
VERIFICATION OF INDUSTRIAL CONTROL ALGORITHMS
IN VIRTUAL LABORATORY STANDS

Tatyana Liakh(a), Vladimir Zyubin(b)

(a),(b) Novosibirsk State University,
Institute of Automation and Electrometry SB RAS

(a)antsys_nsu@mail.ru, (b)zyubin@iae.nsk.su

ABSTRACT
The complexity of industrial control systems increases
every year. The imposed requirements should provide
the reliability of the developed algorithm. But today the
common practice of industrial automation is
characterized by the following: generally testing of
control algorithms starts only when you run the
software on a new facility.
In the article the control algorithms development
method was put forward. The method uses virtual
laboratory stands for control algorithm creation and its
verification. Virtual laboratory stand consists of the five
components: graphical representation of the automated
object (GRAO), control algorithm module (CA), virtual
plant module (VP), scripts control module (SCM) and
verification module (VM). All modules are described as
a hyper-process with the Reflex language. SCM imitates
different situations on the object: environmental
changes and breakdowns. VM watches over the CA
during the simulation and automatically checks whether
the algorithm meets the given specification under the
certain script.
Keywords: control algorithms, industrial automation,
process-oriented programming, virtual plants, language
Reflex, verification

1. INTRODUCTION
Testing and verification problem of industrial control
algorithms is one of the key problems in industrial
automation area. Industrial control algorithms are
logically complicated because of the great number of
dependences between different parts of an algorithm.
But the cost of errors in such algorithms is extremely
high: errors in control algorithm leads to malfunctions,
abnormal situations and accidents on the technological
plant.

Today many approaches and mathematical models for
the control algorithms development exists. Domain-
specific languages (DSL) are perspective instrument for
this issue. Reflex language is the DSL for the control
algorithms development in industrial automation and
robotics. The Reflex language is based on the hyper-
process model. Hyper-process is an extension of the
classical state-machine model (Zyubin 2007). The basic
concept of the Reflex language – process. The program

on the Reflex language is a set of parallel executable
processes. They can trigger each other, stop, and
monitor states. This allows to process signals from the
technological plant in parallel. Reflex also allows
operations with time intervals and offers means for the
interaction with sensors and control devices. Ease of use
of the Reflex language and its adequacy to industrial
automation tasks was confirmed in automation projects
for complex technical objects.
But testing and verification of the algorithm is still a
serious issue. It is impossible to test the algorithm
without plant. In most cases control algorithms testing
starts only when you run the software on a new plant.
As a result, the testing of the algorithm is postponed
until the start-and-adjustment works begin. Such
practice leads to high risks, emergency situations or
even to accidents at the facility.
The contribution is structured as follows. First, we
discuss specificity of control algorithms for complex
technical objects. Second, we describe shortly the
hyper-process mathematical model and the Reflex
language. After that, we demonstrate the approach of
the control algorithms verification via virtual plants
conception in virtual laboratory stands.

2. THE SPECIFICITY OF INDUSTRIAL

CONTROL ALGORITHMS
Due to the specificity of the automation tasks,
especially in the case of complex technical objects, it is
extremely hard to develop control algorithms for such
issues. The reason is that industrial algorithms have a
number of properties, unique to the field of industrial
automation (Zyubin 2005, Kof 2003):

1. Presence of an external environment to interact
with.

2. Cyclic and event-driven functioning.
3. Synchronism – control algorithm implies

synchronization of its functioning with
physical processes in the external environment.

4. Mass logical parallelism – it reflects existence
of a large set of concurrent (or to be precise –
independent and weakly connected) physical
processes in the controlled objects. As the
events appear in an arbitrary consequence, any

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

380

attempt to describe the system reaction within
a monolithic block leads to a combinatorial
task with exponential increase of complexity,
so called the combinatorial explosion of
complexity

5. Hierarchical structure. Any complex control
algorithm has to have hierarchical structure
that reflects artificial nature of the external
environment, the designer plan that is
implemented in form of the facilities (Zyubin
2004). Because of the logical parallelism, the
hierarchical structure consists
of chains independently executed in parallel. It
means that the divergence and convergence of
control flow are a significant part of control
algorithm.

3. HYPER-AUTOMATON MODEL OF
 CONTROL ALGORITHMS

The variety of different formalisms for specifying
control and reactive systems were introduced (Hoare
1985, Harel 1987). One of these models - hyper-
automaton model, which is introduced as a useful
formalism for control algorithms reasoning.
The hyper-automaton model is an extension if the the
finite state automata (FSA). A hyper-automaton is an
ordered set of processes, which are cyclically stirred to
activity with a period of activation TH. A
hyperautomaton is a triplet:

H = <TH, P, p1> (1)

 TH is a period of activation.
 P is a finite nonempty and ordered set of

processes.
 (P = {p1, p2, … , pM}), where M is the number

of processes.
 p1 is the first marked process, p1 � P, which

is the only non-passive when hyper-automaton
starts.

A process is a state machine where the states are
functions. Mathematically, i-th process is
a quintuple:

pi = <Fi, f1i, fcuri, Ti>, where (2)

 Fi is a set of mutually exclusive functions.
 f1i is the first function, (f1i � Fi).
 fcuri is the current function, (fcuri � Fi).
 Ti is the current time.

The Fi and f1i elements characterize static features of
the process. The fcuri and Ti elements give us means for
reasoning about a process dynamics.
A function of a process is a set of events and reactions
to the events. Mathematically, j-th functions of i-th
process is a twain:

fji = <Xji, Yji>, where (3)

 Xji is a set of events (Xji = {xji1, xji2, … , xjiL}).
 Yji is a set of reactions (Yji = {yji1, yji2, … ,

yjiL}).

Hyper-automation model can be implemented by means
of general-purpose programming languages, but in case
of control algorythms one more often choose domain-
specific languages (DSL), designed for industrial
automation issues. One oh these languages is the Rexlex
language. The Reflex language was used in a number of
automation protects for complex technical plants (Liakh
2016) and shows its adequacy to industrial automation
tasks.

4. INDUSTRIAL CONTROL ALGORITHMS
 TESTING WITH VIRTUAL
PLANTS

But the description problem of control algorithms is no
the only problem in industrial automation, Verification
of the algorithm is also a serious challenge for the
developers.
The concept of Virtual Plant (VP) was put forward to
solve the control algorithms testing issues (Zyubin
2007). This concept was offered in the Institute of
Automation and Electrometry. VP – is the program
imitator of the automated technological process. VP
code and control algorithm (CA) code executes
separately (Fig. 1). Unified data ex-change between VP
and CA ensures the connections to be saved when the
CA is changed. This approach allows us to use the
iterative development model and debug the algorithm
code before start-and-adjustment works begin.

Figure 1: Control Algorithm Iterative Development
Model via the Virtual Plant Conception

For correct simulation of the plant one need to describe
signal processing and parallel operations on the object.
That’s why CA and VP were both created on Reflex
language. VP operates in multiple modes: correct
operation mode, or malfunction-imitation modes. The
testing software was created with means of LabVIEW
package. This software allows running VP and CA
simultaneously, testing VP and CA and imitating data
exchange and external events (Liakh and Zyubin 2014).
The CA of the Large Solar Vacuum Telescope (LSVT,
Baikal Astrophysical Observatory) was developed via
this software (Liakh and Zyubin 2016).
But some disadvantages of such approach were noticed.
Many operations had to be made manually by the
operator. Operator controlled VP modes, imitated GUI
commands and environmental changes. Also the
operator had to check the correctness of algorithm

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

381

reactions manually. All this disadvantages led to the
long testing process. Also the possibility of missed
errors and unexplored behavior grows.

5. METHOD EXTENTION WITH THE
SCRIPTS CONTROL MODULE AND
VERIFICATION MODULE

To increase the reliability of the algorithm and to speed
up the testing process, one offer the modification of the
method. One notice that in the method mentioned above
operator has multiple issues. First, he has to manage the
sequence of different events for the CA and the VP.
Also he has to check whether the CA meets a given
specification under a certain script.
That’s why one offer to supplement the existing scheme
with two modules: scripts control module (SCM) and
verification module (VM). The interaction between all
modules is described on the Fig. 2.

Figure 2: Control Algorithm Iterative Development
Model via the Verification Module and Scripts Control
Module

Table 1: Conventional Notations

 Event-Driven Algorithmic
Module

 Digital Ports
(Input/Output)

 Message Queue

Digital Ports Values
Cache

Digital Data

Messages

Four interacted algorithmic modules (hyper-processes)
are used to control algorithm verification. They run in
the determined order, form message queues, digital
ports values and factual parameters values.

1. Control algorithm (CA, 4) – CA module
implements the control algorithm logic.

2. Virtual plant (VP, 7) – VP module implements
the plant operation logic. VP imitates data flow
to CA from ADC and data flow from digital
input devices.

3. Verification module (VM, 2) – VM
automatically checks whether the CA meets a
given specification under a certain script. VM
alternately checks a set of temporal
requirements and reports about malfunctions.
VB verifies only CA block.

4. Script Control Module (SCM, 9) – SCM
manages the sequence of different events for
CA, VM and VP, such as: operator actions,
environment states and malfunctions of
devices. SCM sends commands through the
message queues. SCM imitates operator
commands for CA block. For VP SCM sets
operation modes: it forces VP to imitate
different accidents and breakdowns – or
operate in correct mode. Also SCM sends
environmental data for the VP. SCM reports
VB which of scripts is actual now. According
these information, VB choses properties to
verify.

Algorithmic blocks interact according to the scheme:

1. SCM launch. SCM forms three message
queues: for CA (8), VP (10) and VB (3). For
the CA SCM sends messages, thereby
imitating operator commands. SCM informs
VP about the current operation mode (regular
operation mode, equipment failure or an
accident). Also SC informs VP about
environmental state (e.g. temperature or
pressure) – but it is for VP to decide, how
process these information – or ignore it. In the
VB message queue SCM puts messages to
identify current script: this information allows

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

382

VP to determine, how CA should operate in
case of correct operation.

2. CA launch. In the module the control code of
the technological control system executes. CA
takes input digital data from the ports
cache (5). Also CA handles messages from
SCM queue (8). At the end of the cycle CA
puts its digital output to the CA output ports
cache (6). Output messages CA puts into the
VM input message queue (1).

3. VM launch. VM analyses all data flow from
the CA module: digital input and output values
from port cashes (5, 6), and its output
messages (1). With this data VM is able to
verify whether the CA meets all imposed
requirements. From the SCM message queue
VM takes information about current script – in
order to determine the correctness of the
algorithm reactions. VM sends testing results
to the operator GUI.

4. VP launch. VP takes information about
current mode and environmental changes from
the SCM message queue. VP takes input
digital data from the CA output ports
cache (6). This imitates the data exchange
between the CA and a real plant. At the end of
the cycle VP puts its digital output to the CA
input ports cache (5).

Development of industrial control algorithms occurs
iteratively:

1. A functionally separate part of the CA code is
created in Reflex language, i.e. a set of
processes responsible for processing a specific
task.

2. A functionally separate part of the VP code in
Reflex language is created. This code
simulates the operation of those elements of
the control plant that are controlled as
described in the algorithmic module.

3. The SCM block is described. SCM sends three
types of messages for other algorithmic blocks:
 Messages for the CA block. These

messages simulate the actions of the
operator.

 Messages for the VP block. These
messages determine the scenarios set for
all parts of the plant already described and
for the whole virtual plant.

 Messages for the VM - these messages
notify the VM about the current
verification mode. According to these
messages, the VM determines which
scenario is being executed at the moment
and what reaction to expect from the CA.

4. The VM block is described. In the VM block,
the response to the messages from the SCM,
described in step №3, is added. Also, the
requirements imposed on the created

algorithmic control unit are described. Since
the development happens iteratively, these
requirements can also verify the operation of
the algorithm parts created in the previous
steps – in this case, the joint interaction of
various parts of the algorithm is verified.

The Reflex language was chosen as a programming
language for the all event-driven modules. The language
Reflex based on the hyper-process model. Hyper-
process model reflects openness, event-driven nature,
cyclicity, synchronism, and mass logical parallelism of
a control algorithm. The temporal dependences of the
hyper-processes allows do describe the temporal
requirements.

3. CONCLUSION

In the contribution the scheme of the iterative CA
development was put forward. The scheme for the
automated verification of the developed algorithm was
created. Such approach to the CA testing and
development allows to give the strict answer if the
algorithm satisfies all necessary requirements. Also
virtual stands are helpful for the engineering students
training.

ACKNOWLEDGMENTS
The research has been supported by Russian Foundation
for Basic Research (grant 17-07-01600).

REFERENCES
Zyubin V. E., Hyper-automaton: a Model of Control

Algorithms // Proceedings of IEEE International
Siberian Conference on Control and
Communications, SIBCON-07. Russia, Tomsk
April 20-21, 2007, PP.51-57

Zyubin, V. E., Multicore Processors and Programming.
// Open Systems J., №7-8, 2005, PP.12-19

Kof, L., Schätz, B., Combining Aspects of Reactive
Systems. // Proc. of Andrei Ershov Fifth Int. Conf.
Perspectives of System Informatics. Novosibirsk,
2003, PP.239-243

Zyubin, V. E., Text and Graphics: What Language Does
Programmer Need? // Open Systems J., №1, 2004,
PP. 54–58

Hoare, C. A. R., Communicating Sequential Processes.
// PrenticeHall Int., 1985

Harel, D. Statecharts: a Visual Formalism for Complex
Systems. // Science of Computer Programming 8.
Elsevier Science Publishers B.V., North-
Holland,1987, PP. 231–274

Liakh T. V., Zyubin V. E., Application of the virtual
plant for industrial automation issues // Proc.
Ershov informatics conference-14, satellite
“Workshop on Science Intensive Applied
Software”, Saint Petersburg, Russia, 2014, 43-48.

Liakh T. V., Zyubin V. E. The Reflex Language Usage
to Automate the Large Solar Vacuum Telescope //
17th International Conference of Young

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

383

Specialists on Micro/Nanotechnologies and
Electron Devices (EDM). (Erlagol, Altai Republic,
Russia, June 30 2016-July 4, 2016). pp. 137-139.

AUTHORS BIOGRAPHY
Zyubin V. E. Lead researcher of the Institute of
Automation and Electrometry, Siberian Branch of the
Russian Academy of Sciences. In 1992 he graduated
from the Novosibirsk State Technical University,
majoring in "Automation and Remote Control". The
degree of Doctor of Technical Sciences was awarded in
2014. Associate Professor in the specialty.

He has authored over 90 scientific publications.

Interests – Languages of technological programming,
programming psychology, human factors, complex
control algorithms, the theory of finite automata, hyper-
automata model, event polymorphism, semiotics and
pragmatics, the massive parallelism of logic, Reflex
language, languages of IEC 61131-3 standard

Liakh T. V. is a postgraduate student of the Institute of
Automation and Electrometry, Siberian Branch of the
Russian Academy of Sciences. In 2013 Tatiana
graduated with honors from the Novosibirsk State
University (Physical Faculty, Automation of physical
and technological researches department).

From 2009 to 2011 Tatiana was engaged in the
researches in the field of computer simulation and
artificial intelligence in the SoftLab-NSK company.

Since 2011 Tatiana develops industrial automation
systems in the Institute of Automation and
Electrometry. She has participated in many projects of
automation, such as the development of the automated
control system of the Large Solar Vacuum Telescope –
the biggest Eurasian telescope and main instrument of
the Baikal Astrophysical Observatory.

Interests – Complex control algorithms, methods of
industrial algorithms development, programming
languages for industrial automation and industrial
algorithms verification.

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

384

