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ABSTRACT 

The paper deals with testing Evolution Strategy and 

different tournament selection strategies on testing 

functions and discrete event simulation model. We 

developed a simulation optimizer used for simulation 

optimization, for testing different settings of 

optimization algorithm parameters and evaluating the 

success of finding the optimum by the optimization 

algorithms and other evaluation criteria.  

 

Keywords: evolution strategy selections, testing 

functions, discrete event simulation model 

 

1. INTRODUCTION 
The basic common problem of simulation optimization 
algorithms is to quickly find the global/local optimum of 
the objective function (function maximization can be 
converted to function minimization): 

 �̌� = argmin
𝐗∈�̃�

 𝐹(𝐗) = {�̌� ∈ �̃�: 𝐹(�̌�) ≤

 𝐹(𝐗)∀𝐗 ∈ �̃�} (1) 
 

Where symbols denote: 

 �̌� … Global minimum of the objective function  

 𝐹(𝐗) … Objective function value of candidate 

solution – the range includes real numbers, i. e. 

 𝐹(𝐗) ⊆ ℝ. Objective function represents the 

aim of simulation optimization 

 �̃� … Search space 

 

This optimum has to respect the specified constraints. 

We use Box constraint – search space is limited: 

 

�̃� = ∏ �̃�𝑗
𝑛
𝑗=1 = ∏ [𝑎𝑗 , 𝑏𝑗]𝑛

𝑗=1 , 𝑎𝑗 ≤ 𝑏𝑗 (2) 

 

Where symbols denote: 

 𝑗… 𝑗-th decision variable of the simulation 

model 

 𝑛 … Dimension of the search space 

 𝑎𝑗 … Lower bound of the interval of 𝑗-th 

decision variable 

 𝑏𝑗 … Upper bound of the interval of 𝑗-th 

decision variable 

 

The candidate solution represents the values of each 

decision variable of the simulation model. Some 

optimization algorithms (described as pseudo-pascal 

algorithms) need to access these values hence the 

element will be transformed into a list of values of 

decision variables (vector of point coordinate in the 

search space). Decision variables represents the axes in 

the search space. These axes are indexed from zero to 

𝑛 − 1: 

𝐗[𝑗] = 𝑥𝑗∀𝑗: 𝑗 = {0,1,2, … , 𝑛 − 1} (3) 

  

We have tested different optimization methods (Pseudo 

gradient – Hill Climbing; Local Search; Tabu Search; 

Downhill Simplex; Metaheuristic - Simulated 

Annealing, Evolution Strategy; Differential Evolution 

and Self Organizing Migrating Algorithm) to find the 

global optimum of the objective function of the discrete 

event simulation models. This paper focuses on using 

Evolution Strategy which is a very general method which 

can be used for different types of objective functions.  

Evolution Strategy generates more than one candidate 

solution. Each candidate solution represents the 

individual in the list of the generated candidate solutions 

– population – in the context of Evolution algorithms.  

These candidate solutions are processed in a different 

way. To distinguish these candidate solutions from each 

other, the generated candidate solutions are placed into a 

list. Each item can be accessed by the index in this list: 

𝐗𝑖 = 𝑆[𝑖]∀𝑖: 𝑖 = {0,1,2, … , 𝑚 − 1} (4) 

Where symbols denote: 

 𝑆 … List of candidate solutions 

 𝑚 … Length of the list 𝑆 

 

Most optimization methods are very sensitive to setting 

their parameters. Hence we tested different settings of 

Evolution Strategy to reduce some incorrect settings of 

the optimization methods parameters. We also tested 
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different selection strategies to find a suitable and 

effective strategy for the optimization method. 

Considering the time requirements of testing the 

optimization method efficiency of finding the optimum 

of discrete event simulation models we substituted the 

testing objective function of the simulation models with 

different testing functions – De Jong´s, Rosenbrock´s, 

Michalewicz´s and Ackley´s functions.   

 

2. EVOLUTION STRATEGY  

The foundations of the first evolution strategy were laid 

in the 1960s at the Technical University of Berlin by 

three students, namely Hans-Paul Schwefel (Schwefel, 

1995), Ingo Rechenberg and Peter Bienert. Inspired by 

lectures about biological evolution, they aimed at 

developing a solution method based on principles of 

variation and selection. In its first version, a very simple 

evolution loop without any endogenous parameters was 

used. (Bäck, Foussette, and Krause, 2013)  

We implemented the Evolution Strategy algorithm using 

Steady State Evolution in the simulation optimizer to test 

different types of selection. (Marik, Stepankova, and 

Lazansky, 2001, Miranda, 2008, Hynek, 2008, Tvrdik, 

2004) 

The optimization algorithm contains (Raška & Ulrych, 

2015) the following parameters and functions:  

 𝑛 … Search space dimension 

 𝜑 … Relative frequency of success 

 𝑠𝑢𝑚𝜑 … Sum of relative frequencies of success 

 𝐴 … List of lower boundaries for each decision 

variable (axes of the search space) 

 𝐵 … List of upper boundaries for each decision 

variable (axes of the search space) 

 𝑗… 𝑗-th decision variable 

 𝑖… Individual´s index (order in population)  

 𝜎 … List of standard deviations for each axis 

(decision variable of the simulation model) of 

the search space. The standard deviation is 

affected by Rechenberg 1/5th-rule – line 

number 25 (Schwefel, 1995) 

 𝜗 … List of steps for each axis 

 Mutate ES_n … Process of individual mutation – 

line number 11 (algorithm of the mutation is 

shown in Figure 2. Algorithm parameters are 

described in the following text)  

 𝑚 … Size of the population 

 𝑚𝑀𝑃 … Number of offspring 

 𝑞 … Number of successes (the offspring is 

better than the parent) to be monitored 

 𝑘 … Number of other contestants per 

tournament 

 𝑋Pop … Population of individuals 

 𝑋Arch … Archive of offspring 

 ExtractOptimalSet … Extracting best elements 

from the population 

 TerminationCriterion … Termination criterion 

of simulation optimization 

 Length … Function providing the length of list 

 DeleteListItem … Function returning a new list 

by removing the element at defined index from 

the list 

 AddListItem … Function inserting one item at 

the end of a list 

 AppendList … Function adding all the elements 

of a list to another list 

 
Figure 1: Evolution Strategy Algorithm - Steady State 

Evolution 

 

The mutation uses parent X to generate new offspring 

𝐗Mut - Figure 1: Evolution Strategy Algorithm - Steady 

State Evolution– line number 11. Mutation uses normal 

distribution. The mutation is shown in Figure 2.  

 
Figure 2: Mutation of the Parent (using normal 

distribution) - “Mutate ES_n” 
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The mutation algorithm contains the following 

parameters: 

 𝑃1 … Probability of mutation 

 𝑃2 … Probability of swapping neighbouring 

genes 

 Random𝑢 … Function returning single 

uniformly distributed random number in 

interval [0, 1)  

 

Algorithm of mutation uses the “Perturbation” function 

– see Figure 3: “Perturbation” algorithm - using 

correction of the individual - mirroring the individual 

coordinates from the space of unfeasible solution back to 

search space: (Tvrdik, Evolutionary algorithms - Study 

Texts (in Czech language Evoluční algoritmy - učební 

texty), 2004) 

 

 
Figure 3: “Perturbation” algorithm 

 

The population is sorted according to the objective 

function values - Rank-Based Fitness Assignment 

procedure – see Figure 4: Rank-Based Fitness 

Assignment - “AssignFitnessRank” (in the context of 

this paper, fitness is subject to minimization). This 

sorting algorithm contains the following parameters: 

 CF𝐹(𝐗) … Comparing function for comparing 

individuals using their objective function value 

 𝑟 … Individual order 

 𝑓𝑖𝑡 … Fitness value 

 

The procedure uses the process of assigning a scalar 

fitness value to each solution candidate in the population 

according to their order in the population. 

 
Figure 4: Rank-Based Fitness Assignment - 

“AssignFitnessRank” procedure 

 

This procedure sorts all individuals in a population using 

the comparing function in ascending order. The function 

compares an individual according to its value of the 

objective function (objective function minimization): 

CF𝐹(𝐗)(𝐗1, 𝐗2) = {
−1   if 𝐹(𝐗1) < 𝐹(𝐗2) 

1   if 𝐹(𝐗1) > 𝐹(𝐗2) 
 0   else 

 
(5) 

 

3. ALGORITHMS OF THE SELECTION 

Selection is the process of choosing individuals 

according to their fitness values from the population and 

places them into the mating pool. (Bäck, Foussette, and 

Krause, 2013)  

Generally, there are two classes of selection algorithms:  

 with replacement (annotated with a subscript r) 

- each individual from the population is taken 

into consideration for reproduction at most once 

and therefore also will occur in the mating pool 

one time at most 

 without replacement (annotated with a subscript 

w) - the mating pool returned by algorithms can 

contain the same individual multiple times. Like 

in nature, one individual may thus have multiple 

offspring. 

Another possible classification of selection algorithms is 

(μ, λ) notation where μ denotes the number of parents and 

λ denotes number of offspring – e.g. (μ, λ) selection 

strategy is applied to λ offspring while their parents are 

"forgotten". This selection does not use the information 

about the parent´s fitness according to a new generation. 

This strategy relies on the excess of offspring - the 

selection uses Darwinian natural selection where λ> μ. 

(Beyer and Schwefel, 2002)  

Normally, selection algorithms are used in a variant with 

replacement. One of the reasons therefore is the number 

of elements to be placed into the mating pool.  

The selection algorithms have a major impact on the 

performance of evolutionary algorithms. (Weise, 2009) 

 

3.1. Tournament Selection 

Tournament selection proposed by Wetzel (Wetzel, 

1983) is one of the popular and effective selection 

schemes. This type of selection has been analysed by 

Blickle and Thiele (Blickle and Thiele, 1995),  Miller and 

Goldberg (Sastry and Goldberg, 1996), etc.  

The Evolution Strategy optimization algorithm (shown 

in Figure 1: Evolution Strategy Algorithm - Steady State 

Evolution) uses Tournament selection - Figure 6. The 

final population consists of children and parents with 

good fitness. This strategy supports elitism – the 

individual with good fitness survives. (Tvrdik, 2010 

The next algorithm uses tournament selection with 

replacement – an individual can compete against itself 

(its copy). This situation is impossible in reality, but 

remember, these individuals have the same fitness value 

therefore the first individual wins and not its copy 

according to the use of the comparing function. This 

comparing function selects the first individual if both 

fitness values are the same (line number 7).  

The algorithm creates an empty mating pool (line number 

2). Individuals are selected according to their fitness 

values in the initial stage (line number 3). Individuals are 

randomly picked from the population (line number 5) and 

compete with each other in k tournaments (line number 

7). The winner of these competitions enters the mating 
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pool (line number 8). Although it is a simple selection 

strategy, it is a very powerful selection.  

The other tournament selection algorithms contain the 

same following parameters: 

 𝑋Pop … List of the individuals to select from 

 𝑋MP … Mating pool 

 𝑚MP … Number of individuals to be placed into 

the mating pool 

 𝔣 … Fitness function 

 𝑖 … Individual index 

 CF𝔣(𝐗) … Comparing function for comparing 

individuals using their fitness function value 

 𝑎 … Index of the tournament winner 

 𝑘 … Number of contestants 

 

 

 
Figure 5: Tournament Selection with replacement - 

“TournamentSelect r” (Weise, 2009) 

 

The absolute values of the fitness play no role. The only 

thing that matters is whether or not the fitness of one 

individual is higher than the fitness of another one, not 

the fitness difference itself. With rising k, the selection 

pressure increases - individuals with good fitness values 

create more and more offspring, whereas the chance of 

worse solution candidates to reproduce decreases.  

(Weise, 2009) 

The tournament selection without replacement (shown in 

Figure 6: Tournament Selection - “TournamentSelect w1” 

) uses the same principle, but the winner of the 

tournaments does not participate in other tournaments (is 

deleted from the population – line number 9).  

The second variant of the tournament selection without 

replacement is identical to the previous algorithm. The 

difference is that all individuals (their indexes) are 

selected for one overall round (one list) where the 

individual cannot be included. The main winner with the 

lowest fitness value is selected from this list.  This 

process is repeated several times until the mating pool is 

filled. 

 

 
Figure 6: Tournament Selection - “TournamentSelect w1” 

(Weise, 2009) 

 

 
Figure 7: Tournament Selection - “TournamentSelect w2” 

(Weise, 2009) 

 

The previous tournament selection algorithms can be 

called deterministic tournament selection algorithms.  

The winner of the k contestants that take part in each 

tournament enters the mating pool. In the non-

deterministic variant, a probability for the individual 

selection p is defined. The best individual in the 

tournament is selected with probability p, the second best 

with probability 𝑝(1 − 𝑝), the third best with probability 

𝑝(1 − 𝑝)2 and so on. The i-th best individual in a 

tournament enters the mating pool with probability 

𝑝(1 − 𝑝)𝑖. (Weise, 2009) 
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Figure 8: Tournament Selection - “TournamentSelect r,p” 

(Weise, 2009) 

 

 

4. SETTINGS OF EVOLUTION STRATEGY 

AND TOURNAMENT SELECTION 

PARAMETERS 

We tested different settings of the evolution strategy 

algorithm and tournament selection parameters. We 

defined a step and lower and upper boundaries for these 

parameters.   

 

Table 1: Settings of Evolution Strategy And Tournament 

Selection Parameters  
Parameter Step Lower 

Bound 

Upper 

Bound 

m … Size of population 1×n 1×n 6×n 

𝑚MP … Number of offspring 1×n 1×n 6×n 

q … Number of successes 

(the offspring is better than 

the parent) to be monitored 

1×n 1×n 6×n 

k … Number of other 

contestants per tournament 

1×n 1×n 6×n 

p … Probability of the 

individual selection 

0.1 0.1 0.6 

 

5. TESTED SIMULATION MODELS 

Considering the time required for testing the behaviour 

of optimization methods, we substitute the testing on the 

discrete simulation models (and its objective function) by 

a different testing function to reduce the duration of 

testing. We tested a different setting of the evolution 

strategy on four testing functions - De Jong´s, 

Rosenbrock´s, Michalewicz´s, Ackley´s functions -  and 

discrete event simulation model. (Raska & Ulrych, 2015) 

We simulated all feasible solutions of the discrete event 

simulation model to build a database of simulation 

experiments to increase the speed of simulation 

optimization.  

5.1. Testing functions 

The domain of the function is a defined step for each axis 

– substitution of the simulation model input parameter 

(discrete) values of the discrete event simulation model. 

All testing functions were minimized.  

 

5.2.  De Jong´s Function 

A convex and unimodal testing function. The function 

definition: (Pohlheim, 2006) 
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Where symbols denote: 

  XF … Objective function 

 j … Index of control 

 n … Dimension of the search space - the 

dimension of the search space is 10; 20; 30; 40; 

50 

 xj
 … Value of control - testing functions (except 

Michalewicz function) input parameters values 

range from -30 (lower boundary) to 30 (higher 

boundary) 

 

We substitute the testing on the simulation models by 

testing on the testing function, and we found that the 

smallest step that can be performed by the optimization 

methods is 0.01 for each axis in the search space (xj mod 

0.01=0). The input parameters are not continuous.  

This resolution represents 8,1504×10188 possible 

solutions (combinations of testing function input 

parameters) in a fifty dimensional search space. To 

achieve a better idea of the testing functions landscapes 

the continuous testing functions are shown in the 

following four figures. De Jong´s continuous function is 

shown in Figure 9.  

 

 
Figure 9: De Jong´s Function 

 

5.3. Rosenbrock´s Function 

Rosenbrock´s (Rosenbrock's valley, Rosenbrock's 

banana) function is a unimodal and non-convex testing 

function. The function definition: (Pohlheim, 2006) 
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Rosenbrock´s continuous function is shown in Figure 10. 

 

 
Figure 10: Rosenbrock´s Function 

 

5.4. Michalewicz Function 

Michalewicz function is a multimodal test function (n! 

local optima). The parameter m defines the "steepness" 

of the valleys or edges. Larger m leads to a more difficult 

search. For very large m the function behaves like a 

needle in a haystack (the function values for points in the 

space outside the narrow peaks give very little 

information on the location of the global optimum). 

(Pohlheim, 2006) 
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We selected 5m  in our simulation model. The 

Michalewicz continuous function is shown in Figure 11. 

  

 
Figure 11: Michalewicz Function 

 

5.5. Ackley´s Functions 

Ackley´s function is a multimodal test function. This 

function is a widely used testing function for premature 

convergence. (Tvrdik, 2004)  
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Ackley´s continuous function is shown in Figure 12. 

 

 

Figure 12: Ackley´s Function 

 

5.6. Discrete event simulation model 

The tested discrete event simulation model is focused on 

a production workshop consisting of the workplaces 

shown in Table 2: Production workplaces. The 

simulation model was built in Tecnomatix Plant 

Simulation software – see Figure 13. 

 

 
Figure 13: Discrete Event Simulation Model 

 

Table 2: Production workplaces 

Workplace Number 

-WN 

Description 

1 Sawmill 

2 Lathe 

3 Milling machine 

4 Drill 

5 Control station - input 

6 Control station - output 

 

The product passes through the following workplaces: 

5 → 1 → 2 → 3 → 4 → 6. Transportation between 

workplaces uses a forklift truck with a speed of 

60 [𝑚/𝑚𝑖𝑛]. The distance between the workplace is 20 

metres. Four types of products are processed at the 

workshop. The first product arrives every 13 minutes, the 

second product arrives every 5 minutes, the third product 

arrives every 20 minutes, and the fourth product arrives 

every 18 minutes at the workshop.  

The next table contains the sequences of the workplaces 

which the product passes through. This table also 

contains the time of processing (and also intervals) at the 

workplace. 
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Table 3: Sequence of the Workplaces 

Product  
Sequence of Workplaces/Time of Processing [𝐦𝐢𝐧] 
5 1 2 3 4 5 6 

1 5 [1,15] [3,22] [2,24] [4,15] 6  

2 5 [1,23] [3,15] [2,25] [3,12] [4,23] 6 

3 5 [1,18] [4,19] [3,17] [4,30] 6  

4 5 [1,25] [2,26] [3,25] [2,15] [3,25] 6 

 

The product is placed in the buffer with a maximum 

capacity of 15 units before the inspection station after the 

processing. The time of product inspection is from 20 

seconds to 30 seconds (mean - 27 seconds). If the product 

fails the inspection, the worker must immediately rework 

the product.  

The next table contains the probability of a defective 

product (marked as PoDP) and rework time (RT) in 

minutes using different random distribution at different 

workplaces (workplace number - WN).  

 

Table 4: Probability of a Defective Product (PoDP) And 

Rework Time (RT) – The First and Second Product 

WN 

Product 

1 2 

PoDP RT [min] PoDP RT [min] 

1 3% NORM(20,5) 2% NORM(25,5) 

2 5% NORM(18,5) 4% NORM(10,5) 

3 5% NORM(20,5) 5% TRIA(25,30,35) 

4 4% NORM (20,8) 7% TRIA(14,18,25) 

 

Table 5: Probability of a Defective Product (PoDP) And 

Rework Time (RT) – The Third and Fourth Product 

WN 

Product 

3 4 

PoDP RT [min] PoDP RT [min] 

1 2% NORM(22,5) 1% NORM(20,10) 

2 4% NORM(20,5) 3% NORM(30,10) 

3 2% TRIA(20,25,30) 7% NORM(20,10) 

4 2% TRIA(20,25,30) 2% NORM(25,10) 

 

The main goal is to determine the number of machines 

and controllers at individual workplaces according to a 

number of lift trucks, machines and controller utilization 

(maximizing production processes). 

 

The objective function: 

𝐹(𝐗) =  
NumberOfProcessedProducts 

10

+ ∑ (MachineUtilization

4

𝑊𝑁=1

+ ControllerUtilization) (10) 
 

 

Decision variables of the simulation model (decision 

variables): 

 Number of machines at the first, second, third, 

fourth workplace  

 Number of controllers at the first, second, third, 

fourth workplace  

 Number of forklifts 

 

6. OPTIMIZATION EXPERIMENTS 

We specified the same conditions which had to be 

satisfied for each optimization method, e.g. the same 

termination criteria. The optimization method could 

perform a maximum of 100,000×n (parameter n denotes 

the dimension of the search space) simulation 

experiments to find the global optimum in the search 

space of the testing function (Tvrdik, Evolutionary 

algorithms - Study Texts (in Czech language Evoluční 

algoritmy - učební texty), 2004).  

The termination criterion for the discrete event 

simulation model 10,000×n (n=9). Another termination 

criterion is VTR (value to reach) – stopping the 

simulation optimization if the optimum is found. We 

tested all possible solutions of the simulation model, so 

we could specify the value to reach. We also created a 

database of the simulation experiments. If the simulation 

optimizer wants to perform the simulation run, the 

optimizer searches for the simulation experiment in this 

database. If the simulation experiment is found, the 

optimizer downloads the simulation experiment and its 

objective function value. 

If the optimization method has the same parameters as 

another optimization method, we set up both parameters 

with the same boundaries (same step, lower and upper 

boundaries). 

We tested different settings for each evolution strategy 

selection. The next table (see Table 6) shows the same 

settings of evolution strategy parameters for each type of 

tournament selection. Parameter D denotes the 

dimension of the search space. We tested four types of 

the tournament selection:  

 With replacement - “Tournament R” (see 

Figure 5); “Tournament RP” (see Figure 8)  

 Without replacement - “Tournament W1” (see 

Figure 6); “Tournament W2” (see Figure 7) 

If the tournament selection “Tournament R”, 

“Tournament W1” or “Tournament W2” is tested, the 

parameter - The Number of Contestants - varies from 

1×D (lower boundary) to 6×D (higher boundary) with 

step 1×D. This means that we tested 1,296 different 

series - different settings - for each selection and also for 

each testing function or the discrete event simulation 

model.  

If we test the tournament selection “Tournament RP”, the 

parameter - The Probability for The Individual Selection 

- varies from 0.1 to 0.6 with step 0.1 We have to test 

7,776 series for this tournament selection testing for each 

simulation model.  

We tested 233,280 series on the testing functions and 

11,664 series on the discrete event simulation model. We 

replicated these series several times to reduce the random 

behaviour of the tested optimization method and its 

selection strategies. 
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Table 6: Settings of Evolution Strategy Parameters 
Method 

Parameter 
Step Bounds Number 

of 

Series 
Lower 

Bound  

Upper 

Bound 

Number of 

Offspring  
1×D 1×D 6×D 

6*6*6*6 

= 1296 

Number of 

Success (the 

Offspring Is 

Better Than the 

Parent) To Be 

Monitored  

1×D 1×D 6×D 

Population Size  1×D 1×D 6×D 

Number of 

Other 

Contestants Per 

Tournament  

1×D 1×D 6×D 

 

We evaluated these optimization experiments with 

different settings - series. The following charts show the 

average optimization method success of finding the 

optimum (suboptimum if the optimum was not found).  

The first criterion is the function whose output is the 

standardized scalar value 𝔣1 ∈ [0,1] of not finding the 

known VTR (value to reach). This value represents the 

failure of finding the global optimum by the optimization 

method in a particular series – value minimization. This 

value is expressed by pseudopascal code and shown in 

Figure 14. This algorithm contains the following 

parameters: 

 𝑋∗ … List of found optima in each optimization 

experiment in the series  

 𝐗∗ … Global optimum 𝐗∗ in the search space 

 𝜀 … Tolerated deviation from the value of the 

objective function value of global optimum 

 𝐹(𝐗) … Objective function value 

 𝑛𝑆𝑢𝑐𝑐 … Counter of successful finding optimum 

 𝔣1 … Standardized scalar value 

 

Figure 14: Pseudopascal Algorithm of First criterion – 

Finding the Global Optimum or Suboptimum  

 

If the failure is 100[%] the first criterion equals 1 

therefore we try to minimize this criterion. Average 

Method Success of Finding Optimum can be formulated 

as follows:  

𝑓1 𝐴𝑉𝐺 = (1 −
∑ 𝑓1𝑖

𝑠
𝑖=1

𝑠
) ∙ 100[%] 

(11) 

 

where i denotes the index of one series, 
i

f1
 denotes the 

value of the first criterion (Optimization method success 

– the best value is zero), s denotes the number of 

performed series. 

The series were also evaluated regarding specified 

tolerance between the best optimum (suboptimum) found 

in the series and the specified parameter . We initially 

specified 001.0 . The optimization method had to find 

the candidate solution whose objective function value is 

nearly the same as the objective function value of the 

global optimum in the search space (the tolerance equals 

0.001).  

The following chart provides us with information about 

the success of finding the optimum: 

 We can assume high average selection 

strategies success of finding the optimum 

(suboptimum) if the dimension of the search 

space of the testing function is lower or the 

objective function surface is simple 

 If the testing function surface is hard – 

multimodal, planar regions - the optimization 

failure rate of the optimization selection 

strategies is high (the high number of absolutely 

unsuccessful series 𝑓1 = 1, i.e. series does not 

contain any optimization experiment where the 

optimum was found) 

 Tested tournament selection strategy types have 

little effect on evolution strategy success  

 The success of finding the De Jong´s testing 

function optimum rapidly decreases if the 

dimension increases. We obtained high success 

of finding the optimum on testing function 

Ackley10.  

 Tested selection strategies – “Tournament R” 

and “Tournament W2” - have almost the same 

success of finding the optimum 

 

 

Figure 15: Average Optimization Method Success of 

Finding Optimum (Suboptimum) – Testing Functions - 

the Number Denotes the Dimension of the Search Space 
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 Selection strategies – “Tournament R” and 

“Tournament W2” – tested on the discrete event 

simulation model have almost the same success 

of finding the optimum 

 The failure rate (the high number of absolutely 

unsuccessful series 𝑓1 = 1) of finding the 

optimum of the objective function of the 

simulation model is almost seventy percent 

 

 

Figure 16: Average Optimization Method Success of 

Finding Optimum (Suboptimum) – Discrete Event 

Simulation Model  

 

The second criterion f2 is useful when there is no series 

which contains any optimum or a solution whose 

objective function value is within the tolerance of the 

optimum objective function value (the first criterion f1 

equals zero in this case). This function evaluates the 

difference between the objective function value of the 

best solution found in the series and the optimum 

objective function value. The list of found optimums 

considering objective function value using the 

comparator function is sorted in ascending order. After 

that the value of the second criterion is calculated using 

the formula: 

𝑓2 = (
𝐹(𝐗∗) − 𝐹(𝑋𝐵𝑒𝑠𝑡)

𝐹(𝐗∗) − 𝐹(𝑋𝑊𝑜𝑟𝑠𝑡)
) (12) 

 

where  *
XF  denotes the objective function value of the 

global optimum of the search space;  BestXF  denotes the 

objective function value of the best solution found in a 

concrete series;  WorstXF  denotes objective function 

value of the worst found solution (element) of the search 

space. Output of function can take as value  1,02 f . 

The average of the second criterion of absolutely 

unsuccessful series where 𝑓1 = 1 is calculated using the 

formula:  

𝑓2 𝐴𝑉𝐺 = (1 −
∑ 𝑓2𝑖

𝑠
𝑖=1

𝑠
) ∙ 100[%] (13) 

where i denotes the index of one series, 𝑓2𝑖
 denotes the 

value of the second criterion (optimization method 

success – the best value is zero), s denotes the number of 

performed series. 

The average of the difference between the optimum and 

the local extreme tested on the testing functions is shown 

in Figure 17. The charts contain only series where f1 = 1 

(no optimum was found in the series).  

 

 

Figure 17: Average of Second Criterion Success: 
(1 − 𝑓2) ∗ 100; Absolutely Unsuccessful Series (𝑓1 = 1) 

- Chart Value Maximization – Testing Functions 

 

 

Figure 18: Average of Second Criterion Success: 
(1 − 𝑓2) ∗ 100; Absolutely Unsuccessful Series (𝑓1 = 1) 

- Chart Value Maximization – Discrete Event Simulation 

Model 

 

We can see that each tournament selection type has a 

problem with the complicated objective function 

landscape – Michalewicz´s function. The optimization 

method provides local optima far from the global 

optimum. The charts (see Figure 17 and Figure 18) also 

contain other information. Evolution strategy selections 

found the global optima very near to global optimum of 

Ackley’s function. Tournament selection “Tournament 

W1” was better (according to the difference between 

optimum and local extreme) than the other types of 

selections on average. Averages of the second criterion 

success are: “Tournament R”: 63.7[%]; “Tournament 

W1”: 82.7[%]; “Tournament; W2”: 63.5[%]; 

“Tournament RP”: 77.3[%]. Tournament selections 

“Tournament R” and “Tournament W2” have almost the 

same success of the second criterion calculated for the 

testing functions and discrete event simulation model. 
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Objective functions values of found global optima were 

very close to the objective function of the global 

optimum of the discrete event simulation model. 

 

7. CONCLUSION 

The goal of the research is to test different settings 

(series) of the tournament selection strategies of the 

Evolution Strategy on testing functions and a discrete 

event simulation model. We evaluated the success of 

finding the optimum by these strategies and we also used 

a function evaluating the difference between the 

objective function value of the best solution found in the 

series and the optimum objective function value.  

The success of finding the optimum by the Evolution 

Strategy selection strategies strongly depends on the 

objective function surface. The problems occurred with 

the finding of the optimum of the Michalewicz’s function 

– flat areas, multimodal function. 

 Tested selection strategies – “Tournament R” and 

“Tournament W2” - have almost the same success of 

finding the optimum. Tournament selection 

“Tournament W1” was better (according to the 

difference between the optimum and local extreme) than 

the other types of selections on average. 
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