNA are being created.

4. Assemble contigs into scaffolds: A sequence

formed by the union of one or more contigs is

created. In a scaffold it is not required that there is

an overlap between contigs (not so for the latter) to

assemble longer strings.

6. ASSEMBLY OF DNA SEQUENCES USING

CPANS

DNA sequencing is the process of determining the

precise order of nucleotides within a DNA molecule. It

includes any method or technology that is used to

determine the order of the four bases: adenine, guanine,

cytosine, and thymine in a strand of DNA (Masoudi-

Nejad et al. 2013). The advent of rapid DNA

sequencing methods has greatly accelerated biological

and medical research and discovery. The rapid speed of

sequencing attained with modern DNA sequencing

technology has been instrumental in the sequencing of
complete DNA sequences, or genomes of numerous

types and species of life, including the human genome

and other complete DNA sequences of many animal,

plant, and microbial species (Pareek et al., 2011). In this

regard use of CPANs for grouping DNA sequence

fragments from the parallelization of a clustering

algorithm to evaluate a set of fragments are made,

which have a high probability of being aligned in an

assembly task (DanishAli and Farooqui, 2013). The

algorithm finds the splices between the fragments using

the Myers algorithm and links them in a graph. Then an

in-depth search is done in the graph to form the groups
and send them as a result (Blelloch and Guy 1996),

(The Myers algorithm performs search matching of

substrings using a deterministic automaton: Read all the

characters of the text one by one and modify in each

step some variables that allow to identify the possible

occurrences. Some similar algorithms are: Knuth-

Morris-Pratt, Shift-Or, Shift-And).

The assembly of DNA strings is proposed as a

combinatorial optimization problem and is classified as

NP-hard and is based on the paradigm divide-and-

conquer using a structure type farm, so that the
computational cost of finding the sequence alignments

and its splice is substantially reduced with respect to its

sequential version. The number of processes required to

process the fragments of DNA sequences of a specific

genome such as that of a virus or bacteria is determined

by the splice of the strings found by the sequential

solution algorithm, which looks in parallel for overlaps

in the remaining fragments. Two sub-strings of each

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

12

http://www.nature.com/nmeth/foxtrot/svc/authoremailform?doi=10.1038/nmeth.1935&file=/nmeth/journal/v9/n4/full/nmeth.1935.html&title=De+novo+genome+assembly%3A+what+every+biologist+should+know&author=Monya+Baker

fragment are taken for comparison with other

fragments; and thus, particular splices are located and

associated with the processes (a process for each splice

sequence of DNA strings). A splice graph is then

generated that shows the relationship between pairs of

nodes (processes), as well as the lack of communication
among others. The set of nodes (processes) of the graph

that are inter-related are grouped together within a

worker process pattern farm. Each set of related nodes

in the graph are independent and represent the grouping

of fragments found.

6.1. Parallelization algorithm for the assembly of

DNA sequences by an example

Given a genome which we will assume has been

sequenced covering most of the structure, but missing a

small fragment:

Figure 11: Sequenced genome

Figure 11 shows the genome where it is assumed that

the reading of the part underlining was not obtained.

Assembling the readings of this genome is expected to

obtain two contigs by not having been able to read the

complete sequence (table 1).

Table 1: Read Contigs

As a result of the readings we obtain the list of

fragments shown in table 2, where the splices are

highlighted, the prefixes marked in green, the suffixes

in red and in bold the splices that are overlapped by a

suffix and prefix of other strings. A prefix and a suffix

represent strings of length pb. The unmarked parts have

no overlap, which indicates that those sections were

read only once. The size of the desired splice is

selected, for this example a splice of length 6 is used,

the prefix and suffix of each string must be compared to

the rest of the complete strings.

Table 2: Fragments Read

The first column of the table shows the number of

processes needed to process the fragments in a parallel

way in the CPAN, which will be grouped later forming

the working processes within the FARM of the CPAN,

each of which will be constituted by a pipeline of

related processes. Each of the nine processes is mapped

to work with a string and look for overlaps in the

remaining fragments. Two substrings (prefix and suffix)

of each fragment are taken to compare them with the

other fragments, thus obtaining the results shown in

table 3, using the algorithm Myers.

Table 3: Result of the Myers algorithm by fragment

The calculation of the overlaps is stored in a list for

each process, where the incidence of overlaps is added

at the end. The results of the exhaustive search are

shown in Table 3. The results where splices in the prefix

or suffix are found contain the location of the splicing
within the indices of the string. Table 4 shows the list

that represents the splicing graph constructed using the

Myers algorithm. It can be seen that there is no

relationship between the pair of nodes (5,6) and there is

no arc between the nodes {1,2,3,4,5} and {6,7,8,9}. The

graph obtained is shown in Figure 12 and will be

represented in the CPAN with a process farm with

worker processes and a controller process (figure 13).

Each worker process is a CPAN Pipeline that represents

each graph of the figure 12. The slave object associated

with each CPAN FARM will perform an in-depth search

to output the corresponding strings for each group.

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

13

Table 4: Graphs with found splices

This is shown in Figure 12. It shows the number of
groups formed (graphs) and the elements that belong to

each group. For more details see (Hernández, Olmos

and Olvera 2016).

Figure 12: Graph splices

Finally the groups formed by this algorithm are shown

in Table 5. This result can be put in a DNA sequence

assembler to form the initial contigs of Table 1.

Table 5: Groups obtained by in-depth search

Similarly, the relationships between nodes within each

worker FARM process can be represented as the
patterns Pipeline. A double communication precisely

represents the splices found in the DNA sequences. In

Figure 13 is shown the representation of graph-splices

as a CPAN.

Figure 13: The CpanGraphADN

The new CPAN named CpanGraphADN is structured as

a FARM of n-worker processes, i.e., n-fragments of

DNA sequences and each worker process is itself a two

directions-communication pipeline CPAN formed by m-
stages where each stage of CpanPipe represents a splice

sequence of DNA strings connected with both, the

previous stage as the next stage. The collector object

receives the number of formed groups and the elements

that belong to each of the formed groups. With the latter

information collected, a in-depth search is performed to

locate these items and obtain the sequence groups

formed by the sequential algorithm assigned to each of

the CPAN’s slave objects With this result, the user can

use an assembly of DNA sequences to try to complete a

particular genome or to finish an incomplete sequence

of DNA strings of some animal or plant type species. In
summary:

1. Two substrings are taken from each fragment of

DNA sequences found to compare them with the

remaining fragments. The splices are located and

are associated with processes within a working

process of CPAN Farm, in the new

CpanGraphADN of figure 13.

2. The represented graph is processed in a Cpan Farm

worker process using a Cpan Pipe and eliminates

repetitions in the Cpan Farm Collector process once

worker processes send their result to it.
3. It creates the hierarchy contigs, scaffolds, DNA

sequence

6.2. CpanGraphADN utility, experiments and results

An experiment was designed by using the

CpanGraphADN with genomes of viruses and bacteria

available on the web see Table 6, whose data were

obtained from European Nucleotide Archive, ENA

http://www.ebi.ac.uk. Sequencer readings were

simulated to create pseudo-random synthetic readings,

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

14

so that the number of contigs can be formed, see (Vera

and Gonzalez 2014).

Table 6: Genome used by the CpanGraphADN for

experimentation

The CPAN used a fragmented genome, and the resulting

fragments were pooled ensuring the same number of

groups readings and the follower contigs results were
obtained, see table 7. However, it should be noticed that

the same number of genomes groups on the contigs was

not always obtained. Thus, in the last three contigs that

read the genome, only 4 groups were obtained by

grouping the simulated fragments readings in CPAN.

Similarly, for the second genome only two groups were

obtained and only one contig was read. For the

remaining genomes, the number of expected readings

searches (of different lengths) by the CPAN was

obtained.

Table 7: DNA sequence groups found by the CPAN

7. PERFORMANCE

Finally, the execution time of CpanGraphADN is shown

in Figure 14 and Scalability of the speedup found is

shown in figures 15 to 22. The plot shows the number

of processes deployed for the calculation of eight
genomes in an experiment conducted on a computer

with Intel Core i8 processor, and using a video

accelerator card with 1,664 CUDA cores and clock

frequency 1,178 MHz.

Figure 14: Runtime CpanGraphADN

Figure 15: Scalability of the speedup found for the

CpanGraphADN for the genome Abalone herpesvirus

victoria

Figure 16: Scalability of the speedup found for the

CpanGraphADN for the genome Adoxophyes orana

granulovirus

Figure 17: Scalability of the speedup found for the

CpanGraphADN for the genome Adoxophyes orana
nucleopolyhedrovirus

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

15

Figure 18: Scalability of the speedup found for the

CpanGraphADN for the genome African swine fever

virus benin

Figure 19: Scalability of the speedup found for the

CpanGraphADN for the genome Feline coronavirus

Figure 20: Scalability of the speedup found for the

CpanGraphADN for the genome Shirimp white spot

syndrome virus

Figure 21: Scalability of the speedup found for the

CpanGraphADN for the genome Trichoplusia ni

ascovirus 2c

Figure 22: Scalability of the speedup found for the

CpanGraphADN for the genome Vaccinia virus GLV-

1h68

8. CONCLUSIONS

We have presented a method of design concurrent

applications based on the CPAN construction that has

been shown susceptible to be used in different platforms

(not only with C ++ and POSIX threads). The CPANs

have been exercised: Pipe and Farm extracted from a

larger library and have shown their utility as

communication patterns between concurrent processes,

which can be used by programmers with little

experience in Parallel Programming. The implemented
CPANS can be exploited, thanks to the adoption of the

approach oriented to objects. Well-known algorithms

that solve sequential problems in algorithms

parallelizable have transformed and with them the

utility of CPANS has been proven.

We have presented as a case study the parallel

calculation of the DNA sequences for 8 genomes and it

has been demonstrated efficient, observing Amdahl

acceleration, for a restricted range of the number of

processors. In the future, more efficient methods will be

used to solve the assembly problem: pairing of DNA
fragments sequences and voracious algorithms on

representation graphs to solve the splices instead of the

divide & conquer technique.

REFERENCES

Andrews G.R., 2000. Foundations of Multithreaded,

Parallel, and Distributed Programming, Addison-

Wesley

Bacci, Danelutto, Pelagatti, Vaneschi, 1999. SklE: A

Heterogeneous Environment for HPC

Applications. Parallel Computing 25.
Blelloch, Guy E., 1996. Programming Parallel

Algorithms. Comunications of the ACM. Volume

39, Number 3.

Brinch Hansen, 1993. Model Programs for

Computational Science: A programming

methodology for multicomputers, Concurrency:

Practice and Experience, Volume 5, Number 5.

Barry W., Allen M., 1999. Parallel Programming.

Techniques and Applications Using Networked

Workstations and Parallel Computers. Prentice

Hall. ISBN 0-13-671710-1.

Cañizares Sales J., Blanca J., Ziarsolo P. 2015.
Ensamblaje y mapeo de secuencias tipo Sanger.

Bioinformatics & Genomics Group. Polytechnic

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

16

University of Valencia. Valencia, España.

https://bioinf.comav.upv.es/courses/intro_bioinf/en

samblaje.html

Corradi A., Leonardi L., 1991. PO Constraints as tools

to synchronize active objects. Journal Object

Oriented Programming 10, pp. 42-53.
Corradi A, Leonardo L, Zambonelli F., 1995.

Experiences toward an Object-Oriented Approach

to Structured Parallel Programming. DEIS

technical report no. DEIS-LIA-95-007.

Danelutto, M.; Orlando, S; et al., 1995. Parallel

Programming Models Based on Restricted

Computation Structure Approach. Technical

Report-Dpt. Informatica. Universitá de Pisa.

DanishAli, S. and Farooqui, Z. 2013. Approximate

Multiple Pattern String Matching using Bit

Parallelism: A Review. International Journal of

Computer Applications, Volume 74, No.19: pp.47-
51.

Darlington et al., 1993, Parallel Programming Using

Skeleton Functions. Proceedings PARLE’93,

Munich (D).

De Simone, et al. 1997. Designs Patterns for Parallel

Programming. PDPTA International Conference.

Días J.D. 2011. Estrategia de solución al problema de la

anotación de secuencias de ADN mediante la

metodología CommonKADS. Disertación Master

en Inteligencia Artificial. Facultad de Informática.

Universidad Complutense de Madrid. Madrid,
España.

Hernandez R., Olmos I., Olvera A. 2016. Agrupación de

fragmentos de secuencias de ADN a partir de

Técnicas paralelas para tareas de ensamblaje de

genomas. Disertacion de Tesis de Licenciatura.

Universidad Autónoma de Puebla. México.

Lavander G.R., Kafura D.G. 1995. A Polimorphic

Future and First-class Function Type for

Concurrent Object-Oriented Programming.

Journal of Object-Oriented Systems.

http://citeseerx.ist.psu.edu/viewdoc/download?doi

=10.1.1.477.7088&rep=rep1&type=pdf
Masoudi-Nejad, A., Narimani, Z. and Hosseinkhan, N.

2013. Next Generation Sequencing and Sequence

Assembly. SpringerBriefs in Systems Biology.

Monya Baker, 2012. De novo genome assembly: what

every biologist should know. Nature America Inc,

Volume 9. No. 4: Pp. 333-337. ISSN: 1548-7091.

http://www.nature.com/nmeth/journal/v9/n4/full/n

meth.1935.html

Pareek, C., Smoczynski, R. and Tretyn, A. 2011.

Sequencing technologies and genome sequencing.

Journal of Applied Genetics, Volume 52, No.4:
pp.413-435.

Roosta, Séller, 1999. Parallel Processing and Parallel

Algorithms. Theory and Computation. Springer.

Rossainz, M., 2005. Una Metodología de Programación

Basada en Composiciones Paralelas de Alto Nivel

(CPANs). Universidad de Granada, PhD

dissertation, 02/25/2005.

Rossainz, M., Capel M., 2008. A Parallel Programming

Methodology using Communication Patterns

named CPANS or Composition of Parallel Object.

20TH European Modeling & Simulation

Symposium.Campora S. Giovanni. Italy.

Rossainz, M., Capel M., 2012. Compositions of Parallel
Objects to Implement Communication Patterns.

XXIII Jornadas de Paralelismo. SARTECO 2012.

Septiembre de 2012. Elche, España.

Rossainz M., Capel M., 2014. Approach class library of

high level parallel compositions to implements

communication patterns using structured parallel

programming. 26TH European Modeling &

Simulation Symposium.Campora Bordeaux,

France.

Rossainz M, Capel M., Domínguez P., 2015. Pipeline as

high level parallel composition for the

implementation of a sorting algorithm. 27TH
European Modeling & Simulation

Symposium.Campora Bergeggi, Italy.

Samiksha S., 2016. Structure of Chromosome: Size and

Share.YourArticleLibrary.com.

http://www.yourarticlelibrary.com/biology/structur

e-of-chromosome-size-and-share-474-words/6648/

Vera, F. and González, B. 2014. LPS: una estrategia de

ensambles de secuencias cortas de ADN,

Disertacion de examen de master. Instituto

Nacional de Astrofsica, Óptica y Electrónica,

Tonantzintla Pue., Mexico.
Wilkinson B., Allen M., 1999. Parallel Programming

Techniques and Applications Using Networked

Workstations and Parallel Computers. Prentice-

Hall. USA.

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

17

https://bioinf.comav.upv.es/courses/intro_bioinf/ensamblaje.html
https://bioinf.comav.upv.es/courses/intro_bioinf/ensamblaje.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.7088&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.7088&rep=rep1&type=pdf
http://www.nature.com/nmeth/foxtrot/svc/authoremailform?doi=10.1038/nmeth.1935&file=/nmeth/journal/v9/n4/full/nmeth.1935.html&title=De+novo+genome+assembly%3A+what+every+biologist+should+know&author=Monya+Baker
http://www.nature.com/nmeth/journal/v9/n4/full/nmeth.1935.html
http://www.nature.com/nmeth/journal/v9/n4/full/nmeth.1935.html
http://www.yourarticlelibrary.com/biology/structure-of-chromosome-size-and-share-474-words/6648/
http://www.yourarticlelibrary.com/biology/structure-of-chromosome-size-and-share-474-words/6648/

