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ABSTRACT 

Airports are considered complex system in which the 

coexistence of different actors competing and 

collaborating for the same resources under operational 

time uncertainties can cause a poor performance on the 

overall ATM (Air Traffic Management) system. In order 

to facilitate the process of decision making to mitigate 

the propagation of perturbations through the different 

airport processes a causal model relying on machine 

learning, using data mining algorithms has been 

implemented to predict feasible states.  This paper 

introduces a new approach for modelling causal 

relationships, which can be used for further analysing of 

feasible scenarios by means of simulation techniques. 

The state space analysis of reachable airport states is a 

relevant approach to validate the causal model using a 

huge amount of historical data for predictive purposes. 

 

Keywords: airport management, Coloured Petri nets, 

Bayesian networks, decision support tool. 

 

1. INTRODUCTION 

The airport is a complex transportation hub serving 

aircraft, passengers, cargo, and surface vehicles (Office 

of Technology Assessment 1984). It has three major 

components: airside, landside and the terminal building, 

which performs connection between them. Airside is an 

airport area, where aircraft operate: take off and land, 

move between the different runways and the terminal.  

Landside consists of roadways and parking facilities. 

Terminal complex mainly consists of buildings, serving 

passengers and air cargo. All these areas are strongly 

interconnected to each other through different 

procedures and operations, often fully or partially 

operated and controlled with the use of IT systems. These 

operational activities of airports with modernized IT 

systems are generating an immense amount of data, 

which can be used for better understanding of hidden 

dynamics both at the airside and at the landside. 

However, raw data is quite difficult to be analysed at a 

glance due to its large volume: for instance, Madrid-

Barajas airport airside operations data for one hour of 

operation with maximum 46 aircraft landed and 

departed, would make a table of at least 25 different 

columns with aircraft identification information and data 

stamps of its movements (landing, taxi in, engine start, 

taxi out, take off, etc.) and services it went through. The 

data table of such size can be quite demanding to analyse 

manually. Therefore for the analysis commodity, these 

data can be expressed in the form of so called Key 

Performance Indicators. These Key Performance 

Indicators (KPIs) are quantitative expressions of 

effectiveness in achieving performance objectives 

(European Organisation for the Safety of Air Navigation 

2014). As various areas of airport due to their nature can 

have various KPIs, they are usually merged into Key 

Performance Areas (KPAs), representing different areas 

of management interest. An instance of airport KPAs and 

KPIs is presented in Table 1. The list of KPAs and KPIs 

can be enlarged according to what targets management 

team desires to monitor and analyse. 

 

Table 1: Example of KPAs and KPIs (Tabernier 2015) 
KPAs KPIs 

Environment / 

Fuel Efficiency 
Average fuel burn per flight. 

Airspace Capacity 

En-Route and Terminal Manoeuvring 

Area throughput (average movement 

per hour). 

Airport Capacity 
Runway throughput (average 

movement per hour). 

Predictability 
Variance of difference in actual & 

Flight Plan  

Punctuality 
% Departures < +/- 3 mins vs. 

schedule due to ATM causes. 
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Unfortunately, due to tight interdependencies between 

apparently isolated airport sub processes, airport 

performance is very sensible to any change in the 

programmed activities which increase drastically the 

complexity of airport performance analysis (European 

Organisation for the Safety of Air Navigation 2017a). 

The understanding of the sources of occurred operational 

issues remains one of the main directions of air transport 

management scope. Note for instance that European 

Organisation for the Safety of Air Navigation 

(EUROCONTROL) aggregates the performance data 

obtained from European airports and in the form of 

publicly open documents reveals main European air 

transport performance problems.  

According to one of such reports 2016 was a year with 

increased volume of flights delay, and furthermore the 

contribution of reactionary delay has increased up to 45% 

of total delay minutes (Walker 2017). A reactionary 

delay is a delay caused by late arrival of aircraft or crew 

from previous flights (European Organisation for the 

Safety of Air Navigation 2005). In such manner any 

delay occurred in the departure airport could lead to 

severe delays in the following successive flights and their 

airports of destination. Nevertheless this kind of delay is 

not the only reason of on-time performance decrease in 

2016, as it could be seen on Figure 1. 

 

  
Figure 1: Primary Delay Causes in Europe 2015 vs. 2016, 

Minutes per Flight (Walker 2016) 

 

Flight delays occurred due to weather conditions also 

constitute a considerable part of the common delay 

reasons structure. The fact that weather changes could 

not be controlled but could be predicted, motivates to 

obtain the way to efficiently prepare the airport system to 

any possible impact of weather conditions in order to 

reduce any negative consequence on its operational 

activities.  

In this paper it is described an approach to model the 

possible dependence of one of the main airport 

performance indicators  - Arrival Sequencing and 

Metering Area (further referred to as ASMA) transit time 

on the weather conditions of arrival airport. Section 2 

describes mathematical tools that could be used for the 

modelling. Section 3 explains the use of Coloured Petri 

Nets formalism for modelling and simulation of ASMA 

transit time changes. Section 4 discusses some generated 

results, directions for further research and some 

concluding marks are given in Section 5. 

 

1.1. Forecasting in Air Traffic Management 

Various organisations perform forecasts for 

enplanements, airport operations, tracon operations and 

others. For instance, Federal Aviation Administration 

(USA) makes its forecast based on demand for aviation 

services. Econometric and time series modelling are 

typically used for this purpose. Beside of high potential 

powerfulness, econometric modelling includes many 

complex factors and parameters from internal and 

external infrastructure, which make its application quite 

difficult and skills demanding. On the other hand, time 

series modelling seems simpler as it consists of 

extrapolating knowledge from historical data into the 

future state. Nevertheless, such extrapolating requires 

solid statistical analysis and accurate historical data 

(Federal Aviation Administration 2016). 

European Organisation for the Safety of Air Navigation 

(EUROCONTROL) provides customised analysis and 

modelling for any airport stakeholders with a use of 

calculations of performance indicators and different 

statistical metrics (European Organisation for the Safety 

of Air Navigation 2017b). International Civil Aviation 

Organization (ICAO) supports airports planning with 

medium and long-term forecasts of air traffic for global, 

regional and route-group levels (International Civil 

Aviation Organization 2017). These organisations 

provide open to public global and regional forecasts, 

however when it comes to the level of particular airport, 

these organisations could provide only an assistance in 

analysis and modelling, acting as an external consultant.  

 

1.2. Causal Analysis 

Many researchers offer different approaches for 

understanding and forecasting perturbations of various 

airport activities. For instance, Quadratic Response 

Surface (QRS) linear regression models and ensemble 

Bagging Decision Tree regression (BDT) models have 

been used to assess weather impact on maximum number 

of movements per time interval in few USA airports 

(Wang 2012). Queueing and integer programming 

models have been used to model the taxi-in process 

(Idris, Anagnostakis, Delcaire, Hansman, Clarke, Feron 

and Odoni 1999; Andersson,  Carr, Feron and Hall 2000; 

Roling and Visser 2007). According to the conclusions 

of these works, the methods used have appeared to be 

quite helpful, but still not giving perfect approach for 

airport stakeholders. So the search needs to be continued. 

Current modernisation initiatives Single European Sky 

ATM Research Programme (SESAR) in Europe and 

NextGen in USA impulse implementation of new 

operational concepts and technologies, aiming to 

transform current aviation network into highly efficient, 

robust and cost optimised system. In order to reach such 

efficiency it is necessary to understand and fully control 

any performance area of airport system. For measuring 

level of success in these tasks airport management can 

use performance indicators, which permit to compare 

actual and planned functionality of airport. 

It is important to remember, that airports are not 

operating in isolated conditions, instead, airport 
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operational disruptions could generate severe reactionary 

delays through the full aviation network. Thus, it is 

important the research on new efficient tools for the 

causal analysis of operational deviations and its 

prediction, considering the operational conditions that 

affects each particular airport for the design of mitigation 

mechanism in the own airport but also at network level.  

 

2. DATA RELATIONSHIP DISCOVERY 

We have been provided with Key Performance Indicators 

data for year 2015, used by analysists of CRIDA 

(Reference Center for Research, Development and 

Innovation in Air Traffic Management) and the data from 

the METAR report, consisting of recorded 

meteorological conditions on the territory of Madrid-

Barajas airport. Some of them are listed in Table 2. 

 

Table 2: KPAs and KPIs 

KPA KPI 

TMA 

Percentage of flights with holding 

Separations - en NM 

Additional time in ASMA 

AIRPORT 

Real turnaround time compared to 

planned 

Additional taxi-out time 

Time between consecutive operations 

on a runway 

Regulated departures adjustment to 

CTOT 

Capacity 

Difference between capacity and 

demand 

Available capacity 

Predictability 

Punctual arrivals 

Punctual departures  

Arrivals’ standard deviation 

Departures’ standard deviation 

Meteorology 

Wind direction 

Variable wind direction 

Wind intensity 

Gusts of wind 

CAVOK 

Predominant visibility 

Minimal visibility 

Temperature 

 Dew Point 

Atmospheric pressure 

Phenomenon 

Cloudiness 

 

For various KPIs’ data has been provided in a different 

form. Some values have been measured for one hour 

interval, others for 20 minutes interval. Meteorological 

data consisted of observations for every 30 minutes. 

Furthermore, we have been commented by CRIDA 

analysts on the particular interest of discovering hidden 

causes of perturbations of time in ASMA of radius of 60 

nautical miles (NM), expressed as additional ASMA 

transit time (current performance reports are performed 

for ASMA with radius of 40 NM).  

It has been noted (Klein, Kavoussi and Lee 2009; 

European Organisation for the Safety of Air Navigation 

2015) that weather impact on airport performance is quite 

significant, but yet not studied well enough. Therefore it 

has been chosen to study weather impact on one of the 

KPIs of Madrid-Barajas airport. For the scope of this 

paper study of weather conditions impact on airport 

functionality, the following available data has been 

considered of the first study interest: 

 

 Additional ASMA transit time – a difference 

between actual time spent by aircraft in ASMA 

area with radius of 60 NM and average time, 

statistically measured for particular type of 

aircraft (for the modelling purpose shortly  

referred to as ASMA). 

 Number of flights with holding patterns – 

number of flights, which have to take a special 

route around aerodrome in order to wait for an 

appropriate moment for landing. (H) 

 Wind direction (Wind) and wind intensity (WI). 

 Predominant visibility on the aerodrome 

territory (Vis). 

 Dew point (DP). 

 Atmospheric pressure (Pres). 

 Weather phenomenon type – if fog or any other 

similar phenomenon occur (Fen). 

 Cloudiness (Cloud). 

 

Among the different analytical tools (Marsland 2015; 

Song 2007) to discover relationship structure between 

observed variables, the construction of Bayesian 

networks seems to provide a promising approach to 

better understanding of complex systems, such as airport, 

thanks to its capability to cope with high-dimensional 

problems of different data types (Marsland 2015; Song 

2007; Xu, Laskey, Chen, Williams and Sherry 2007) and 

many powerful computer programs, that made any 

related computations easy and rather fast.  

 

2.1. Bayesian Networks  

Bayesian networks are commonly used for 

representation of a knowledge about an uncertain area 

(Song 2007). A Bayesian network is a graphical 

representation of relationships between different 

variables, where given variables are represented as nodes 

and their probabilistic dependencies of each other are 

represented as directed arcs connecting the nodes. In 

such manner the absence of direct arc between some two 

nodes means that these two nodes are conditionally 

independent of each other (Marsland 2015). When a node 

has an outgoing arc, it is called parent, the nodes with 

incoming arcs are called children. The joint probability 

distribution PX of the chosen variables X is represented 

as a product of conditional probability distributions of 

each variable Xi (Nagarajan, Scutari, and Lèbre 2013): 
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𝑃𝑋(𝑋) =  ∏ 𝑃𝑋𝑖 (𝑋𝑖|П𝑋𝑖
)                                             (1) 

𝑝

𝑖=1

 

 

Through the conditional probability distribution, 

calculated for every variable of the studied data, it is also 

possible to conclude about posterior or future data 

values. This conclusion is expressed as likelihood 

function and could serve as the base for prediction model 

(Gelman, Carlin, Stern, Dunson, Vehtari and Rubin 

2014). 

The task of discovering a Bayesian network fitting the 

data consists of two phases: structure and parameter 

learning. Various algorithms have been developed for the 

first phase execution. However among all of them only 

two algorithms have been chosen for the purposes of this 

paper – Silander - Myllymäki (SM) (Silander and 

Myllymäki 2006) and Max-Min Hill-Climbing (MMHC) 

(Tsamardinos, Brown, and Aliferis 2006) algorithms. 

These algorithms combine constraint-based and score-

based algorithms strong sides and are claimed to be 

highly effective in various situations (Nagarajan, Scutari, 

and Lèbre 2013). However the approaches, used by these 

algorithms, are quite different. 

 

2.1.1. Silander – Myllymäki Algorithm 

This algorithm was developed for discovering the 

globally optimal Bayesian network without any 

structural constraints (Silander and Myllymäki 2006). In 

order to find the optimal network structure for the 

specific data, the algorithm has to perform several steps: 

 

1. Find the best parents for all n2n-1 pairs of 

variables, taking the calculated scores for n2n-1 

as a choice criteria (the higher the score values, 

the better is the fitness of a candidate variable 

as a parent). 

2. Find the best children node, which cannot be a 

parent to any other variable. 

3. Based on the results of Step 2, find the best 

arrangement of the variables. 

4. Find a best network, taking into account the 

results of Step 1 and 3 (Silander and Myllymäki 

2006). 

 

Despite of quite high quality of the possible SM 

algorithm results, it has some computational 

complications. Thus according to the experiments 

performed by the authors of SM algorithm, the memory 

requirement for discovering a network of 32 variables is 

about 16 GB, although distribution of the computation 

process among few computers could help to overcome 

this restriction (Silander and Myllymäki 2006). Still, as 

finding a globally optimal network is NP-hard 

(Chickering, Meek, and Heckerman 2004), the 

computational time for SM algorithm is rather long and 

could easily take 50 hours for  a dataset of 30 variables 

(Silander and Myllymäki 2006). Therefore in order to 

speed up the discovering of Bayesian network, the use of 

faster performing algorithm has to be considered as well. 

One of the most popular algorithms (Nagarajan, Scutari, 

and Lèbre 2013) with this characteristic is Max-Min Hill 

Climbing (MMHC) algorithm. 

 

2.1.2. Max-Min Hill-Climbing Algorithm 

This algorithm combines principles from local learning 

and both constraint-based and search-and-score 

techniques. First, it reconstructs the skeleton of a 

Bayesian network, and then orients the arcs by 

performing a Bayesian-scoring greedy hill-climbing 

search (Tsamardinos, Brown, and Aliferis 2006).  

This algorithm has many similarities with the Sparse 

Candidate (SC) algorithm, which was one of the first 

successfully performing approaches, applied to large 

datasets with several hundred variables (Friedman, 

Linial, and Nachman 2000). Both SC and MMHC 

perform stepwise reduction of a candidate parents set for 

each variable and then search for a network that 

maximise a chosen scoring function. However they do 

have one important difference. The SC algorithm 

performs the reduction and network search steps 

iteratively until there is no improvement in the scoring 

function value, MMHC performs the candidate parent 

estimation only once (Nagarajan, Scutari, and Lèbre 

2013), therefore fastening the computational process by 

several times without significant loss in correctness 

(Tsamardinos, Brown, and Aliferis 2006). 

 

2.1.3. Data Preparation and Learning the Network 

Structure 

As the dataset, provided for analysis, consisted of data 

for different time intervals, first it has been necessary to 

transfer all KPIs to the same time interval for facilitation 

of analysis. It was considered to perform the analysis of 

data for the time interval of the size of one hour (most 

common interval of observation that have been seen in 

the KPIs´ dataset). All chosen for analysis KPIs´ with 

smaller time interval of observations have been 

aggregated till the level of one hour.  

Additionally, it has been noticed, that provided KPIs 

values do not all have the same character of values. Some 

KPIs are observed as continuous variables, others – as 

discrete: 

 

 Continuous variable - variable, that can take on 

any real value within certain interval (Joshi 

1989); for instance, additional ASMA time is 

expressed in minutes. 

 Discrete variable - can take on only certain 

values (Joshi 1989); for instance wind intensity.  

 

Presence of such mixed data can potentially cause a 

problem in the step of defining a probabilistic model, 

fitting the data (Nagarajan, Scutari, and Lèbre 2013). 

Therefore it has been decided to perform a common used 

solution to avoid the mentioned problem – perform 

discretization or binning of the data. Discretization 

means assigning some particular integer value to the 

certain intervals of continuous data. There are different 

ways to define the intervals for data discretization: using 
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expert knowledge on data, using heuristics, performing 

discretization and structure learning iteratively, etc. 

(Nagarajan, Scutari, and Lèbre 2013). Taking into 

account common practice of KPIs´ analysis by CRIDA 

experts, it has been decided to discretise continuous data 

as shown in Table 3. 

 

Table 3: Intervals of Discretization 
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In Table 3 the following abbreviation have been used: 

 

 VRB – variable wind direction. 

 FEW – few clouds. 

 SCT – scattered. 

 BKN – broken clouds. 

 OVC – overcast. 

 BR – mist. 

 DZ – drizzle. 

 FG – fog. 

 RA – rain. 

 SN – snow. 

 

After data preparation both SM and MMHC algorithms 

have been executed subsequently in the framework of R 

software. 

As soon as both algorithms have performed their 

Bayesian network learning for the chosen airport 

performance data, the best network can be chosen based 

on the best value of the network scoring functions. Both 

algorithms have a possibility to evaluate the learnt 

network with three popular statistical scoring functions: 

BDeu (Bayesian-Dirichlet equivalent uniform), AIC 

(Akaike Information Criterion) and BIC (Bayesian 

Information Criterion). These scoring functions are 

common tools for selection between different statistical 

models and represent goodness of fit of a model to 

observed data (Brockwell and Davis 1991). 

 

 
Figure 2: Bayesian network obtained with MMHC and 

SM Algorithms 

 

In the case of chosen for this paper variables, both SM 

and MMHC algorithms have come to the same network 

structure, shown on Figure 2, therefore it was decided not 

to compare their score functions. Every arc of obtained 

network had probability of being true of not less than 

95% and as MMHC algorithm has come to its results in 

a shorter computational time (less than one minute for 

Intel (R) i5-4300M CPU 2.60 GHz, 8 GB RAM), it has 

been considered to use its results for the further study. 

 

2.2. Bayesian Inference 

The knowledge obtained from Bayesian Networks about 

the data structure and its parameters is used for reasoning 

on further possible parameters of the chosen airport 

performance indicators. There are two main approaches 

for updating the posterior probabilities of data 

distribution: exact and approximate inference.  

Variable elimination and Junction Tree are the two best-

known approaches for exact inference task. First 

approach uses the network structure directly, taking into 

account the local distributions of the data variables. On 

contrary, the second algorithm transforms the network by 

clustering its nodes into a tree. However the feasibility of 

exact approach is restricted to small networks. 

Approximate inference algorithms create samples from 

the local distributions by the use of Monte Carlo 

simulations and then evaluate them. The sampling can be 

performed in different ways, implemented in several 

approximate algorithms (Nagarajan, Scutari, and Lèbre 

2013).  

The parameters learnt in this step take the form of 

regression coefficients, belonging to regression 

functions, describing the conditional dependence 

between studied variables. For this research it is 

considered to use the logic sampling approximate 

inference algorithm, already included in functionality of 
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one of the R software packages for Bayesian Networks. 

The inferenced parameters of a network have been used 

for mathematical expression of relationships between 

observed variables in arc expressions of CPN model in 

order to perform simulation run and state space analysis. 

 

3. MODELLING WITH CPN FORMALISM 

A Coloured Petri Net (CPN) is a formalism, aimed to 

design, visualise and explore the behaviour of various 

systems. In order to model the system with CPN 

formalism it is necessary to define a set of parameters as 

(Jensen and Kristensen 2009): 

 

 Set of colours – to represent the model entities 

(key performance indicators). 

 Set of places nodes – to represent combinations 

of the model entities. 

 Set of transition nodes – to represent systems’ 

activities (weather changes, arriving aircraft, 

etc.). 

 Set of Arcs – to relate transition and places 

nodes. 

 Guard functions, which are associated to the 

transition nodes in order to insure their 

enabling only in case of satisfaction of 

conditions, described in the corresponding 

guard function. 

 

For the net elements inscriptions CPN ML, a functional 

programming language, is included to the modelling 

framework. It provides the way to make different 

declarations and perform modelling of data manipulation 

(Piera and Musič 2010). This language is used in 

construction of arc functions and in declarations of 

intervals of possible values for model parameters.  

For modelling the chosen KPIs of Madrid-Barajas 

airport, the colours, representing weather indicators, 

average additional ASMA time, and number of flights 

with holding pattern have been chosen. Furthermore it 

has been considered to introduce the colour, representing 

system time counter, for having a tool to track system 

dynamics in time without increasing model complexity. 

Design of the developed CPN model is shown on Figure 

3. 

 

 
Figure 3: Weather Indicators CPN Model Design 

 

The studied KPIs are distributed among three places as 

follows: 

 

 Place Holding – number of flights with holding 

pattern (H). 

 Place TMA – additional ASMA time and time 

counter. 

 Place Weather – Wind, WI, Vis, DP, Pres, Fen 

and Cloud. 

 

Furthermore two supporting places, ensuring the element 

of stochasticity, have been also added to the model. They 

are: 

 

 Place Meteo stochasticity – provides tokens for 

stochastic weather changes. 

 Place Source – provides tokens for stochastic 

changes in number of arriving flights with 

holding pattern. 

 

In order to formulate the observed ASMA system 

behaviour in CPN Tools, it is required to define functions 

for the expressions of arc, connecting elements of the 

model. The arc functions have the following aspect, 

based on the maximum likelihood estimation parameters, 

obtained on the step of Bayesian inference: 

 

𝐶𝑖 = 𝛽 + 𝑘 ∗ 𝐶𝑗                                                                   (2) 

 

Where 

𝐶𝑖 = represents CPN colour i, a studied metric. 

𝛽 = represents intercept value. 

𝑘 = represents regression coefficient. 

𝐶𝑗  = represent CPN colour j, on which CPN colour i is 

conditionally dependent. When there are more metrics, 

on which colour i is conditionally dependent, they are 

included with the corresponding regression coefficients. 

After introducing all necessary system parameters, series 

of simulation runs can be executed in order to verify and 

validate the model.  

 

4. SIMULATION AND RESULTS  

Default tool of CPN Tools v. 4.0.1, which can be used 

for model verification, is the state space analysis. This 

analysis consists of generating all states and state 

changes of a model, that can be reached from the initial 

state (Jensen and Kristensen 2009). CPN Tools v. 4.0.1 

allows to graphically represent all possible system states 

through reachability tree (RT) – a directed graph, where 

root node represents initial marking of the system, and 

the successive nodes represent the new states, that can be 

reached from the initial state, if the corresponding 

transitions have been fired (Jensen and Kristensen 2009). 

Few series of state space construction (reachability tree 

generation) have been performed with a use of CPN 

Tools v. 4.0.1 software in order to explore how 

parameters of the system – colours, change their values. 

The initial markings of the model, used for state space 

analysis are shown in Table 4. These values have been 

chosen from the available historical data for the same 
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time period as for Bayesian inference, in order to 

compare the system dynamics, observed in the historical 

data and the changes, discovered through RT 

construction. 

 

Table 4: Simulation Scenarios Initial Markings 

Model parameters 

Scenario 

1 

Scenario 

2 

Scenario 

3 

Parameter value 

ASMA time 0 3 0 

Flights with holding 0 2 0 

Wind direction 7 0 7 

Wind intensity 0 2 9 

Visibility 4 2 3 

Dew point 0 1 1 

Pressure 3 1 1 

Phenomenon 0 4 4 

Cloudiness 0 2 1 

 

In the RT generated for all three chosen scenarios, in 

every tree a branch with the same weather indicators 

changes has been found. This has allowed to compare 

how ASMA transit time has developed in these RT 

branches and in the historical data. Figure 4, 5 and 6 

represent this comparison for each of three simulation 

scenarios respectively for the time period of 24 hours. 

 

 
Figure 4: CPN Simulated ASMA Transit Time, Real 

ASMA Transit Time, CPN Simulated Holdings and Real 

Holdings Comparison for Scenario 1 

 

 
Figure 5: CPN Simulated ASMA Transit Time, Real 

ASMA Transit Time, CPN Simulated Holdings and Real 

Holdings Comparison for Scenario 2 

 

 
Figure 6: CPN Simulated ASMA Transit Time, Real 

ASMA Transit Time, CPN Simulated Holdings and Real 

Holdings Comparison for Scenario 3 

 

All three simulation scenarios have demonstrated that 

additional ASMA time increases with the delay with the 

increase of number of flights with holding pattern, and 

also increases with the development of serious weather 

conditions (for instance, increasing wind intensity).  This 

is illustrated on Figure 7. Although this correlation 

becomes not significant in the hours of low number of 

arriving aircraft (night time). The same behaviour was 

noted in Scenario 2 and 3 as well.  

 

 
Figure 7: CPN Simulated ASMA Time and Real ASMA 

Time Comparison to CPN Simulated Wind Intensity and 

Real Wind Intensity for Scenario 1 

 

Potentially, a set of variables, representing events, 

preceding the entering of the aircraft into the ASMA, can 

be added into the model in order to take into account 

influence of en-route regulations on number of flights 

with holding pattern. 

Furthermore, it has been noticed that both number of 

flights with holdings and values of additional ASMA 

time do not increase infinitely. This phenomenon is 

considered to be probably related to the aerodrome 

capacity limit: an aerodrome can accept only finite 

number of aircraft per time interval (due to limited 

throughput of its runways). Nevertheless it is considered 

to perform more experiments in the future to better 

explore this phenomenon.  

The explored through RT system dynamics raises the 

question of adding more metrics to the model, potentially 

representing en-route events for different flights and also 

other KPIs, not listed in Table 2, but available in the 
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databases of Madrid-Barajas airport. After adding the 

new metrics to the model, Bayesian inference and new 

series of simulation with CPN framework should be 

performed with various realistic initial markings.  

 

5. CONCLUSIONS AND FURTHER RESEARCH 

This paper describes an approach to explore relationships 

between ASMA transit time deviations, number of 

flights with holding pattern and weather indicators with 

the use of Bayesian Network. Mathematical expressions 

of the discovered relationship have been used in order to 

build a model, capable to show possible states of the 

system for different scenarios of ASMA transit time 

changes. These scenarios are considered to be used by 

airport decision makers in order to design other scenarios 

and be prepared for any deviation that could occur in the 

terminal maneuvering area and its surroundings in the 

future and be able to explore the possible causes of any 

deviations of ASMA transit times occurred in the past. 

It is considered also that the model could be extended and 

more airport performance metrics could be added to it in 

order to perform more wide and complex analysis, 

considering bigger area of airport operational activities. 

The noise, representing stochasticity of weather 

conditions for aircraft on en-route phase, preceding 

arrival to the studied airport, could be also added and its 

influence could be observed during the further research. 

However the computational restrictions of the used 

software have to be taken into account, as if the model 

becomes more complex, it would take more time and 

computational resources in order to explore all possible 

state spaces and perform the analysis. 
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