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ABSTRACT 

Given the latest trends toward the implementation of 

Industry 4.0 principles, the proposed research work 

combines human assistance technologies such as 

Virtual and Augmented Reality with advanced data 

analysis techniques and tools to develop a 

comprehensive strategy for Predictive Maintenance 

planning and execution. On one hand, using Augmented 

and Virtual Reality technologies, workers are 

effectively assisted during maintenance operations 

towards better performances and lower error rates. On 

the other hand, Predictive Maintenance entails strategies 

for maintenance planning based on machines’ current 

conditions to avoid unnecessary overhauls. 

Thus a seamless integration of Virtual and Augmented 

Reality with Predictive Maintenance is envisaged to 

bring substantial advantages in terms of productivity 

and competitiveness enhancement for manufacturing 

systems and represents a step ahead toward the real 

implementation of the Industry 4.0 vision. 

 

Keywords: Industry 4.0, Virtual / Augmented Reality, 

Data Stream Analysis, Predictive Maintenance, 

Symbolic Regression 

 

1. INTRODUCTION 

 

Industry 4.0 is characterized by an unprecedented 

interconnection of things over the Internet, which brings 

the physical and the virtual world together. Cyber-

Physical Systems (CPS) integrate physical devices (i.e. 

sensors) with software components, thus providing the 

availability of an immense amount of sensor data 

describing the condition of products, machines etc. The 

challenge for manufacturing companies is to obtain 

substantial benefits from analysis of the collected data 

in various application areas such as production 

planning, quality management, maintenance and so on. 

Predictive Maintenance (PdM) means strategies to plan 

maintenance actions based upon a machine’s current 

condition instead of reacting to breakdowns (corrective 

maintenance) or following fixed empirically intervals 

(preventive maintenance) as stated by Li, Wang and He 

(2016). Therefore, sensors, attached to a machine, keep 

track of its behavior over the time and a subsequent 

analysis component evaluates the resulting data stream 

in order to prognose factual maintenance needs and 

determine an optimal moment to trigger correcting 

actions. Hence, PdM aims at preventing machine 

breakdowns without performing unnecessary overhauls, 

leading to higher productivity and increased 

predictability. 

Using Augmented Reality (AR) / Virtual Reality (VR) 

technologies, workers are effectively assisted during 

maintenance work – all the more so as using a common 

data base for PdM and assistance systems in 

maintenance. Wang et al. (2017), for example, propose 

a cloud based approach for PdM. Closing the loop of 

the maintenance life cycle leads to increased productive 

time of machines and thus contributes positively to 

productivity and competitiveness of manufacturing 

companies. 

This work proposes a blueprint of how such a life cycle 

could look alike for real-world implementations, by 

combining cutting-edge data analysis and assistance 

technologies. 

 

2. VIRTUAL / AUGMENTED REALITY 

TECHNOLOGIES FOR SMART 

OPERATORS 

 

In the context of smart manufacturing systems, 

operators play a crucial role for the optimal integration 

of virtual and real assets. It is mainly due to the fact 

that, operators are expected to be fit from the 

knowledge generated by and within CPS while 

providing valuable inputs/feedbacks that are likely to 

drive CPS toward higher levels of intelligence. 

In this perspective the smart operator concept is 

considered an enabling factor for a practical 

implementation of the Industry 4.0 vision. Smart 

operators are endowed with a superior knowledge of the 

working environment deriving not only from the 

abilities they acquire while executing daily tasks but 
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also from the interaction with high value-added 

contents/tools that contribute to enhancing his ability to 

perceive, understand and act in the workplace. Such 

contents/tools are mainly attributable to virtual and 

augmented reality. As a matter of facts, virtual and 

augmented reality contents are able to provide different 

levels of immersion and therefore to engage operators in 

unique experiences where real and digital objects are 

intertwined. As well known, augmented reality 

technologies allow keeping the actual view of real 

objects/systems while adding further contents levels on 

top of them whereas virtual reality allows recreating 

digital twins and highly interactive objects. These basic 

features make AR and VR well suited to achieve an 

optimal integration between real words objects and 

cyber resources in Industry 4.0 environments. Hence, 

within the scope of this research work, a substantial 

effort has been done toward the definition of an 

application methodology/approach that leverages on AR 

and VR as enabling factors for smart operators in smart 

factories with a special focus on maintenance 

operations. In particular, the basic idea behind the 

proposed approach/methodology is to support operators 

in complex, real time man-machine interactions that 

usually occur during maintenance operations providing 

visual, self-explanatory information on how to execute a 

specific task/procedure as well as demonstrating the 

best interaction patterns. The main building blocks of 

the proposed approach include:  

 

1) Develop geometric models recreating real objects 

such as machines and equipments in the working 

environment; 

2) Build Virtual environments recreating a typical or 

particular manufacturing system; 

3) Dynamical integration of geometric models within 

the relevant virtual environment; 

4) Identify and recreate each object dynamical 

behavior; 

5) Set up interconnections with real-time data sources 

(such as sensors networks) to recreate within the 

virtual word the operational conditions of the real 

word system; 

6) Procedures mapping, analysis and 3D 

reconstruction. 

7) Knowledge resources digitalization and 

organization. 

8) Dynamic binding of knowledge digital assets to 

real objects in the workplace for AR / VR contents 

delivery. 

 

The practical implementation of the proposed 

methodology turns out into a working tool whose main 

features/functionalities can be summarized as follows: 

 

• let operators be immersed and interact with a 

cyber space where they can gain meaningful 

insights, based on virtual and augmented reality, 

about man-machine interaction procedures for 

maintenance operations compliant with safety 

standards and principles; 

• exploit virtual and AR resources for operators’ 

preliminary training on high risk tasks in 

maintenance operations;  

• support operators providing information that is 

usually not available in the workplace (i.e. 

expected maintenance operations, warning on 

unexpected dangers, risks that are likely to occur, 

suggestions on how to increase productivity, etc) 

as well as operator’s training; 

• send warning messages about the outcomes of 

improper operations (i.e. what happens if a 

maintenance operation is not performed, if the 

operator fails, etc). 

Keeping in mind the need to preserve operational 

efficiency without hindering operators’ workability, the 

many possibilities offered from wearable technologies 

have been investigated to detect the most suitable 

system configurations. As a consequence it can be 

deployed and integrated with different fruition 

technologies such as: tablets, headsets, interactive 

whiteboards, monocular eyewear, smart glasses, 

armbands and gesture recognition technologies as 

shown in Figure 1 and Figure 2. 

 

 
Figure 1: Augmented reality contents delivered through 

mobile devices 

 

 
Figure 2: Augmented Reality contents delivered through 

monocular eyewear 

3. DATA BASED PREDICTIVE 

MAINTENANCE 

 

Real world data series, collected in a PdM scenario as 

depicted in Section 1 are presumably quite complex to 

analyze. Some of these generated features might have 

correlations to others, which leads to redundancies and 
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could bias analysis results. Moreover, it is most likely 

that not all relevant system aspects are covered by 

sensors, which also complicates a reasonable analysis. 

Another challenge refers to the high volume of a data 

stream, which is updated e.g. every second to represent 

a system’s inner workings correctly (Gubbi et al. 2013), 

but therefore, computationally demanding to analyze. 

Furthermore, sensor values can go missing or get 

skewed while they’re transferred from one to another 

component in a PdM setup as proposed in Section 4. In 

addition, fault system behavior might not be 

manifestable in single sensor series, but in their changed 

interplay (Saxena et al. 2008). Hence, the transgression 

of sensor thresholds, might not suit as a trigger for 

maintenance in a robust decision support system, since 

these thresholds only deal with one system dimension at 

a moment. 

 

In order to address these considerations, first a 

preprocessing component, consisting of filters and 

routines for missing value handling, signal smoothing 

and feature extraction has to be setup. Based on the 

preprocessed series the actual stream analysis is 

performed in a second component downstream, which 

models the inner workings and output of the monitored 

system. Recent works on smart maintenance solutions, 

propose machine learning methods like Random Forests 

(Scheibelhofer et al. 2016) and Hidden Markov Models 

(Cartella et al. 2015) to build models in order to identify 

a tracked system’s behavior as close as possible. 

 

In this work we focus on Symbolic Regression models, 

developed with Genetic Programming (GP), a method 

applicable to machine learning. Symbolic Regression 

models suit well to describe systems which incorporate 

biological or physical processes, like the industrial 

production plants in a PdM implementation. The 

models are mathematical functions, combining 

terminals like variables and constants with a broad 

palette symbols, such as arithmetic, trigonometric or 

conditional operators. The GP algorithm develops a 

population of these functions, which are usually 

represented as syntax trees, following evolutionary 

concepts like parental selection, crossover and mutation, 

in order to find a good estimator for the observed 

system. One major advantage of Symbolic Regression 

models compared to other representations is that they 

are interpretable for domain experts, which might 

enable them to gain deeper insights (Affenzeller et al. 

2009). 

 

4. SMART MAINTENANCE 

 

Based on current research for innovation of 

maintenance in industrial applications, using human 

assistance technology on one end and data analysis on 

the other, the idea of joining these two approaches 

towards a smart PdM adaption arose. 

 

4.1. Related Work 

 

In the current movement of Industry 4.0, several 

recently presented projects deal with modernizing 

maintenance towards PdM. In the work of Li, Wang and 

He (2016) the interdependencies of IoT, Cyber-Physical 

Systems and Big Data Analytics in the context of 

Industry 4.0 are highlighted and a PdM setup, using 

these technologies and methods, is briefly outlined. 

Sayed, Lohse and Madsen (2015) present a component 

based reference architecture for PdM implementations, 

using a very similar mix of IT, in greater detail. The 

work presents the overall architectural approach and 

describes all employed components on a software level, 

down to activity diagrams. Furthermore, Wang et al. 

(2017) present a mobile agent based paradigm for PdM, 

including implementation details and an experimental 

study on induction motors. 

 

The potentials of AR-based knowledge sharing in 

industrial maintenance are explored in Aromaa et al. 

(2018). Here a field study has shown positive users’ 

experiences as well as a good level of acceptance of AR 

systems. Similarly Uva et al. (2017) evaluate the 

effectiveness of augmented reality for conveying 

technical instructions. A seven-task maintenance 

procedure on a motorbike engine has been considered as 

case study and the outcomes of the study confirmed a 

performance improvement and lower error rates 

especially for difficult tasks. 

Interesting applications can be found in Alam et al. 

(2017) where a AR/VR IoT prototype for maintenance 

tasks in complex working environments is introduced; 

in Kranzer et al. (2017) where in Intelligent 

Maintenance planner to provide augmented reality 

information are designed; in Jayaweera et al. (2017) that 

propose an AR wearable system to enhance the 

capabilities of machine operators and repairmen; in 

Akbarinasaji and Homayounvala (2017) that present an 

optimized framework which combines context-

awareness and AR for training and assisting technicians 

in maintaining equipment to improve field workers 

effectiveness in an industrial context; and many others. 

 

A state of the art on AR in maintenance can be found in 

Palmarini et al. (2018) highlighting also the areas where 

AR technology still lacks of maturity that are mainly 

related to reliability and robustness. 

 

Although data analysis for PdM as well as AR/VR 

have been addressed in several projects in the context of 

industrial maintenance, to the best of our knowledge 

there is none proposing an architecture to combine 

them. Even if an interesting attempt to merge PdM and 

AR can be found in Mourtzis et al. (2017) that consider 

condition-based preventive maintenance supported by 

augmented reality and smart algorithms. However, 

unlike the approach we propose in this research work, 

little attention is paid to VR contents and the system is 
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devised to work real-time with no possibility to be used 

for off-line training.   

 

4.2. Maintenance Lifecycle 

 

This work aims at proposing a general concept of how 

data analysis methods and AR/VR technologies could 

be employed beneficially to develop a comprehensive 

smart maintenance strategy. Starting with a monitored 

industrial production plant, Figure 3 illustrates how 

information, initially in form of sensor data, is 

transferred and transformed by cloud services to 

analysis software on a high performance cluster. Based 

on this system’s output, concrete tasks are derived and 

sent to tablets and head mounted virtual/augmented 

reality glasses used by maintenance operators. These 

people close the depicted cycle when performing the 

generated instructions on the real-world plant. Thus, the 

figure presents how the pathway of data from 

acquisition, over digital transformation to its physical 

reintegration can be designed. We refer to this proposed 

design as Smart Maintenance Lifecycle. 

 

 
Figure 3: Smart Maintenance Lifecycle 

 

Before the workflow incorporated by the presented 

lifecycle can be performed, all components have to be 

setup on the base of qualified test data series, each 

representing known states – i.e. normal and defective 

behavior – of the monitored system. During a second 

phase the installed filter rules, trained prognosis models 

and developed decision trees are evaluated on unseen 

sensor data stream. In the following, purpose and tasks 

of all components during these phases are described: 

 

4.2.1. Production Plant 

The production plant represents the maintenance 

lifecycle’s start and end point. In the initial setup phase, 

it is equipped with condition monitoring sensors, which 

are generating data series in high frequency. As part of 

an IoT implementation, each sensor is individually 

connected to the cloud and continuously transferring the 

sensed values to the subsequent service. On the other 

end, the plant receives maintenance actions, performed 

by human operators, eventually on the base of its self-

produced data. Hence, the production plant is source of 

digital information and sink for physical actions. 

 

4.2.2. Data Preprocessor Service 

This cloud service aggregates sensor data to a dense, 

equidistance stream, which makes it reasonably 

analyzable. The component filters outliers and signals 

with too many missing values, interpolates missing 

values, levels out the impact of noise and conclusively 

transfers the preprocessed data stream to the prediction 

models. Therefore a pipeline of rules and filters is 

developed in the initial phase. 

 

4.2.3. Prediction Models 

As outlined in Section 3 the model creation process is 

guided by the GP algorithm so that domain experts only 

have to provide qualified data sets. In our design 

approach we propose to employ a High Performance 

Cluster (HPC) for the initial training and the subsequent 

evaluation of Symbolic Regression ensemble models. 

These prediction models enable to analyze the 

preprocessed data stream considering two different 

aspects: 

 

 Prediction of Remaining Useful Lifecycles (RUL) 

for the production plant’s components (Saxena et 

al. 2008) 

 Detection of abnormal or unknown system 

behavior and therefore, the need for checks and 

possibly maintenance 

 

The emerging estimations are subsequently transferred 

to the cloud based decision support system for final 

reasoning. The necessity to deploy the model training 

algorithms on a HPC infrastructure origins from the 

complex task to analyze a great amount of high 

dimensional test data series. Furthermore, the 

infrastructure also speeds up the real-time evaluation of 

the created models in the second phase, especially when 

employing not only one, but large ensembles of models. 

 

4.2.4. Decision Support System 

Based on the previously made estimations regarding 

RUL and anomalies, this component reasons if, what 

and when actions should be triggered in order to prevent 

or correct an allegedly encountered defect. Hence, this 

component holds accountable for maintenance 

scheduling, which might not be a computational 

demanding task, but one, which is predestinated to run 

at the easy accessible and resilient position in the cloud. 

The decision support system consists of a set of 

hierarchically connected rules, formulated by domain 

experts. These decision trees evaluate the previous 

system’s output so that the most proper concrete 

maintenance task is generated and textual and graphical 

content from a knowledge database to the subsequent 

system is forward. 

 

4.2.5. AR/VR Technology and Operators 

The maintenance operators, equipped with tablets and 

head mounted virtual/augmented reality glasses receive 

the decisions in form of instruction material from the 
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connected DSS cloud service. First, the operator is 

acoustically and visually informed about the issue and 

subsequently guided to the respective machine. The 

necessary maintenance actions, construction plans and 

(video-) tutorials etc. are displayed in order to support 

the service process optimally. The physical actions, 

which the operator performs, close the smart 

maintenance lifecycle. In greater detail, after contents 

are displayed, the operator can freely interact with them 

i.e. zoom in and zoom out of 3D representations, read 

text info, interact with virtual reality and/or augmented 

reality contents, etc. 

Moreover, as mentioned above, operators have access to 

3D animations explaining safety and maintenances 

procedures required along the period of operation. Each 

procedure is broken down into steps and each step is 

visually shown through an augmented 3D virtual 

animation and vocally explained (as shown in Figure 4). 

Along the explanation, visual and vocal messages draw 

the attention on potential dangers or risks the operator 

may incur. 

 

 
Figure 4: A sample of 3D animation for maintenance 

procedures 

Besides, the operator can even search for additional 

contents typing keywords in a text search box. 

This approach can be applied both real-time and offline 

for a variety of purposes: 

- make available knowledge resources that usually 

may not be directly available in the workplace; 

- be a consultation mean for operators’ 

performances improvement thanks to easy and fast 

access to information contents; 

- be an immersive and absorbing environment for 

preliminary training on new and/or complex 

procedures for maintenance operations;  

- be an instrument for safety and security 

enhancement. 

 

4.3. Continuous Adaption 

In order to adapt current trends and to validate the 

applied maintenance actions and their effect, we 

propose to repeat the initial setup phase occasionally. 

Optimally, the phases work interleaved, so that single 

components are updated according to their performance. 

We propose to trigger an update if the quality of a 

component’s output starts to decrease significantly. For 

instance, maintenance decision rules should be altered if 

the system triggered wrong or not necessary actions, or 

the adopted actions did not generated the expected 

results. On the other end, the preprocessing rules as well 

as the prognosis models should be updated after some 

cycles in order to react on changing conditions. 

 

To detect the necessity for updates, a comprehensive 

maintenance validation workflow shall be employed: If 

the actions proposed by the decision support system do 

not fit the actual needs of the monitored plant, 

according to a hands-on analysis by a human operator, 

this information shall flow back and update the rule 

base automatically. We propose that the operator uses 

the assistance technology – i.e. tablets or AR/VR 

glasses – to respond her own impression by entering an 

estimation for the remaining useful lifecycles into a 

digital form or by using a voice recognition module. 

The modification of rules could be automated by 

penalizing poor decisions so that they are executed less 

likely. A gradual or more abrupt increasing frequency 

of such wrongful decisions might indicate, that the 

monitored system is under change. Hence, the decision 

support system should trigger the training of new 

prediction models on the base of more recently 

collected data series, if a certain threshold of a “poor-

decision-counter” is exceeded. A similar routine could 

be applied to the preprocessor component. This 

continuous adaption process manages updating the 

components so that the maintenance lifecycle remains 

smart. 

 

5. CONCLUSION 

 

Within the scope of this research work, a substantial 

effort has been done toward the definition of an 

application methodology/approach that combines AR 

and VR technologies with data analysis methods as 

enabling factors for smart operators in smart factories to 

develop a comprehensive smart maintenance strategy. 

The practical implementation of such strategy turns out 

into a working approach that can be deployed at 

operational levels in order to: 

 

• plan maintenance actions based upon a machines 

current conditions; 

• deliver virtual and augmented reality contents on 

how and when procedures for maintenance 

operations are to be executed; 

• exploit virtual and AR contents for operators’ 

preliminary training and performance 

improvement with respect to high risk tasks in 

maintenance operations;  

• support operators with information that is usually 

not available in the workplace (i.e. expected 

maintenance operations, warning on unexpected 

dangers, risks that are likely to occur, suggestions 

on how to increase productivity, etc)  
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