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ABSTRACT 
This paper deals with the problem of control of an 
aluminum recycling unit in reverse logistics. The unit 
studied is in open loop. It’s assimilated to a machine 
producing a single type of products and is subject to 
random failures and repairs, fueled by a random return 
rate of aluminum and supplying a constant customer 
demand rate. Due to the presence of random 
breakdowns of the machine and the constraints related 
to customer satisfaction, it is imperative to determine an 
optimal policy of production in order to insure the 
customer demand satisfaction. The objective of this 
study is to determine the production and disposal 
policies in order to minimize the overall production 
cost. A corresponding optimal stochastic model has 
been developed and leads to Hamilton-Jacobi-Bellman 
equations describing the optimality conditions. A 
numerical solving method has been used and led to an 
optimal policy which is of the Hedging Point Policy 
type (HPP).  
 
Keywords: Reverse logistics; Stochastic processes; 
Dynamic programming; Supply chain management: 
Numerical methods. 

 
1. INTRODUCTION 
 
This paper addresses the problem of optimal control in 
reverse logistics system in open loop with random 
return of end of life aluminum products. Previously, 
consumers were concerned only with quantity, quality 
and price of products consumed. The conventional 
product cycle ranged from production sites to landfills 
(disposal). However, mentalities have changed today, 
and they are increasingly concerned about the 
preservation of the environment and the possibility of 
recycling products made available to them, as 
mentioned by Thomas et Wirtz (1994). The authors 
showed the advantages and the importance of the 
recycling of aluminum against their complete 
destruction because it allows recovering their potential 
wealth. Many authors have shown that it’s better to 
recapture the value of end of life products than dispose 
them (Rogers and Tibben-Lembke, 1998). The need for 
recycling of aluminum doesn’t only increase for 
economic, environmental and legislative reasons, but 
also for social reasons. The optimal management of the 
logistics network and their activities is very complex in 
reverse logistics due to the wide variety of decisions of 
different scopes, disturbance factors and attention to the 
desired time horizon. 

One of the challenges facing manufacturing companies 
is achieving production targets that meet customer 
demand. Although it is often possible to predict the 
state of machines (operational or failed) over a short 
time horizon with a degree of confidence, it is difficult 
to predict their behavior over a long time horizon given 
that they are generally prone to breakdowns and repairs. 
The need for optimal production planning tools to deal 
with these hazards has prompted and several authors 
addressed the corresponding issues. 
Stochastic dynamic programming method has been 
applied for many systems under different initial 
considerations. Indeed, the joint optimization of 
production and preventive maintenance for a non-
homogeneous Markov process was treated by Gharbi 
and Kenne (2000). The extension of production policy 
optimization to larger systems subjected to random 
phenomena such as machine failures and repairs have 
also been studied by Gharbi and Kenne (2003). Out of 
the control of machine failure and repair, Kenne (2004) 
integrated tool wear and rejection rates in order to 
determine the optimal production policies and 
preventive replacement of tools to minimize the 
incurred costs (storage, repairs and replacements). 
Nodem et al. (2011) developed a policy of production, 
repair and preventive maintenance of a manufacturing 
system subject to random failures and repairs; They also 
obtained a suboptimal policy of critical threshold type. 
In order to optimize production for a closed loop hybrid 
system,  Kenné et al. (2012) studied a production unit 
consisting of two machines in parallel producing a 
single type of products. They determined the optimal 
production policies of each machine in order to 
supplement customer demand while minimizing the 
incurred costs (inventory and shortage). 
The rest of this paper is organized as follows: in section 
2, the problem statement is presented. In section 3, the 
formulation of the control problem and the numerical 
approach used to solve it are presented. In section 4, the 
results of a numerical case are presented. In section 5, 
the conclusion of the paper is presented. 
 
2. PROBLEM STATEMENT 
 
This section presents the problem statement of the 
stochastic optimal control problem under study. The 
recycling unit under our study consists of a single 
machine producing a single product so as to supply a 
constant demand rate of aluminum ingot customer. 
End of life aluminum products in the form of bales 
arrive at the recycling unit at variable rates r1 and  r2 as 
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shown in figure 1 and then stored in the warehouse so 
as to constitute stock x1 of material necessary for the 
production. The return rate is described by the 
stochastic process α1(t). Sometimes, the storage costs of 
these collected products become very high or the 
amount of material collected reaches the maximum 
storage capacity of the recycling unit denoted by 
x1max. In these cases, returned products collected are 
disposed from the warehouse at a variable and unknown 
rate denoted udα .  
The manufacturing machine is supplied with raw 
material of the stock x1 so as to build stock x2 of 
finished products (aluminum ingots). It produces with 
an unknown variable production rate uα in order to meet 
the constant demand d of the customers. However, the 
machine (M) is subject to random breakdowns and 
repairs. The availability of the machine is described by 
the stochastic process α2 (t). The decision variables are 
respectively the production rate uα and also the 
elimination rate udα  while state variables are 
respectively the inventory level x1 of returned products 
and the inventory level x2 of the finished products.  
 

 
Figure 1: Structure of the recycling unit fueled by a 

variable return rate 
 
The main assumptions that support our model are: 
(1). The process is a homogeneous Markov chain 
process; (2). The machine is prone to random 
breakdowns and repairs described by known constant 
rates; (3). The customer demand rate is constant and 
known; (4). The maximum production rate of the 
system is known and constant; (5). Different return rates 
are known and also transition rate between them; (6). 
When the machine breaks down, a corrective 
maintenance activity is immediately implemented. 

 
3. PROBLEM FORMULATIONS  
 
Considering a discrete-state stochastic process 
{α1(t), t ≥ 0} which describes the return rate of end of 
life products at each time t taking values {1, 2} such 
that: α1(t) = 1 when r = r1 and α1(t) = 2 when r = r2. 
Considering a discrete-state stochastic process 
{α2(t), t ≥ 0} which describes the availability of the 
machine at each time t taking values {0, 1} such that: 
α2(t) = 1 when the machine is available and α2(t) = 0 
when the machine is broken down.  

Finally, {α(t) = α1(t) × α2(t), t ≥ 0} is the discrete- 
stochastic state process that describes the whole state of 
the system at each time with value in B = {1, 2, 3, 4} 
depending on whether the machine is available or not 
and supplied at a certain return rate as resume in the 
table 1 below. 

Table 1 Dynamic of the system 

1( )tα  1 1 0 0 

2 ( )tα  1 2 1 2 

( )tα  1 2 3 4 

 
The state of the reverse logistic unit is modeled by a 
discrete-state continuous-time Markov chain with an 
ergotic 4 × 4 matrix of transition rates 𝑄 = �λ𝑖𝑖�. The 
relationship between the transition rate λ𝑖𝑖  and 
transition probability from mode i to mode j is given by 
equation (1). 
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Different possible transitions among the state of the 
system are given by fig. 2. 
 

 
Figure 2: State transition diagram 

 
Let 𝜋 = (𝜋1,𝜋2,𝜋3,𝜋4) be the vector of limiting 
probabilities at each mode α (α =1,..,4) of the system. 
Those limiting probabilities 𝜋𝑖 (i=1, 2, 3, 4) are the 
solution of the equation (2).  
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The feasible control policies are given by the set ( )αΓ
define as follow: 
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For example, π2 represent the probability that the 
machine is available and fueled at the returned rate r2. 
Considering the fact that in our study, returned rate r2 is 
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lower than the maximal production rate umax, the system 
is feasible only if the equation (3) is verified so as: 

1 max 2 2( )u r dπ π× + × ≥                                (3) 
The variations of different stocks are described by 
equations (4). These equations take in account the fact 
that, at each time t, in the given state of the system, the 
inventory level of the storage x1 is increased by the 
return rate r𝛼  (α = 1,..,4) while the same stock is 
decreased by the rate of elimination udα and also by the 
production rate of the machine uα. Similarly, the stock 
level of finished products is increased by the production 
rate uα and decreased by the demand rate d. 

1
1 10

2
2 20

( ) , (0)

( ) , (0)

d
dx t r u u x x

dt
dx t u d x x

dt

αα α

α

 = − − =

 = − =


                                 (4) 

where x10 and x20 are respectively the initial stock of 
returned and final products. 
 
The running cost of our model depends on the storage 
costs of the returned products c1, the storage cost of 
finished products c2p, the shortage cost of finished 
products c2m, the disposal cost of excess returned 
product cd, the manufacturing cost cm, the corrective 
maintenance cost cα, the environmental cost cenv and the 
cost penalizing the lack of raw materials during 
shortages of finished products. Its expression is given 
by equation (5). 

{ } { }
{ }

1 2 1 1 2p 2 2m 2

1max 1 ecart 2 1 2

( , , ) ( )

( (t)=3 (t)=4 )

( - )+ c ( - ) <0
d d m
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g x x c x c x c x

c u c u c ind ind

c x x x x ind x
a

a
a

a
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+ -= + +

+ + + +

+

               (5) 

where 2 2max(0, )x x+ = ; 2 2max( ,0)x x− = − and  

{ }
1, (.)

(.)
0,

if is true
ind

otherwise
Θ

Θ = 


 

By taking in account the discount rate ρ (Garceau, 
1996), the discounted total cost is given by the relation 
(6): 

1 2 1 2
0

( , , ) E ( , , )dt (0) , (0)tJ x x e g x x x xρα α α α
∞

−  = = = 
  
∫ (6) 

In this equation, E(A/B) symbolizes the conditional 
expectation operator and  x=(x1, x2) is the vector of 
stock levels. 
Our objective is to obtain the optimal control policies 
that will minimize the discounted cost (6). In another 
word, the objective is to find the production rate uα and 
the disposal rate udα so as to minimize the expected 
discounted cost given by (6). The value function of such 
a problem is defined by: 

1 2 1 2( , ) ( )
( , , ) inf ( , , ), B

du u
x x J x x

α α α
n α α α

∈Γ
= ∀ ∈          (7) 

The value function (7) satisfies the Hamilton–Jacobi–
Bellman (HJB) equations (8) which describes the 
optimality conditions and can be found  in chapter 8 of 
Gershwin (1994). In the work of  Rivera-Gómez et al. 
(2016), they showed that the value function is 
continuously differentiable and viscosity solution to the 

Hamilton-Jacobi Bellman (HJB) equations. Such HJB 
equations, which integrate the dynamics of the stock as 
well as the machine modes, are given by: 

1 2

1 2
1 2 1 2( , ) ( )

1
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2

( , , )
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∂  

∑
 (8) 

The solution of equation (8) has been obtained by 
Akella et Kumar (1986) but, for the simplest single 
machine under certain assumptions which are not valid 
for our model. Since an analytical solving method does 
not exist for the HJB equations, we adopted a numerical 
methods methodology to obtain the structure of the 
optimal control policies.  
Numerical approach based on Kushner et Dupuis (1992) 
method is used to obtain a sub-optimal solution which is 
a good approximation of value function at a 
predetermined precision degree δ (in our study, we 
fixed δ=0.01).   
That numerical method consists in simplifying the HJB 
equations by approximating the value function 

1 2( , , )x xν α  by the function 1 2( , , )h x xν α  and the 
approximation of the gradient of the value function 

1 2( , , ) / ix x xν α∂ ∂  (i = 1,2) respectively by the 
following expressions. 
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 where hi (i = 1, 2) is the discretization step of the state 
variable. Considering  such approximations, equations 
(8) becomes equations (9): 
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After several manipulations as appeared in  the works of  
Kenne et al. (2003), equation (9) becomes: 

Proceedings of the European Modeling and Simulation Symposium, 2017 
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds. 

387



{ } { }
{ }

1

1

1 2

1 1 2p 2 2m 2

1max 1 ecart 2 1 2 1 2

1 1 2
11 2 ( , ) ( )

( )

( (t)=3 (t)=4 )

( - )+ c ( - ) <0 ( , , )

( , , )
( , , ) min

d

d

d d m

h
env j

j

d h
dh

u u

r u u u d
h h

c x c x c x c u c u c ind ind

c x x x x ind x x x j

r u u
x h x ind r u

hx x

a

a

a

a a

aa  a
aa

a
a

a
a

aa
a

a

r λ

x x

λ n

n a
n a

-

+ -

≠

∈Γ

--  -
+ + + ×

+ + + + + +

+ +

--
+ + -

=

∑

{ }

{ }

{ }

{ }

1

2

2

1 1 2
1

1 2 2
2

1 2 2
2

0

( , , ) <0

( , , ) 0

( , , ) <0

d h
d

h

h

u

r u u
x h x ind r u u

h
u d

x x h ind u d
h

u d
x x h ind u d

h

a

a

a

aa
aa

a
a

a
a

n a

n a

n a

 
 
 
 
  
  
  
  
  
  - ≥  
   --   
+ ---    

  
  -  + + - ≥
  
  -  + --     

(10) 

 
4. NUMERICAL ANALYSIS AND CONTROL 

POLICIES 
 
In this section, to solve numerically the HJB equations 
in order to determine the optimal control policy of the 
recycling unit, we are going to use algorithm of Yan et 
Zhang (1997) and also matlab software. Furthermore, 
discretization step used is hx1 = hx2 = 0.5. A finite grid D 
defined below is necessary to circumscribe the domain 
for the state variables.  

{ }1 20 20; 10 20D x x= ≤ ≤ − ≤ ≤               (11)                                        
The set of parameters needed during the simulation are 
presented in the table 2 below. 
 
Table 2: Parameters of the numerical example 

Vari
able
s 

cm cd c1 c2p c2m cα cecart 

Valu
e 

14 1.5 1.8 3.5 55 13 55 

Unit
s 

$/p
rod
uct/
UT 

$/pr
oduc
t/UT 

$/p
rod
uct
/U
T 

$/pr
odu
ct/U
T 

$/p
rod
uct
/U
T 

$/b
rea
k/U
T 

$/pr
odu
ct/U
T 

Cenv ρ r1 r2 d umax 

1 0.
1 

0.55 0.45 0.4 0.5 

$/prod
uct/U
T 

/U
T
T 

produi
t/UT 

produi
t/UT 

produi
t/UT 

prod
uit/U
T 

 
After running the simulation program, we have obtained 
the structure of optimal production and disposal 
policies, which are both, hedging point policy type. In 
all the following figures, x1 represents the stock of 
returned product while x2 represents the stock of 
finished products.   
During mode 1 (machine available, return rate of end of 
life products is equal to r1), the optimal production 
policy shown in fig.4 stipulates to produce at the 
maximum rate umax when the inventory level of final 
products is strictly below the critical threshold 

1( )xψ

which is not constant, but depends also on the inventory 
level of returned product.  
It stipulates to set the production rate at demand rate d 
when the inventory level of final products is equal to the 
critical threshold 

1( )xψ  
Finally, it is needed to set the production rate at zero 
rate (no production) if the inventory level of final 
products is bigger than the threshold 1( )xψ . That policy 
is summarized by equation (12). 

max 2 1

1 1 2 2 1

2 1

< ( )
( , ,1) ( )

0 > ( )

u if x x
u x x d if x x

if x x

ψ
ψ
ψ


= =



              (12) 

 
Figure 3  Production rate at mode 1 

 
At the same mode 1, the optimal disposal policy 

1du
shown in fig.5 stipulates to dispose the returned 
products at the maximum rate r1 when the returned 
products level is strictly higher than the critical 
threshold 12 2( )z xσ= , which is a function that gives the 
threshold depending on inventory level of final products 
x2. It also stipulates to set the disposal rate at the rate r1-
umax when the inventory level of returned products is 
equal to the critical threshold 12 2( )z xσ= .  
Finally, it is needed to set the disposal rate at zero rates 
if the inventory level of returned product is lower than 
the threshold 12 2( )z xσ= ; in other words to store the 
entire returned products that conveyed to the recycling 
unit. This disposal policy is summarized by equation 
(13). 

1

1 1 2

1 2 1 max 1 2

1 2

> ( )
( , ,1) ( )

0 < ( )
d

r if x x
u x x r u if x x

if x x

σ
σ

σ


= − =



     (13) 
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Figure 4 Disposal rate at mode 1 

At the mode 2 of the unit (machine failed, return rate 
equal to r2), the optimal production policy shows in 
fig.6 stipulate the following rule for the machine:  

• Set the machine rate to r2 when the stock level 
of final products x2 is under the threshold

21 1( )z xϖ= , where function 1( )xϖ  is a 
function depending on level of returned 
products  x1. 

• Set the machine rate to the demand rate d when 
the level stock x2 is equal to the threshold

21 1( )z xϖ= . 
• Stop the production of the machine when the 

stock level x2 is greater than the threshold
21 1( )z xϖ= . The production policy at state 2 is 

summarized by equation (14). 

              
2 2 1

1 2 2 1

2 1

< ( )
( , , 2) ( )

0 > ( )

r if x x
u x x d if x x

if x x

ϖ
ϖ
ϖ


= =



            (14) 

In the same way, disposal policy at mode 2 is shown in 
fig.7 and is summarized by equation (15).   In this 
equation,  22 2( )z xδ= is the threshold for the disposal 
rate depending on the inventory of final products x2.  
 

          
          Figure 5 Production rate at mode 2 

2

2 1 2
1 2

1 2

( )
( , , 2)

0 < ( )d

r if x x
u x x

if x x
d
d

≥
= 


  (15) 

 

 
Figure 6 Disposal rate at mode 2 

 

 
Figure 7: Feasible domain at mode 1 

   
Figure 8: Feasible domain at mode 2 

 
During the modes 3 and 4, the machine is broken, there 
is no possible production, and hence disposal policies 
are summarized respectively by equation 16 and 17 and 
can be interpreted as previously. In those equations, 

3 2( )z xη=  and 4 2( )z xι= represent respectively the 
function that give the threshold of disposal policy at 
mode 3 and 4 depending on the level of the final 
products storage. 

3

1 1 2
1 2

1 2

( )
( , ,3)

0 < ( )d

r if x x
u x x

if x x
η
η

≥
= 


                (16) 

4

2 1 2
1 2

1 2

( )
( , , 4)

0 < ( )d

r if x x
u x x

if x x
i
i

≥
= 


                 (17) 
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The hedging point policy structure obtained in this 
study is an extension of woks of Akella et Kumar 
(1986). Although they have obtained a fixed threshold, 
we obtained variable thresholds for the control policies 
obtained in this paper. 

 
Having obtaining a disposal and a production policies 
simultaneously at the operational modes 1 and 2, we 
legitimately want to know where the raw material 
required for the production at those modes would come 
from since at the same modes, returned product is 
disposed ? To answer this question, we have studied the 
joint domain of the two policies (disposal and 
production rates) illustrated by fig. 8 and 9 (hatched 
area), which clearly shows the existence of a joint 
domain for production at a non-zero rate (u1 = umax, u2 = 
r2) and the elimination of returns at the zero rate (

1 2
0, 0d du u= = ). This intersection corresponds to the 

feasibility domain, meaning the field where the machine 
will operate while being sufficiently fueled with 
material. 
 
5. CONCLUSION 
 
Attending to the end of our study, we can conclude that, 
the objectives have been achieved. We have considered 
the problem of control of production and disposal 
policies for an aluminum recycling unit in open loop. 
The unit considered was considered as a single machine 
producing a single type of product and subject to 
stochastic random breakdowns and repairs. After 
modeling the system using a homogeneous Markov 
chain, we have determined the optimality conditions 
through the HJB equations. We were able to solve these 
equations numerically by using the Kushner and Dupuis 
(1992) method and determined the optimal controls. We 
have obtained the optimal policies which are of critical 
type (Hedging Point Policy) at each mode of the 
machine (running or broken). In our study, we showed 
that, the optimal critical threshold of finished products 
depends on the inventory level of returned products 
which is quite realistic. 
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