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ABSTRACT 
The validation of simulation model is commonly 
quantified by various goodness-of-fit indicators. The 
selection and use of specific goodness-of-fit indicators 
and the interpretation of their results can be a challenge 
for even the most experienced evaluators since each 
indicator may put different emphasis on different types 
of simulated and observed behaviours. In this paper, 
first of all, two goodness-of-fit indicators calculated on 
weighted errors are developed, presented and 
recommened, which are more suitable for evaluating 
simulation model compared with high and low 
magnitude within observed data respectively. Then, the 
specific measure characteristics (that is, which part of 
the simulated and observed datasets most influences the 
various indicators) of several Nash-Sutcliffe efficiency 
(NSE) type indicators is analyzed and compared through 
two hypothetical examples using a simple observed and 
simulated datasets. Finally, some misunderstanding and 
ambiguity is corrected and clarified for measure 
characteristics of NSE type indicators. 
 
Keywords: methods of quantitative validation, Nash-
Sutcliffe efficiency, comparison between indicators, 
measure characteristics 
 
1. INTRODUCTION 
Krause, Boyle, and Bäse (2005) put forward three main 
reasons for model validation requirement: (1) to provide 
a process of quantitative indicator of model's ability to 
replicating past and predicting future behavior; (2) to 
provide a means for evaluating improvements to the 
model, such as through adjustment of model parameter 
values and model structural modifications, and the 
important characteristics expression changes of model 
behavior in space and time; (3) to compare modeling 
efforts in model development life cycle process. 
Model validation deals with the issue of whether or not 
a model is a sufficient accurate representation of real 
system for the intended applications of the model 
(Martens, Put, and Kerre 2006). From the perspective of 
practicality and operability, a commonly pragmatic 
approach is comparison of simulated data (modeled data, 
predicted data, or model output data) with observed data 
(reference data, measured data, experimental data, test 

data, expected data, or real-word data) to determine the 
degree of behavioral similarity between simulation 
model and real system. This process of model 
performance evaluation may appear the following 
situations (Pushpalatha, Perrin, and Le Moine 2012): (1) 
data set used for model validation vary span several 
orders of magnitude that may not be equally important 
for the modeller who may be interested in agreement 
between the part of observed and simulated graph; (2) 
the model may be used for diferent applications, which 
may require specific criteria (e.g. either high or low 
magnitude simulation studies); (3) the variance of error 
varies significantly throughout validation period with 
space and time, instead of a nearly constant, which 
often leads to emphasize larger errors within a wider 
range of the observations while smaller errors within a 
small range tend to be neglected. 
For these situations, a large variety of goodness-of-fit 
indicators have been proposed and used over the years 
in the field of model validation, as shown for example 
by the lists of indicators given by Bennett, Croke, and 
Guariso (2013); Hauduc, Neumann, and Muschalla 
(2015); and Crochemore, Perrin, and Andreassian 
(2015). Among these indicators, the Nash and Sutcliffe 
(1970) efficiency (NSE) type indicators has received 
considerable attention from many evaluators, especially 
in the area of environmental science, due to its 
flexibility to be applied to various types of simulation 
models (Oudin, Andreassian, and Mathevet 2006; 
Nicolle, Pushpalatha, and Perrin 2014). Modifications 
of the NSE have been proposed by several authors, 
including those based on transformed variables, others 
using relative or absolute instead of squared errors, and 
those adopting benchmark series different from the 
mean of observations. Until by now, the focus of 
discussion work with the existing NSE type indicators is 
primarily on their interrelationship and measure 
characteristics, which have gained some research 
achievements that can be found in the literature (i.e. 
Krause, Boyle, and Bäse 2005; Oudin, Andreassian, and 
Mathevet 2006; Dawson, Abrahart, and See 2007; 
Pushpalatha, Perrin, and Le Moine 2012; Hauduc, 
Neumann, and Muschalla 2015). 
Although there are a lot of pre-analysis for NSE type 
indicators, but there are still some limitations. The 
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present work intends to complement previous studies, 
and this paper has two main objectives: first, in order to 
effectively select and use different NSE type indicator 
and interpret their results, we wish to discuss further 
specific measure characteristics of each indicator，that 
is, which part of the {Oi, Si} most influences the various 
indicators; Second, we wish to propose two goodness-
of-fit indicators suited for the evaluation of high-
magnitude and low-magnitude simulations using 
actually observed data. 
The remainder of this paper is arranged as follows: 
Section 2 describes different NSE type indicators and 
our proposed goodness-of-fit indicators on weighted 
errors; Section 3 provide a hypothetical example used 
for analysing measure characteristics of various 
indicators; Results and discussion are presented in 
Section 4, while conclusions are drawn in Section 5. 
 
2. GOODNESS-OF-FIT INDICATORS 
A number of goodness-of-fit indicators have been 
proposed in the simulation literature, however, there is 
no consensus on the best approach. In this section, the 
goodness-of-fit indicators included in the study are 
provided. These are the seven indicators: Nash-Sutcliffe 
efficiency and some of its modified forms: Legates-
McCabe efficiency (LME), NSE on squared 
transformed series, NSE on root-squared transformed 
series, NSE on logarithmic transformed series, NSE on 
inverse transformed series, LME on deviations 
weighted by observations cubed, LME on deviations 
weighted by observations to the power of minus three.  
These indicators above are generally viewed as different 
normalized forms of different error measures calculated 
on point-by-point concurrently and are generally used in 
order to make decisions about the validity of the 
simulation model. 
In the following equations, O represents the sample 
containing the observations obtained from real system, 
but could more generally containing the expected values, 
O = ( O1 ,  O2 , … ,  On )TRn; S represents the sample 
containing the model simulated outputs, S = ( S1 ,  S2 , 
… ,  Sn )TRn; Oi and Si are respectively the ith 
observed and simulated value; The subscript i is data 
index (usually referring to time, but could more 
generally indicate spatial location or some other kind of 
index); n is is total number of pairwise-matched 

observed and simulated data used for validation; iO  is 
the mean of the observations. 
 
2.1. Nash-Sutcliffe Efficiency 
The NSE suggested by Nash and Sutcliffe (1970) is 
expressed as one minus the mean of the squared errors 
between the observed and simulated datasets 
normalized by the variance of the observed values 
during the validation period, which is the most widely 
attention goodness-of-fit indicator in the model 
validation fields due to its flexibility. It is calculated as: 
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The NSE ranges from minus infinity to one: an NSE 
value of one implies that observed value are in complete 
agreement with simulated value for all subscript i, 
which is generally viewed as model's ability to 
reproduce and predict system behaviour perfectly; NSE 
values between zero and one implies that the simulation 
model is superior than the use of the benchmark model 
(the mean of the observation series) as a accurate 
representation of real system; an NSE value of zero 
implies that the simulation model, on average, performs 
as good as the use of the benchmark model; whereas 
negative NSE values implies that the simulation model 
is poor than the use of the benchmark model, which 
ususlly indicates unacceptable or unsatisfactory model 
performance rating. 
 
2.2. Legates-McCabe Efficiency 
The LME suggested by Legates and McCabe (1999) is 
expressed as one minus the mean of the absolute errors 
between the observed and simulated datasets 
normalized by the mean absolute deviation of the 
observed values. It is calculated as: 
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The modified NSE is less sensitive to large extreme 
absolute errors values due to using absolute instead of 
squared errors within the numerator of the fractional 
part of NSE, but this indicator was not catch much 
attention and deeply discussed because of its limited 
application and resulting relative lack of reported 
information. The range of LME lies between minus 
infinity and one (perfect fit). An LME value of lower 
than zero indicates that the mean value of the 
observation series series would have been a better 
predictor than the model. 
 
2.3. NSE Based on Transformed Data Series 
Additional modifications of Nash-Sutcliffe efficiency 
are based on transforming observed outcomes and 
model outputs, including NSE calculated on a squared 
transformation of O and S (NSEsqu) (Oudin, 
Andreassian, and Mathevet 2006; Crochemore, Perrin, 
and Andreassian 2015), NSE calculated on a root-
squared transformation of O and S (NSEsqrt) (Perrin, 
Miche, and Andréassian 2001), NSE calculated on a 
logarithmic transformation of O and S (NSEln) (Oudin, 
Andreassian, and Mathevet 2006), NSE calculated on 
inverse transformation of O and S (NSEinv) (Le Moine 
2008). The NSEsqu, NSEsqrt, NSEln and NSEinv ranges 
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from minus infinity to one (perfect fit). They is 
calculated as: 
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The NSEsqu indicator is more sensitive to very high 
magnitudes and shows nearly no reaction on low 
magnitudes. The NSEsqrt indicator provides more 
balanced information as the errors are more equally 
distributed on high- and low- magnitudes parts. The 
NSEln indicator is more sensitive to low magnitudes but 
still reacts to peak magnitudes. The NSEinv indicator is 
more sensitive to very low magnitudes and shows 
nearly no reaction on high magnitudes. 
 
2.4. LME on Deviations Weighted by Observations 
Nash-Sutcliffe efficiency type indicators based on data 
transformations use the model error series computed 
after arithmetic transformation instead of original error 
series to evaluate model performance, which result in 
the fact that the implicit weightings to emphasise 
specific magnitudes of interest usually involve 
simulated variable. As a result, this fact is very adverse 
to the interpretation and choice of the efficiency criteria. 
In this section, we present a kind of Modified Legates-
McCabe efficiency indicators calculated on weighted 
deviations between the observed and simulated datasets 
as a alternate solution to address the problem described 
above. These are the two indicators: LME on deviations 
weighted by observations cubed (LMEvh), LME on 
deviations weighted by observations to the power of 
minus three (LMEvl). They is described respectively as: 
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The LMEvh is used to emphasize errors that occur in 
very high mignitudes of absolute O. The LMEvl is used 
to emphasize errors that occur in very low mignitudes 
of absolute O. Through this modifications to the LME, 
the differences between the observed and simulated 
values are quantified as absolute errors weighted by 
given observation series, which reduce the adverse 
effects of factors such as interpretation of indicator 
measures and the choice of efficiency indicators; 
 
3. APPROACH FOR INDICATORS ANALYSIS 
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In this example, {Oi, Si} generated by equation (9), as 
shown in Figure 1. The 201 separate synthetic simulated 
graph were generated by the following processes: for 
the simulated graph number 1, the first ordinate was the 
same as the first ordinate of the observed graph and the 
remaining ordinates of the simulated graph stays the 
same; for the second simulated graph, the first two 
ordinate was the same as the first two ordinate of the 
observed graph and the remaining ordinates of the 
simulated graph stays the same; for the simulated graph 
number 3, the first three ordinate was the same as the 
first three ordinate of the observed graph and the 
remaining ordinates of the simulated graph stays the 
same; and in the remaining model simulations (4 to 
201), the observed graph values were progressively 
substituted for the simulated graph until the last model 
simulation (number 201) was the actual observed graph. 
Figure 2 shows the observed graph and simulated graph 
for model simulation number 100 (the first 100 time 
steps are the same as the observed and the remaining 
values are the arithmetic mean of entire observed 
graph). 

 

 

Proceedings of the European Modeling and Simulation Symposium, 2017 
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds. 

357



Figure 1: Original Observed (Black Line) and Original 
Simulated (Blue Dotted Line) Graph and (Gray Area) 
Error Area 

 
Figure 2: Original Observed (Black Line) and 100th 
Simulated (Blue Dotted Line) Graph and (Gray Area) 
Error Area 

 
4. RESULTS AND DISCUSSION 
The computed values of the goodness-of-fit indicators 
described in section 2 for each of 201 separate synthetic 
simulated graph are shown in Figures 3-4 and Table 1. 
The plot in Figures 2 shows the Nash-Sutcliffe 
efficiency and its modified forms (NSEsqu, NSEsqrt, NSEln, 
NSEinv), the plot in Figures 4 shows Legates-McCabe 
efficiency and LME on deviations weighted by 
observations (LMEvh, LMEvl). Table 1 shows the 
Sample Index (colums) 1, 41, 81, 121, 161, 201 and the 
computed values (rows) of the different indicators at 
Sample Index. 
For simulated sample index 1, all goodness-of-fit 
indicators have negative values, which implies that the 
simulation model is poor than the use of the mean of the 
observation series as a accurate representation of real 
system. The computed values of NSE, NSEsqu, NSEsqrt, 
NSEln, NSEinv adopting squared errors is less than LME, 
LMEvh, LMEvl adopting absolute errors.  
For simulated sample number 1 to 81, there were major 
increases of of NSE (1.76), NSEsqu (1.74), NSEsqrt (1.77), 
NSEln (1.78), NSEinv (1.74), LME (0.85), LMEvl (1.94), 
which indicates that these indicators very sensitive to 
very low magnitudes conditions. LMEvh (0.00) exhibited 
nearly no reaction on or is not sensitive to very low 
magnitudes conditions. 
For simulated sample number 81 to 121, there were 
major increases of of NSE (0.46), NSEsqu (0.45), NSEsqrt 
(0.41), NSEln (0.31), NSEinv (0.13), LME (0.29) which 
indicates that these indicators very sensitive to low 
magnitudes conditions. LMEvh (0.23) showed a 
immediate reaction on or is sensitive to high 
magnitudes conditions, and slight increases of LMEvl 
(0.03) showed nearly no reaction on or is not sensitive 
to high magnitudes conditions. 
For simulated sample number 121 to 201, there were 
major increases of of NSE (1.76), NSEsqu (1.74), NSEsqrt 
(1.77), NSEln (1.78), NSEinv (1.75), LME (0.85), which 
indicates that these indicators very sensitive to high 
magnitudes conditions. LMEvh (1.77) exhibited showed 
a strong reaction on very high magnitudes conditions, 

and LMEvl (0.00) showed nearly no reaction on or is not 
sensitive to very high magnitudes conditions. 
The modified forms LMEvh did exhibited nearly no 
reaction on low magnitudes of observed and simulated 
series and therefore was mostly sensitive for better 
model realisation during high magnitudes of 
observation series, while LMEvl did show nearly no 
reaction on high magnitudes of observed and simulated 
series and was mostly sensitive for better model 
realisation during low magnitudes of observation series. 
 

 
Figure 3: Evolution of NSE, NSEsqu, NSEsqrt, NSEln, 
NSEinv During Example in Sect. 3 
 

 
Figure 4: Evolution of LME, LMEvh, LMEvl during 
Example in Sect. 3 
 
Table 1: Goodness-of-fit Indicators Values for The Six 
Sample Index of Example 
S.S.I.[a] 1 41 81 121 161 201
NSE -2.98 -2.09 -1.22 -0.76 0.12 1.00
LME -0.99 -0.56 -0.14 0.15 0.57 1.00
NSEsqu -2.93 -2.05 -1.19 -0.74 0.13 1.00
NSEsqrt -2.95 -2.06 -1.18 -0.77 0.11 1.00
NSEln -2.87 -1.96 -1.09 -0.78 0.10 1.00
NSEinv -2.62 -1.71 -0.88 -0.75 0.09 1.00
LMEvh -1.00 -1.00 -1.00 -0.77 0.11 1.00
LMEvl -0.97 0.05 0.97 1.00 1.00 1.00

[a] S.I. = Simulation Sample Index. 
 
5. CONCLUDING REMARKS 
Eight different goodness-of-fit measures for the 
evaluation of model performance or validity were 
investigated with a simple example. Through the 
computed results of the different goodness-of-fit 
indicators obtained for a simple example, their measure 
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characteristics in terms of emphasis on different types 
of errors are analyzed and identified. To increase the 
sensitivity of indicators measures to very high- and very 
low- magnitudes conditions and reduce adverse effect 
on the choice of the goodness-of-fit indicators, LME on 
deviations weighted by observations cubed (LMEvh) and 
LME on deviations weighted by observations to the 
power of minus three (LMEvl) were proposed. Contrary 
to what was expected, the results from the a simple 
example revealed that LMEvh did show nearly no 
reaction on low magnitudes of observed and simulated 
series and therefore was mostly sensitive for better 
model realisation during high magnitudes of 
observation series, while LMEvl did show nearly no 
reaction on high magnitudes of observed and simulated 
series and was mostly sensitive for better model 
realisation during low magnitudes of observation series. 
 
ACKNOWLEDGMENTS 
The paper was also made possible through the financial 
support of the National Natural Sciences Foundation of 
China (Grant No. NNSFC 61374164), for which the 
authors are most grateful. 
 
REFERENCES 
Bennett, N.D., Croke, B.F., Guariso, G., et al., 2013. 

Characterising performance of environmental 
models. Environmental Modelling & Software, 40: 
1-20. 

Crochemore, L., Perrin, C., Andreassian, V., et al., 
2015. Comparing expert judgement and numerical 
criteria for hydrograph evaluation. Hydrological 
Sciences Journal, 60(3): 402-423. 

Dawson, C.W., Abrahart, R.J. and See, L.M., 2007. 
HydroTest: a web-based toolbox of evaluation 
metrics for the standardised assessment of 
hydrological forecasts. Environmental Modelling 
& Software, 22(7): 1034-1052 

Hauduc, H., Neumann, M.B., Muschalla, D., et al., 
2015. Efficiency criteria for environmental model 
quality assessment: a review and its application to 
wastewater treatment. Environmental Modelling & 
Software, 68: 196-204. 

Krause, P., Boyle, D.P. and Bäse, F., 2005. Comparison 
of different efficiency criteria for hydrological 
model assessment. Advances in Geosciences, 5: 
89-97. 

Legates, D.R. and McCabe, G.J., 1999. Evaluating the 
use of goodness-of-fit measures in hydrologic and 
hydroclimatic model validation. Water Resources 
Research, 35(1): 233-241. 

Le Moine, N., 2008. Le bassin versant de surface vu par 
le souterrain: une voie d’amélioration des 
performances et du réalisme des modéles pluie–
débit? PhD Thesis, Université Pierre et Marie 
Curie, Pairs, France, pp. 324. 

Martens, J., Put, F. and Kerre, E., 2006. A fuzzy set 
theoretic approach to validate simulation models. 
ACM Transactions on Modeling and Computer 
Simulation, 16(4): 375-398. 

Nash, J.E. and Sutcliffe, J.V., 1970. River flow 
forecasting through conceptual models: part I - a 
discussion of principles. Journal of Hydrology, 
10(3): 282-290. 

Nicolle, P., Pushpalatha, R., Perrin, C., et al., 2014. 
Benchmarking hydrological models for low-flow 
simulation and forecasting on French catchments. 
Hydrology and Earth System Sciences, 18(8): 
2829-2857. 

Oudin, L., Andreassian, V., Mathevet, T., Perrin, C. and 
Michel, C., 2006. Dynamic averaging of rainfall-
runoff model simulations from complementary 
model parameterizations. Water Resources 
Research, 42. 

Perrin, C., Michel, C. and Andréassian, V., 2001. Does 
a large number of parameters enhance model 
performance? comparative assessment of common 
catchment model structures on 429 catchments. 
Journal of Hydrology, 242(3): 275-301. 

Pushpalatha, R., Perrin, C., Le Moine, N. and 
Andréassian, V., 2012. A review of efficiency 
criteria suitable for evaluating low-flow 
simulations. Journal of Hydrology, 420: 171-182. 

 
AUTHORS BIOGRAPHY 
Kai-Bin Zhao received the M.S. degree in guidance 
navigation and control from the Harbin Engineering 
University, China, in 2013. He is currently working 
toward the Ph.D. degree in control science and 
engineering at Harbin Institute of Technology, China. 
His current research focuses on model validation for 
complex simulation system. His e-mail address is 
kaibin.zhao.HIT@hotmail.com. 

Ke Fang is an Associate Professor of the Control & 
Simulation Center, School of Astronautics at Harbin 
Institute of Technology, China. He holds a Ph.D. in 
control science and engineering from Harbin Institute of 
Technology, and was a visiting scholar at Arizona State 
University from year 2014 to 2015 in AZ, USA. His 
research interests include complex simulation systems, 
model validation and VV&A. His e-mail address is 
hitsim@163.com. 

Ming Yang is a Professor of the Control & Simulation 
Center, School of Astronautics at Harbin Institute of 
Technology, China. He holds a Ph.D. in control science 
and engineering from Harbin Institute of Technology. 
He involved in major simulation conference and 
committees in China. His e-mail address is 
myang@hit.edu.cn. 

Proceedings of the European Modeling and Simulation Symposium, 2017 
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds. 

359


