
COMPARISON OF A MICROSCOPIC DISCRETE-EVENT AND A MESOSCOPIC 
DISCRETE-RATE SIMULATION MODEL FOR PLANNING A PRODUCTION LINE 

 
 

Florian Gleye (a), Tobias Reggelin(b), Sebastian Lang(c) 
 
 

(a)Salzgitter Mannesmann Großrohr GmbH 
(b),(c)Otto von Guericke University Magdeburg 

 
(a)f.gleye@gmx.de, (b)tobias.reggelin@ovgu.de, (c)sebastian.lang@ovgu.de 

 
 
 
 
ABSTRACT 
This paper compares a microscopic discrete-event 
simulation model and a mesoscopic discrete-rate 
simulation model to support the planning of a production 
line in the automotive industry in terms of simulation 
results and modeling and simulation effort. Mesoscopic 
discrete-rate models represent logistics flow processes 
on an aggregated level through piecewise constant flow 
rates instead of modeling individual flow objects like in 
microscopic discrete-event models. This leads to a fast 
model creation and computation. 
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1. INTRODUCTION 
Practitioners often prefer to use microscopic discrete-
event simulation models because most production and 
logistics processes are of discrete nature (Scholz-Reiter 
et al. 2007) and because discrete-event models allow for 
a very high level of detail. Discrete-event models are 
state of the art in production planning and logistics 
planning in the automotive industry (Huber and Wenzel 
2011). The term discrete-event modeling stands “for the 
modeling approach based on the concept of entities, 
resources and block charts describing entity flow and 
resource sharing” (Borshchev and Filippov 2004). Since 
discrete-event models are able to represent workstations, 
technical resources, carriers and units of goods as 
individual objects, they can depict production and 
logistics systems with a high level of detail and are also 
referred to as microscopic models (Borshchev and 
Filippov 2004, Pierreval et al. 2007). Models in this class 
can be very complicated and slow and their creation and 
implementation can be time and labor consuming 
(Pierreval et al. 2007; Law and Kelton 2007; Kosturiak 
and Gregor 1995; Huber and Dangelmaier 2009; Scholz-
Reiter et al. 2008). 
Mesoscopic simulation models based on the discrete-rate 
simulation approach have the potential for reducing 
modeling and computation efforts and allow for 
sufficient accuracy for many problems in production and 
logistics planning. 

In cooperation with the MAN Truck & Bus AG at the 
Salzgitter plant, a microscopic discrete-event simulation 
model with Tecnomatix Plant Simulation was developed 
to compare different planning variants for the production 
line of truck parts. A mesoscopic simulation model with 
ExtendSim based on the discrete-rate simulation 
paradigm was implemented for the comparison. 
 
2. MESOSCOPIC SIMULATION MODELS 
The mesoscopic simulation approach proposed by the 
authors of this paper is situated between continuous and 
discrete-event approaches in terms of level of modeling 
detail and required modeling and simulation effort 
(Reggelin 2011, Reggelin and Tolujew 2011). It supports 
quick and effective execution of analysis and planning 
tasks related to manufacturing and logistics networks. 
The principles of mesoscopic simulation models to 
describe processes in logistics and production networks 
have been derived from and have been applied to the 
actual development of several mesoscopic models 
(Henning et al. 2016, Hennies et al. 2014; Hennies et al. 
2012; Tolujew et al. 2010; Schenk et al. 2009; Savrasov 
and Tolujew 2008; Tolujew and Alcala 2004). 
Mesoscopic models represent flow processes in 
production and logistics systems through piecewise 
constant flow rates. This assumption is valid since 
logistics flows do not change continuously over time. 
The control of resources is not carried out continuously 
but only at certain points of time like changes of shifts, 
falling below or exceeding inventory thresholds. The 
resulting linearity of the cumulative flows facilitates 
event scheduling and the use of mathematical formulas 
for recalculating the system‘s state variables at every 
simulation time step. 
The simulation time step is variable and the step size 
depends on the occurrence of scheduled events. This 
leads to a high computational performance. The 
principles of event-based computation of linear 
continuous processes are employed in the discrete-rate 
simulation paradigm implemented in the simulation 
software ExtendSim (Krahl 2009, Damiron and Nastasi 
2008) and the hybrid simulation approach described by 
Kouikoglou and Phillis (2001). 
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3. PRODUCTION LINE 
The preferred planning variant of the production line is 
shown in figure 1. The key figures for evaluating the 
planning variant are: 
 

 Throughput per hour [p/h] 
 Cycle time [s] 
 Workload [%] 
 Technical degree of utilization NT [%] 

 

 

 
Figure 1: Preferred Planning Variant of the Production 
Line 
 
The production process consists of the following six 
work sequences (WS): 
 

 WS 05 Loading blank workpiece  
 WS 10 Turning + cleaning 
 WS 20 Milling + cleaning 
 WS 30 Deburring  
 WS 40 Washing 
 WS 50 Assembly & discard 

 
The production line consists of two strings (see figure 1), 
which produce different variants and alignments of a 
steering knuckle. These strings are brought together by 
one work sequence and are linked by fully automated 
facilities. Buffers are arranged between every work 
sequence. The production line operates in three shifts 
(22.5 hours per day). 
 
4. MICROSCOPIC SIMULATION MODEL 
The microscopic simulation model (see figure 2) was 
created with Tecnomatix Plant Simulation (V12.4) in 
conjunction with the VDA building blocks (V12.0-
06.030). It depicts the process steps for the production of 
steering knuckles for commercial vehicles. It represents 
the flow of forged near net shape blank work pieces in 
the system until the discarding of finished parts. 
The material flow is directed by the work plan feature of 
the VDA objects. The model offers the opportunity to 
manage different sets of settings like lot size, number of 
work piece carriers, processing times, breakdowns, tool 
change times and set up times.  
 
 

 
Figure 2: Microscopic Simulation Model in Plant 
Simulation 
 
5. MESOSCOPIC SIMULATION MODEL 
The mesoscopic model (see figure 3) is derived from the 
microscopic simulation model. For the implementation 
ExtendSim (V9.1) was used. The model uses objects 
from the rate (blue), item (green) and value (yellow) 
library. The item and value objects are only used to 
control the flow through the rate objects which represent 
the material flow. The value blocks are also needed for 
the evaluation of the simulation results. 
The mesoscopic model consists of two strings of material 
flow which get reunited at one work sequence through a 
merge block. The model uses aggregated times for the 
different variants and not a work plan. 
A discrete-rate model uses flow rates. The unit can be set 
freely in the model. One result is the throughput per hour. 
It is advisable to specify the flow unit in parts per hour 
(p/h). In this way, a target number can be determined 
directly. The concept of the discrete-rate model is 
conceivable in various levels of detail (Schenk, et al., 
2008). 
 

 
Figure 1: Mesoscopic Simulation Model in ExtendSim 

 
In the model, the flow from the source to the sink is 
calculated by a linear program (LP) at each event (Krahl, 
2009). The source (WS 05) can be represented as a tank. 
In the mesoscopic view, individual machines can be 
represented by a valve. A valve has a maximum and an 
effective rate. The effective rate is calculated from the 
inflow and outflow of a valve. The tool change, set-up 
procedures and breakdowns reduce the effective 
productive time of the individual stations. The results of 
the simulation correlate with the existence of these 
influences in the model. Work piece carriers as well as 
measuring stations are not considered in the mesoscopic 
simulation. The assumption is made that sufficient work 
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piece carriers are available in this configuration. The 
measuring stations can be neglected. They merely 
increase the mean throughput time because the process 
takes place only every fifty work pieces. The influence 
on the results is classified as low and is neglected. 
Each machine is shown as a valve. The maximum rate of 
the valves corresponds to the average machining time 
from the work plan in the unit p/h for the respective lot 
size. The WS 20 is aggregated as a valve. The rate is 
calculated from the average machining time. The 
remaining work sequences are implemented as valves. 
Between the stations are buffers with the capacities from 
5 to 10 pieces (like provided in the base model). 
A control circle of item elements is designed to model 
the tool changes and setup operations. Item elements are 
discrete-event blocks from the item library of 
ExtendSim, which can be used to control the flow in the 
mesoscopic model (figure 4). The control algorithm 
composes the delay time (PTime) from the manufactured 
quantity of the valve (Quantity). In a second control, the 
rate of the valve is controlled as a function of breakdowns 
(Shut_n), set-up and tool changing processes. 

 
Figure 4: Control Circle 

 
Distribution parameters of the Erlang distribution 
(MTTR) and the exponential distribution (MTBF) are 
prepared for the breakdowns. These distributions 
correspond to the selected distributions in the 
microscopic discrete-event model. 
The breakdowns can be calculated in a shutdown block. 
The signals required to determine the key figures are 
processed from the information flow. The sink provides 
the current rate as well as the total throughput. Equities 
and Math blocks can be used to compile the key figures. 
The implementation of the conception requires a tank as 
a source. The source (WS 05) is initialized with infinite 
initial content. The flow from the source is divided into 
four individual flows with a diverge block using the 
diverge mode "neutral" and fed into the valves which 
represent WS 10. The initial rate is set to the calculated 
rate in p/h. Between the work sequences, buffers are 
represented by a tank. The flows from the WS 10 are 
directed into a flow through the merge block. The flow 
runs in two strands into the valve for WS 20. The flows 
from the valves (WS 20) are merged into one flow 
through a merge block. The flow is routed through the 
remaining work sequences (WS 30 to WS 40) and 
destroyed in the sink (WS 50). 
For the breakdowns, the output signals of the shutdown 
blocks are connected to the "maximum rate" connector 

of the valves. The key figures cycle time, throughput per 
hour and the technical degree of utilization are calculated 
from the total throughput, the time per run and the goal 
cycle time. The rate can be distinguished between = 0, > 
0, limited or not limited. Overlapping, the value-adding 
time is assumed to be the time in which the rate is above 
0. The signals from the "time-limiting" and "not time-
limiting" connectors are processed through the equation 
block. 
 
6. RESULTS 
Due to the stochastic proportions, more than one 
replication is required. Using the confidence interval 
method, at least two replications are necessary to 
maintain a statistical confidence of at least 95 %. The 
average value with two replications does not differ 
greatly in comparison to three or more replications. If we 
perform more than two replications we only attain more 
effort. The simulation has a running time of 450 hours 
(20 days with 22.5 hours each day) like the microscopic 
model. Table 1 shows the full experiment set-up. The set-
up is equivalent to the microscopic model. 
 

Table 1: Experiment Set-up 
Start time [h] 0 

End time [h] 450 
Run Time [h] 450 
Replications 2 

 

Table 2 and table 3 compare the results of both models. 

Table 2: Simulation Results 
 Discrete-event Discrete-rate 

 Average 
Standard 
deviation 

Average 
Standard 
deviation 

Through-
put [P/h] 

42,53 0,14 41,10 0,13 

Cycle 
time [s] 

84,65 0,28 87,59 0,29 

NT  

[%] 
97,81 0,32 94,64 0,31 

Work-
load [%] 

76,39 0,27 85,52 0,28 

 

Table 3: Deviation 

 
Through-

put 
[p/h] 

Cycle 
time 
[s] 

Technical 
degree of 
utilization 

NT [%] 

Work-
load 
[%] 

Deviation -1,43 +2,94 -3,17 +9,13 
Deviation  

[%] 
-3,35 +3,47 -3,24 + 11,95 

 
A survey of Schauf (2016) asked the production planners 
which margin of error they are willing to accept, see 
figure 5. The willingness to accept errors decreases with 
an increasing duration of a simulation project. 
Production planners are ready to accept errors of 5 % for 
simulation project which take less than a week. In 
simulation projects with a duration of more than six 
months they are willing to accept an error of about 1.5 %. 
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These results could mean that production planners would 
accept to work with models which have not such a high 
level of detail but are capable of providing simulation 
results faster. 

Figure 5: Accepted Errors by Production Planners in a 
Simulation Project (Schauf 2016) 
 
There are different aspects to compare. A general 
statement regarding the total expenditure does not allow 
any statement about individual aspects. The following 
aspects were identified regarding modeling effort: 
 

 Conception 
 Data collection and processing 
 Implementation 
 Experiments 

 
From the user’s point of view, the assessment of the 
effort is subjective. Depending on the aspect, a rough 
classification of the effort can be made. Table 4 shows 
the assessment of the aspects for the DRS approach. This 
rating is in comparison to the DES approach. 
 

Table 4: Effort for the DRS Approach 
Phase DRS 

Conception + 

Data collection and 
processing 

+ 

Implementation + 

Experiments ++ 

Scale: ++ very beneficial; + advantageous; 0 neutral; - 
disadvantageous; -- very disadvantageous 
 
In the design phase the effort is reduced. Components of 
the system can be idealized, as well as times and events 
over the runtime can be considered as mean values. This 
has an impact on the data collection effort. Due to less 
required data and a mean of influencing data, advantages 
can be achieved at this point. In the implementation, the 
mesoscopic model has fewer required blocks, but the 
function and interaction of the blocks are limited. The 
experiments can be performed with less effort due to the 
greatly shortened run time of a replication (1 min runtime 

of the discrete rate model and 5 min runtime of the 
discrete-event model). 
After the effort for the simulation approaches, the 
accuracy of the results must be assessed. 
Table 3 shows the deviations of the models. An average 
deviation of 5.5 % occurred across all results. With 
acceptance of a safety of 95 %, the suitability of the 
mesoscopic approach can be confirmed for the 
throughput, the cycle time and the technical degree of 
utilization. The deviation of the workload is clearly 
above the acceptance threshold with 11.95 %. 
  
7. CONCLUSION 
The results of the simulation experiments show that 
mesoscopic simulation models based on the discrete-rate 
simulation paradigm are capable to support planning 
tasks in production and logistics systems. For several key 
figures, their results differ only slightly from the results 
of a discrete-event simulation model. The results 
deviation stays within a margin that is accepted by 
production planners. 
Mesoscopic simulation models can save enormous 
amounts of modeling and computational time compared 
to discrete-event models and thus comply with the 
requirements of production planners to receive 
simulation results within a short period of time. 
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