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ABSTRACT 
In production and transportation logistics, it is frequent 
to have projects in which different tasks must be 
processed in parallel and completed before a common 
deadline. Usually, it is not desirable to assign scarce 
resources to a new project earlier than strictly 
necessary, since they might be currently occupied in 
other projects. When these tasks have random 
completion times, some natural questions arise: (i) how 
much can we delay the starting time of each task in the 
new project so that it can be completed by the deadline 
with a given probability? and (ii) how to compute these 
‘optimal’ starting times when not all tasks need to be 
necessarily finished to consider the project as 
completed? This paper proposes a hybrid approach, 
combining reliability concepts with simulation and 
optimization techniques, to support decision makers in 
finding the optimal starting times for each task under 
the described uncertainty scenario. 
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1. INTRODUCTION 
In a global economy, production and transportation 
logistics are becoming increasingly complex due to the 
existence of joint projects where different departments 
(or even companies) cooperate to manufacture a final 
product or provide a given service. A project can be 
frequently decomposed as a set of independent and 
parallel tasks (e.g., production lines), some of which 
need to be finished in order to consider the project as 
completed on a given deadline (Figure 1).  
 

 
Figure 1: A Simple Project with Three Parallel Tasks 

 
Notice that finishing all the tasks in a project might not 
be a necessary condition in order to consider the project 

as completed. In effect, depending on the final product 
or service specifications there might be a certain degree 
of redundancy in these tasks, which allows the project 
to be completed –at least partially– if some 
combinations of these tasks are satisfactorily concluded 
by the deadline. Thus, for instance Figure 2 shows a 
simple logical representation of a project ending 
condition: the associated project will not be terminated 
(i.e., it will “survive” the deadline) as far as any of the 
following combinations occur: (i) Tasks 1 and 2 are still 
not accomplished by the deadline; or (ii) Tasks 1 and 3 
are still not finished by then. Thus, while in classical 
reliability analysis the goal is to increase the probability 
that a system survives a given target time, in our study 
the goal will be related to reducing the probability that a 
project survives a user-defined deadline.  
 

Task 2

Task 1

Task 3  
Figure 2: Logical Representation of Ending Condition 

 
From a managerial perspective, it is usually not efficient 
or desirable to assign scarce production resources to a 
new project earlier than strictly necessary, especially if 
these resources are currently occupied in other projects. 
Thus, a manager might be interested in finding the 
starting time for each task in the new project that 
maximizes the total delay time while ensuring that the 
project will be completed by the deadline (Figure 3). 
Also, the manager might be interested in analyzing how 
these starting times might vary as different 
combinations of concluded tasks account for the project 
termination. In this paper, we will assume that each task 
is a process which duration can be modeled as a random 
variable. Since the problem becomes stochastic, the 
goal will be to maximize total delay time subject to 
achieving project competition by the deadline with a 
user-specified probability.  
To support the manager during this complex decision-
making process, we propose a hybrid approach in which 
simulation is combined with reliability analysis and 
optimization. One of the main benefits of our approach 
is that it does not make any assumption on the 
probability distributions employed to model the random 
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duration times associated with each task, i.e.: being 
based on simulation, there is no need to assume 
exponential or Normal times –instead, any empirical or 
theoretical distribution based on historical data can be 
employed to model the behavior of these times. 
 

 
Figure 3: Determining Starting Times 

 
The rest of the paper is organized as follows: Section 2 
provides a review of related work on the use of 
simulation methods in reliability analysis. Section 3 
describes the main ideas behind our hybrid simulation-
optimization approach. An illustrative numerical 
example is discussed in Section 4, and the obtained 
results analyzed in Section 5. Finally, we conclude this 
paper by summarizing its main findings and 
highlighting future research lines in Section 6. 
   
2. SIMULATION IN RELIABILITY ANALYSIS 
Reliability or survival analysis of time-dependent 
systems is a research area with applications in 
engineering (Skrzypczak et al. 2017, Zheng and Chang 
2017) as well as in experimental and social sciences 
(Topaloglu et al. 2016, Levin and Kalal 2003). Many 
works have discussed the benefits of maintenance 
policies in systems reliability. Some of these works 
highlight the fact that system management concepts, 
such as aging, repair obsolesce and renovation, are not 
easily captured by analytical models (Borgonovo et al. 
2000).  
As has been pointed out by many authors, when dealing 
with real-life complex systems only simulation 
techniques –such as Monte Carlo simulation (MCS) or 
discrete-event simulation (DES)–, can be useful to 
obtain credible predictions for system reliability and 
availability parameters (Billinton and Wang 1999). In 
fact, simulation has been revealed as a powerful tool in 
solving many engineering problems (Grasas et al. 2016, 
Sobie et al. 2018). This is due to the fact that simulation 
methods can model real-systems behavior with great 
detail (Dubi 2000). In addition, simulation methods can 
provide supplementary information about system 
internal behavior or about critical components from a 
reliability point of view. Applications of simulation 
techniques in the reliability field allow to model details 
such as component dependencies, dysfunctional 
behavior of components, etc. (Labeau and Zio 2000, 
Labeau and Zio 2002). Examples of works which deal 
with applications of simulation techniques in reliability 
are the ones of Barata et al. (2001) –who employs MCS 
in the modeling of components’ degradation processes 

taking place in nuclear power plants–, or Barata et al. 
(2002), who use MCS in the modeling of repairable 
multi-component deteriorating systems (e.g., offshore 
structures and aerospace components). Juan and Vila 
(2002) proposed a MCS approach for determining the 
reliability of complex systems, while Faulin et al. 
(2007, 2008) proposed both MCS and DES algorithms 
for dealing with reliability and availability issues in 
complex telecommunication networks. Similarly, 
Cabrera et al. (2014) proposed a hybrid simulation-
optimization approach for optimizing the availability of 
distributed computer systems. For additional examples 
of works linking simulation and reliability, the reader is 
addressed to Faulin et al. (2010). 
 
3. OUR SIM-OPT SOLVING APPROACH 
Following our discussion in the Introduction section, 
and under an uncertainty scenario in which the 
completion time associated with each task is a random 
variable, our goal is to maximize the total delay time –
sum of tasks’ delay times– subject to satisfying a user-
specified probability of completing the project on or 
before a given deadline. In our approach, we assume 
that the specific probability distributions modeling each 
task’s completion time is known. This could be 
achieved, for instance, by fitting historical data on the 
duration of each task by the most appropriate 
probability distribution –in case no theoretical 
distribution offers a reasonable fitting, then an empirical 
distribution could be used instead. Then, for each task, 
it is possible to plot its survival or reliability function 
based on the fitted probability distribution. Notice that 
the introduction of a delay in the starting time of task i 
shifts the associated survival function to the right, thus 
increasing the probability that task i cannot be 
terminated before the common due date (Figure 4). 
 

 
Figure 4: Effect of Delays on Task’s Survival Functions 
 
Thus, the question for the decision maker is how much 
can we extend these delays (i.e., increase the reliability 
level of each task at the deadline) without violating the 
probability constraint on the project completion. In 
order to provide an informed answer to this question, 
the following simulation-optimization method is 
proposed: 
 

1. For each task i in the project (i = 1, 2,…, m), 
use MCS to generate n random observations 
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(with n large enough) of its completion time, 
i.e., ti1, ti2, …, tin. 

2. For each task i, consider the decision variable 
di, which represents the delay time associated 
with task i. Then, consider the n observations 
of the ‘shifted’ completion time for task i given 
by di + ti1, di + ti2,…, di + tin.    

3. Use the shifted completion times from the 
previous step and the logical termination 
condition of the project to obtain n 
observations for the project completion time –
which, at this stage, will be a function of the 
decision variables di1, di2, …, dim. Typically, 
the logical termination condition of the project 
is represented by a series of minimal paths that 
need to be terminated (all of them) before the 
project can be considered as completed. Each 
of these paths is composed of a series of tasks, 
and it terminates as soon as one of these tasks 
is finished (Faulin et al., 2008). 

4. At this point, either an exact optimization 
solver (if m is reasonably low) or a 
metaheuristic algorithm is used to obtain  
(near-)optimal values for the decision 
variables. Notice that the probabilistic 
constraint makes the model non-linear, and 
thus linear programming solvers cannot be 
used. 

5. Once (near-) optimal values for di1, di2, …, dim 
have been obtained, it is convenient to perform 
several reliability-related studies, including: 
obtain statistics (average, variance, and 
quartiles) on the project’s completion time, 
estimate the project survival function by 
measuring the probability that it might be 
finished at different target times, analyze how 
this survival function varies as different delay 
levels are considered, etc.   

 
4. A NUMERICAL EXAMPLE 
For the shake of illustrating the previous ideas with a 
numerical example, the following project was 
generated, solved and analyzed.  

 Our project consists of 9 independent tasks to 
be carried in parallel. Each of these tasks has a 
random completion time which follows a 
probability distribution as depicted in Table 1, 
where the second column ‘Alpha’ refers to the 
shape of the Weibull distribution and the third 
column ‘Beta’ to the scale.  

 For each task, a total of 10,000 random 
observations have been generated using the 
Minitab statistical software (any other 
statistical package could have been used 
instead). Then, an Excel model was 
constructed with these random observations 
and according to the procedure described in the 
previous section (Figure 5a). 
 
 

Table 1: Probability Weibull Distributions for 
 Each Task 

Task 
Alpha 
(shape) 

Beta 
(scale) 

1 2.8 1.8 
2 2.7 1.7 
3 2.6 1.6 
4 2.5 1.6 
5 2.4 1.4 
6 2.2 1.2 
7 2.3 1.3 
8 2.1 1.1 
9 2.0 1.0 

 

 
Figure 5: Simulated Random Completion Time for  

Each Task 
 

 The delay time for each task is considered as 
decision variable. For each observation, the 
shifted completion time associated with delay 
time is calculated (Figure 6). 
 

 
Figure 6: Shifted Completion Time for Each Task 

 
 The project will be considered completed as 

soon as all the 7 paths (combination of tasks) 
represented in Table 2 are finished. For a path 
to be finished, it is enough that any of the tasks 
in it has been terminated. Therefore, the 
completion time for a given path is equal to the 
minimum shifted completion time of the task 
belonging to the given path. Thus, the project 
could be completed even if not all tasks have 
been finished by the deadline. For each 
observation, the maximum shifted completion 
time of the paths is considered as project 
finishing time (Figure 7, U9:AB11). 
 

Table 2: Project-completion Paths 
Paths of tasks 

1 – 4 – 7 2 – 4 – 7 3 – 6 – 9 
1 – 4 – 8 – 9 2 – 4 – 8 – 9 N/A 
1 – 5 – 6 – 9 2 – 5 – 6 – 9 N/A 

 
 The common deadline was set to 2.0 time units 

(e.g., months, years, etc., in coherence with the 
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units of the Weibull parameters), while the 
user-specified terminating probability was set 
to 0.90. The project termination situation is 
checked if it is completed before the 
determined deadline or no and consequently 
the probability of the project termination is 
calculated (Figure 7, AC3:AD7). 

 

 
Figure 7: Near-optimal Solution for the Example 
 

In the proposed non-linear model, the objective is to 
minimize the summation of the delays. As constraints, 
a) the probability of the project termination should be 
more or equal than the user-specified probability, b) 
delay variable decisions should be less than deadline 
and finally c) these variables should be positive. 
Components of the constructed model (objective and 
constraints) in GRG Nonlinear solver are shown in 
Figure 8.  The model was ‘optimized’ using the GRG 
Nonlinear solver integrated in the Excel Solver plug-in.  
 

 
Figure 8: Non-linear solver parameters (objective and 

constraints) 
 
The optimization process took about 2.5 minutes in a 
standard laptop computer (Intel Core i5 CPU @ 2.3 
GHz, 8 GB RAM). Figure 6 (L8:T8) shows a partial 
screenshot of the Excel model, including the near-
optimal delay values per task provided by the non-linear 
solver, which are the following ones: d1 = 0.5143, d2 = 
0.5182, d3 = 0.5214, d4 = 0.5153, d5 = 0.5214, d6 = 
0.5142, d7 = 0.5145, d8 = 0.5176, d9 = 0.5183. These 
values were obtained by the non-linear solver after 
setting 0.5 as the initial value for all the tasks’ delays 
(we have noticed that, probably due to convergence 
issues of the solver, the final solution provided might 
vary somewhat depending on these initial values). 
 
5. ANALYSIS OF RESULTS 
Figure 9 shows two survival functions for the project. 
These survival functions have been generated using the 

Kaplan-Meier estimator (Meeker and Escobar 1998) for 
non-censured data. In this case, the data refer to the 
observations provided by our method for the project 
completion times. One set of observations was obtained 
without assuming any delay in the tasks (i.e., all tasks 
were initiated from the very beginning), while the other 
set was obtained using the optimal delay values 
provided by the Excel solver.  
Notice how the delayed survival function is shifted-to-
the-right with respect the non-delayed one. Note also 
that, as it was anticipated, the delayed survival function 
intersects the deadline at 2.0 exactly when the survival 
probability reaches the value 0.1. 

 
Figure 9: Survival Function for Project 

 
Finally, Figure 10 shows a trade-off plot between total 
delay and probability of completing the project on or 
before the deadline. As expected, the higher the 
completion probability the lower the total delay that can 
be used –i.e., the sooner the resources must be assigned 
to the project. 
 

 
Figure 10: Trade-Off between Delay and Probability 

 
6. CONCLUSIONS 
Setting starting times for multi-task projects under 
uncertainty conditions can be a challenging problem for 
managers. This paper proposes a simulation-
optimization method able to provide informed decisions 
on how to set these starting times, so that a given 
probability of project completion is achieved. Our 
method is combines simulation and optimization the 
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best of our knowledge, it is the first time that such a 
relevant problem is discussed in the scientific literature 
and a solving approach is proposed.  
Our results contribute to quantify how the survival 
function of the project evolves as more delay is 
included in the process. They also provide numerical 
values for quantifying the trade-off between the user 
specified probability of project termination and the 
maximum delay that can be considered without 
violating the probabilistic constraint on project 
completion. 
Several research lines emerge from this preliminary 
work. First, a more robust non-linear solver should be 
used for larger cases. In fact, metaheuristic approaches 
could be a good alternative to exact methods for solving 
large-scale instances in short computing times. Also, 
other project topologies can be explored, including 
interdependencies among tasks.  Finally, the tasks 
themselves could be complex processes, e.g., flow-
shops, that also require some pre-optimization process. 
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