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ABSTRACT 

The paper presents the first two stages of building the 

Stimulation model. The model is aimed at generating a 

multilayer social network with four layers of size 

identified in a recent review of empirical studies. The 

model introduces narrow environments, where all 

members know everyone, thus, forming cliques in the 

weighted directed graph representing the social network. 

The weight of an arc connecting agent 𝑣 to agent 𝑤 

depends on 𝑤’s position in the unit square of 𝑣 and 𝑤’s 

layer in 𝑣’s social network. The unit square is defined by 

the relative frequency of interactions of 𝑣 with 𝑤 and 

closeness of both agents in quality. At the second stage, 

stable distribution of layer size and relative time spent 

interacting with layers is achieved. 

 

Keywords: social network, network generator, multi-

layer network 

 

1. INTRODUCTION 

A review of empirical studies on the composition of 

social networks (Zhou et al 2005) identified a stable 

hierarchical multilayer structure. Four layers were found: 

support clique (3–5 vertices), sympathy level (9–15 

vertices), band level (30–50 vertices) and community 

level (around 150 vertices). The frequency of contact 

decreases with hierarchy level, with the support clique 

being a source of personal advice or help in severe 

circumstances. To the best of my knowledge, no paper 

has attempted to re-create this empirical fact yet, and this 

paper is the first attempt to do it. 

Formally, a multilayer network is a family of graphs, one 

graph per layer, with intra-layer edges connecting 

vertices of the same graph and inter-layer edges 

connecting vertices in different graphs (hence, layers) 

(Boccaletti et al 2014). A type of multilayer network is a 

multiplex network, where all graphs from the family 

contain the same set of vertices (Boccaletti et al 2014). 

Multilayer networks can, thus, represent both different 

groups of vertices (the membership of a vertex in a 

particular layer shows its membership in a particular 

group) and different types of connections between the 

same two vertices (a membership of an edge in a 

particular layer shows that the connection belongs to a 

particular type). 

The model presented here generates a special type of a 

multiplex network, where, assuming that vertex 𝑣 is 

considered the same vertex irrespective of the layer it 

appears in, any two vertices may be connected by not 

more than one arc with same direction (although it can 

also be viewed as a multilayer network with different 

vertices on each layer forming cliques). In other words, 

arc (𝑣, 𝑤) can appear in not more than one layer of the 

network. Referring again to Zhou et al (2016), however, 

it is easy to see that a layer where a particular vertex lies 

is not its general position, but it is its subjective position 

from the point of view of another given vertex. For 

instance, person 𝑐 may be very important for person 𝑎 

but not for person 𝑏. To complicate it further, person 𝑎 

may actually not be that important for person 𝑐. In other 

words, none of the two representations of a multilayer 

network mentioned above are applicable in this case. 

The literature on multilayer/-level networks has been 

actively emerging in the last years. For instance, Cantor 

et al (2015) and Senior et al (2016) developed agent-

based models of evolving animal multilayer networks. A 

multi-layer model of risk in financial markets is studied 

by Poledna et al (2015). Multi-layer social networks were 

used in modelling organized crime (Li et al 2015), 

diffusive processes (e.g., of innovations) (Li, Yan and 

Jiang 2015; Ramezanian et al 2015) and collaborative 

learning behaviour in organisations (Różewski et al 

2015). 

The rest of the paper is structured as follows. The next 

section introduces some conceptual foundations. Then 

Sects. 3 and 4 present the first and second stages of the 

model, respectively. The first stage introduces the main 

mechanisms but is limited to allow only growth of higher 

layers in terms of size. At the second stage, a balancing 

mechanism is introduced to limit the size of each layer 

around the empirically observed values. The last section 

concludes. 

 

2. CONCEPTUAL FOUNDATIONS 

Assume a population of agents, some of which are 

connected. Connections are directed, so the network is 

represented by a digraph. An arc’s weight is one of the 

factors that determines the layer in which the arc exists 

in an agent’s digraph. The higher the weight, the stronger 

the connection, the higher (‘more intimate’) the layer. 

Proceedings of the European Modeling and Simulation Symposium, 2017 
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds. 

433

mailto:atarvid@inbox.lv


For the connections to be able to move across layers over 

time, the mechanism of stimulation is introduced, which 

is also the reason for which the model is called the 

Stimulation model. The stimulation of an arc occurs 

when its incident vertices (more concretely, the agents 

represented by these vertices in the social graph) interact. 

The more frequent the interactions become, the more the 

arc’s weight increases. 

This mechanism resembles that of reinforcement 

learning in that the agent does not decide purely 

randomly with whom to interact more, but bases this 

decision on the result of the history of interactions with 

different agents. More frequent interactions occur with 

those agents, the interactions with which bring most 

benefit to the agent. 

The ultimate challenge of the model is to simultaneously 

create a layered structure of a network for every agent 

and keep the overall structure of the network scale-free 

(i.e., the distribution of the degrees of vertices should be 

governed by power law). The exponent of the power law 

should ideally be one of the parameters of the model, and 

it should be in the range typical for social networks. In 

this paper, however, the network is fixed and, by 

construction, does not have a scale-free structure. That 

structure should be attained at later stages, when more 

dynamics are introduced into the model. 

The model is built around the following theoretical 

concepts. Firstly, homophily (McPherson, Smith-Lovin 

and Cook 2001) argues that personal networks are quite 

homogeneous on a large number of parameters 

characterising individuals. In other words, individuals 

tend to connect to similar individuals more frequently 

than to dissimilar individuals. Secondly, structural 

constraint (Fischer 1982) means that the pool of potential 

members of a social network is to a large extent 

determined by the social contexts where the individual 

participates. These social contexts will appear as narrow 

environments, where everyone knows everyone. 

Besides Zhou et al (2016), the paper was also influenced 

by the empirical findings of Grossetti (2005) on the 

initial meeting contexts of network members and their 

current characterisations. It was shown that the majority 

of connections was initially met through family or 

existing friends, but also in other environments, such as 

at work or in organisations, during education and in the 

neighbourhood, while only 6% was met by chance. Most 

of these contexts will be abstracted in the model as 

narrow environments. It was also shown that the current 

characterisations typically differed from the initial 

context, allowing to group contacts into family, friends, 

work/organisations, neighbours and acquaintances. This 

(together with the results of Zhou et al (2016)) will be 

abstracted as moving up and down through the layers of 

the network. 

 

3. STAGE 1: A GROWTH-ONLY MODEL 

A fixed number of 𝑁 agents, which will be called 

persons, reside in a system with 𝑀 narrow environments. 

Each person is characterized by quality and a list of 

narrow environments it is a member of.  

At this stage, the number of narrow environments is fixed 

and the membership of a person in narrow environments 

is immutable. Upon entering the model, a person is 

assigned to Pois(𝜆𝑒) + 1 narrow environments. 

The quality of person 𝑖 is a fixed number 𝑞𝑖 ∈ [0, 1] 
generated from normal distribution 𝒩(𝜇, 𝜎). It will 

determine the overall similarity between two given 

persons. 

The social network is represented by a weighted digraph 

𝐺 = (𝑉, 𝐴, 𝑤), where 𝑉 is the set of vertices, 𝐴 is the set 

of arcs and 𝑤:𝐴 → ℝ is a function mapping arcs to their 

weights. 

 

 
Figure 1: A Stack of Unit Squares Illustrating the Three 

Components of Arc’s (𝑖, 𝑗) Weight: Relative Frequency 

of Interactions, Closeness in Quality and Layer 

Note: 𝑃𝑖(𝑗) is the position of 𝑗 in 𝑖’s unit square and 𝐷(⋅,⋅) 
is the distance between two points. 

 

A narrow environment represents a narrow community 

where everyone knows everyone, which is a typical 

situation in a small business, a department of a larger 

business or a group of students in a university. This is 

also why the environment is called narrow – it cannot 

represent the whole university or a big multinational 

corporation, where the assumption that everyone knows 

everyone does not hold. Thus, if a person becomes a 

member of a narrow environment, it connects with all 

other members of that narrow environment. At this stage, 

persons cannot leave a narrow environment. 

Let persons 𝑖 and 𝑗 be connected. Denote the arc 

connecting 𝑖 to 𝑗 as (𝑖, 𝑗) and its weight by 𝑤𝑖𝑗. The arc’s 

weight represents the importance of the vertex’s 

neighbour to the vertex – in this case, the importance of 

𝑗 to 𝑖. It depends on three factors. The first is the 

closeness of both persons in their quality, 1 − |𝑞𝑖 − 𝑞𝑗|, 

which is fixed over time, as quality is immutable.  

The second factor is the relative frequency of interactions 

of person 𝑖 with person 𝑗 in the last period of time, 𝐼𝑖𝑗/𝐼𝑖, 

where ∑ 𝐼𝑖𝑗𝑗:(𝑖,𝑗)∈𝐴 = 𝐼𝑖. Thus, the closer the quality and 

the more time spent interacting, the heavier should be the 

connection. Because the closeness in quality and relative 

frequency of interactions are both in [0, 1], the position 

of 𝑗 for 𝑖 on these two factors can be illustrated by a 

position in the unit square, see Fig. 1: the closer the point 

to the top right corner (1, 1), the heavier the arc should 

be. 
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The third factor is the layer where 𝑗 resides in 𝑖’s 

network. From empirical analysis, it is known that there 

are four layers. Hence, this is also the number of layers 

in the model. As shown in Fig. 1, each layer is associated 

with its own unit square, so that e.g. a point (𝑥, 𝑦) in layer 

1 will have a substantially lower weight than the point 

with the same coordinates in layer 4. The weight of the 

arc (𝑖, 𝑗) is given by the following expression: 

𝑤𝑖𝑗 = 10𝐿𝑖(𝑗)−1 + 𝐷((0,0), 𝑃𝑖(𝑗)), 

where 𝐿𝑖(𝑗) is layer where 𝑗 is located in 𝑖’s network, 

numbered from 1 to 4, 𝐷(⋅,⋅) is the distance between two 

points and 𝑃𝑖(𝑗) is the point representing 𝑗 in 𝑖’s unit 

square, see Fig. 1 for illustration. 

 
Add 𝑁 persons 

Add each person to a random number of narrow 

environments  ~(Pois(𝜆𝑒) + 1) 
for 𝑡 = 1 to 𝑇 do 
  Prepare for interactions 

  𝐼 ← random number from Pois(𝜆) 
  for 𝑖 = 1 to 𝐼 do 

    𝑝 ← random person with Pr(choose𝑝) ∝ 𝑤𝑝𝑞 

    𝑝 interacts with random connection 𝑞: Pr(choose𝑞) ∝ 𝑤𝑝𝑞 

  end for 

  Update arc weights 

  for all Persons 𝑝 do 

    for all Layers 𝑙 do 

      Promote 𝑞: 𝐿𝑝(𝑞) = 𝑙 ∧ 𝑤𝑝𝑞 = max
𝑣:∃(𝑝,𝑣)∈𝐴

𝑤𝑝𝑣 to next layer with 

prob. 𝜋𝑙 
    end for 

  end for 

end for 

Listing 1: General Algorithm of the Model 

 

The algorithm of the model is shown in Listing 1. It has 

several particularities. Firstly, every period has a fixed 

number of interactions 𝐼 drawn from Poisson distribution 

with mean 𝜆. During that period, exactly 𝐼 interactions 

happen, but although during the model calibration stage, 

𝜆 will be set with a certain number of interactions per 

person in mind, the set-up does not guarantee that every 

person will perform interactions in that period. In fact, 

persons with higher out-degree (i.e. more connections) 

will have higher probability to perform any particular 

interaction. Once the person is chosen, it interacts with 

someone from its connections, again chosen with 

probability proportional to the arc’s weight. With that, 

more connected persons interact more often than less 

connected persons and a person interacts more often with 

more important connections than with less important 

ones. 

Secondly, arc weights are updated after every period 

based on the interactions data. Recall that quality does 

not change, so the only factor that can change the arc’s 

weight at this point is a change in the relative frequency 

of interaction. Note that it means that as a result of a 

period, the arc’s weight can decrease. 

Thirdly, the increase will not be dramatic for two 

reasons. The first is that connections cannot be moved to 

lower layers, whatever is the change in the arc’s weight. 

The second is that the higher the weight of the arc, the 

higher the probability that an interaction happens and, 

hence, that the relative proportion of interactions is 

higher and, thus, the arc’s weight is around the previous 

period’s value or higher than it. 

Fourthly, in the end of every period, every person takes 

its best-performing connection (the one with the 

maximum weight) in every layer and promotes it 

probabilistically. The probability of promotion decreases 

with layer, so that it is much more difficult to be 

promoted from layer 3 to layer 4 than from layer 1 to 

layer 2. 

 

Table 1: Parameter Values 

Parameter Name Notation Value 

Length of simulation, periods 𝑇 100 

Number of persons 𝑁 1000 

Number of narrow 

environments 
𝑀 35 

Mean narrow environments of 

a person 
𝜆𝑒 1.5 

Quality distribution 

parameters 

(𝜇, 𝜎) (0.5, 0.3) 

Weight of a new arc  1.0 

Mean global number of 

interactions 
𝜆 105 

Pr(promotion|layer = 1) 𝜋1 0.60 

Pr(promotion|layer = 2) 𝜋2 0.20 

Pr(promotion|layer = 3) 𝜋3 0.05 

 

Table 2: Out-Degree Statistics by Number of Narrow 

Environments (𝑀) 

𝑀 Median Out-Degree 

Mean Range 

20 249 [233, 264] 
25 203 [190, 218] 
30 172 [161, 184] 
35 149 [139, 161] 
40 132 [123, 141] 
45 118 [111, 129] 
50 107 [98, 116] 

Note: Statistics over 100 runs reported. 

 

The model was implemented in Repast Simphony. The 

values of model parameters are shown in Table 1. The 

parameters were set so that there are on average 100 

interactions per person in every period. Every person is a 

member of 2.5 (= 𝜆𝑒 + 1) narrow environments on 

average, so that most of them participate in two or three 

narrow environments, which is close to reality. The 

number of narrow environments, given that the number 

of persons is 1000, is set so that the median out-degree is 

around 150 (Dunbar 1993), as determined empirically by 

running the graph-construction part of the model (see 

Table 2). The probabilities of promotion to the next layer, 

given the current layer, 𝜋1, … , 𝜋3, are set to values where 

by 𝑡 = 100, the layered structure in terms of layer sizes 

on average reproduces the values reported in Zhou et al 

(2016). 

After conducting 30 runs, the average sizes of the four 

layers at t = 100 are close to the target sizes reported in 

Zhou et al (2016), see Fig. 2. 
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Figure 2: Size Dynamics of Layers over Time, Stage 1 

 

4. STAGE 2: A BALANCING MECHANISM 

In the previous stage, the model operated in the 

unrestricted layer size growth mode, which is an obvious 

disadvantage. After all, while the parameters were set to 

values where the expected average sizes of layers are 

attained at 𝑡 = 100, the lack of a balancing force means 

that at large values of 𝑡 (and with no changes in the 

membership in narrow environments), all connections 

will be in the highest layer of every person. In the second 

stage, a mechanism restricting the size of every layer 

starting from the second layer is introduced (the first 

layer cannot be restricted, as it depends on the number 

and sizes of narrow environments with which a person is 

affiliated). 

There are several ways to introduce layer size balancing. 

In this model, the mechanism of attractors is applied. 

Experience-weighted attraction is used by Gemkow and 

Neugart (2011) to learn the best number of connections, 

but it is a machine-learning algorithm allowing to choose 

from several existing strategies, while in this model, 

attractors are built in the person. In summary, every 

person has a random attractor for every layer (starting 

from layer 2). The attractor is set to a value that keeps the 

respective layer size in the needed boundaries. After a 

new promotion to a layer, if that action resulted in a 

substantial upward deviation from the attractor of that 

layer, the person tries to demote the least worthy persons 

from the layer to the previous layer. 

Attractors are a mathematical formalism applied in the 

analysis of dynamical systems. The attractors used in this 

model belong to a variety of attractors called fixed point 

attractors, because in every layer of a person’s social 

network, there is exactly one point where the size of the 

network’s layer will finally rest. Any deviation from that 

point leads to a pressure to change the network to return 

to it. See Vallacher and Nowak (2007) for details and 

examples of applying attractors in social psychology. 

In detail, assume that person 𝑗 is promoted to layer 𝑙 in 

person’s 𝑖 social network. Denote the quality of 

correspondence between 𝑖 and 𝑗 as 𝑞𝑖𝑗 and 𝑖’s attractor of 

layer 𝑙 as 𝛼𝑖(𝑙). Person 𝑖 tries to keep the sum of quality 

correspondence with each connection at layer 𝑙, 𝑄𝑖(𝑙), 
above but maximally close to 𝛼𝑖(𝑙). Thus, when 𝑗 is 

promoted to 𝑙, if 𝑄𝑖(𝑙) > 𝛼𝑖(𝑙), person 𝑖 moves all 

persons 𝑘 from layer 𝑙 with the lowest 𝑞𝑖𝑘 to layer 
(𝑙 − 1) until removing any other person from that layer 

would move 𝑄𝑖(𝑙) below 𝛼𝑖(𝑙). Listing 2 formalises 

these actions. 

 

𝑄𝑖(𝑙) ← ∑ 𝑞𝑖𝑘
𝑘:𝐿𝑖(𝑘)=𝑙

 

Δ𝛼 ← 𝑄𝑖(𝑙) − 𝛼𝑖(𝑙) 
flag ← false 

while Δ𝛼 > 0 ∧ not flag do 

  𝑞 ← min
𝑘:𝐿𝑖(𝑘)=𝑙

𝑞𝑖𝑘 

  𝑝 ← 𝑘: 𝐿𝑖(𝑘) = 𝑙 ∧ 𝑞𝑖𝑘 = 𝑞 

  if Δ𝛼 − 𝑞 > 0 then 

    Δ𝛼 ← Δ𝛼 − 𝑞 

    Demote 𝑝 to layer 𝐿𝑖(𝑝) − 1 

  else  

    flag ← true 

  end if 

end while 

Listing 2: Application of Attractors After Promoting 𝑗 in 

𝑖’s Network 

 

Assume for example that a certain layer of 𝑖’s network 

contains persons with quality correspondence of 0.4, 0.5 

and 1.0, which sum to 1.9, and that a person with quality 

correspondence of 0.8 is promoted to this layer. If the 

attractor is 𝛼𝑖(𝑙) > 2.7, no demotion occurs. If it is 2.3 <
𝛼𝑖(𝑙) ≤ 2.7, again no demotion occurs, because the 

worst correspondence is 0.4 but removing it from this 

layer would result in 𝑄𝑖(𝑙) falling below 𝛼𝑖(𝑙) > 2.3. 

Finally, if 𝛼𝑖(𝑙) ≤ 2.3, e.g., it is 𝛼𝑖(𝑙) = 2.0, the person 

with quality correspondence of 0.4 is moved to a lower 

layer, resulting in 𝑄𝑖(𝑙) = 2.7 − 0.4 = 2.3. Because the 

worst correspondence is now 0.5, and removing it from 

this layer would result in 𝑄𝑖(𝑙) = 1.8 < 2.0 = 𝛼𝑖(𝑙), the 

demotion procedure stops. 

For every person, attractors are chosen from uniform 

distributions: [3, 5] for 𝛼(4), [9, 15] for 𝛼(3) and 
[30, 45] for 𝛼(2). These distribution boundaries were set 

according to empirical data in Zhou et al (2016). 

The use of attractors means that a person has a built-in 

need for a certain overall quality of interactions at each 

level of its network. Overall quality in this case is 

approximated by the sum of closeness in quality of the 

person with its connections on a given level. 

Too low overall quality of interactions is considered 

unsatisfactory, but the person is not ready to attain the 

attractor of a given layer immediately (by promoting a 

sufficient number of connections from lower layers). 

That means that persons are in a sense risk-averse, 

reluctant to quickly let others have close relationships 

with them. 

Too high overall quality of interactions is also considered 

unsatisfactory, because it puts too much pressure on the 

person. It is, thus, assumed that interactions not only give 

satisfaction, but also require certain effort. Above the 

attractor, the person feels discomfort and becomes 

willing to decrease the overall quality of interactions. 

At the second stage, the model was run 30 times with the 

same parameter values shown in Table 1 except for 𝑇, 
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which was increased to 200 to check how fast layer size 

stabilisation occurs. 

 

 
Figure 3: Size Dynamics of Layers over Time, Stage 2 

 

As shown in Fig. 3, the use of attractors allows to 

stabilise the sizes of layers by period 150. By 

construction, the stable size levels mimic the empirically 

observed results. 

 

 
Figure 4: Distribution of Connections in Unit Squares by 

Layer at 𝑡 = 200 

 

Fig. 4 shows the regions of the unit squares where 

connections from each of the four layers are located. It is 

generally visible that, again by construction, more time 

is spent interacting with those connections which are 

closer in quality to the person. However, at higher layers, 

increasingly more time is spent with those with closest 

quality. In fact, it is clearly shown that the closeness in 

quality is not very important to be selected for promotion 

to the second layer. At the same time, no agent has on 

average lower quality correspondence than around 0.6 in 

the third layer and around 0.9 in the fourth layer. Neither 

closeness in quality nor membership in higher layers 

guarantees high relative frequency of interactions, as 

shown by all four layers intersecting around the top left 

corner of the unit square. 

 

 
Figure 5: Average Time Share Spent on Interactions by 

Layer 

 

The relative amount of time spent interacting with the 

four layers also stabilises by period 150, see Fig. 5. By 

the end of the simulation, more than 60% of time is spent 

on interactions with the highest layer, around 20% with 

the third layer, around 10% with the second layer, while 

only less than 5% of time is spent with the first layer. 

 

5. DISCUSSION AND CONCLUSIONS 

The paper presented only the first two stages of building 

the Stimulation model, but it already allows to reproduce 

sizes of four connection layers: support clique (3–5 

vertices), sympathy level (9–15 vertices), band level (30–

50 vertices) and community level (around 150 vertices) 

(Zhou et al 2016). 

However, the contribution of this model was not only in 

reproducing that structure, but also in moving the focus 

from the ‘skeleton’ of the network – whether or not two 

given vertices are connected – to its ‘meat’ – the 

dynamics of the weights of arcs and the promotion of 

vertices to higher levels in the opinion of their connected 

vertices. The ‘skeleton’ part is focused on narrow 

environments, where everyone knows everyone, instead 

of purely random connections, as modelled usually. The 

‘meat’ part is focused on the correspondence in quality 

and relative frequency of interactions as determinants of 

the arc’s weight and becoming a candidate for a 

promotion to a higher layer. 

Further work on this model should start with allowing 

persons to probabilistically enter and exit narrow 

environments instead of assigning them to a (randomly) 

defined number of narrow environments. It is expected 

that this change will allow to generate a vertex degree 

distribution that follows power law. As a result, the 

model will allow to generate a multilayer scale-free 

social network. 
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