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ABSTRACT 

The positivity and asymptotic stability of fractional 

time-varying continuous-time linear electrical circuits is 

addressed. Necessary and sufficient conditions for the 

positivity and sufficient conditions for asymptotic 

stability of the electrical circuits are established. New 

definitions of the capacitance and inductance of 

fractional time-varying linear electrical circuits are 

proposed. It is shown that there exists a large class of 

fractional positive and stable linear electrical circuits 

with time-varying parameters. Examples of positive and 

stable linear electrical circuits are presented.  

 

Keywords: linear circuits, time varying circuits, positive 

circuits, stability 

 

1. INTRODUCTION 

A dynamical system is called positive if its trajectory 

starting from any nonnegative initial state remains 

forever in the positive orthant for all nonnegative 

inputs. An overview of state of the art in positive theory 

is given in the monographs (Farina and Rinaldi 2000, 

Kaczorek 2002). Variety of models having positive 

behavior can be found in engineering, economics, social 

sciences, biology and medicine, etc..  

The Lyapunov, Bohl and Perron exponents and stability 

of time-varying discrete-time linear systems have been 

investigated in (Czornik, Newrat, Niezabitowski, and 

Szyda 2012; Czornik and Niezabitowski 2013a, 2013b, 

2013c; Czornik, Newrat, and Niezabitowski 2013; 

Czornik, Klamka, and Niezabitowski 2014). 

Controllability, observability and reachability of linear 

standard, positive and fractional electrical circuits 

(Kaczorek 2011a, 2011b, 2011c). The new stability tests 

of positive and fractional linear systems have been 

proposed in (Kaczorek 2011d). Fractional and positive 

continuous-time systems have been addressed in 

(Kaczorek 2008) and fractional descriptor standard and 

positive time-varying systems in (Kaczorek 2015a). 

Positivity and stability of standard and fractional 

descriptor time-varying discrete-time have been 

investigated in (Kaczorek 2015b, 2015c). Positive linear 

systems consisting of n subsystems with different 

fractional orders have been analyzed in (Kaczorek 

2011e). Positivity and stability of time-varying of 

discrete-time and continuous-time systems have been 

considered in (Kaczorek 2015d, 2015e, 2015f). Stability 

of positive continuous-time linear systems with delays 

have been investigated in (Kaczorek 2009). Stability 

and stabilization of positive fractional linear systems by 

state-feedbacks have been addressed in (Kaczorek 

2010). 

In this paper positivity and asymptotic stability of 

fractional time-varying continuous-time linear electrical 

systems will be addressed. 

The paper is organized as follows. In section 2 

necessary and sufficient conditions for the positivity 

and sufficient conditions for the asymptotic stability of 

fractional time-varying continuous-time linear systems 

are established. The fractional positive electrical circuits 

with time-varying parameter are addressed in section 3. 

Concluding remarks are given in section 4.  

The following notation will be used: ℜ  - the set of real 

numbers, mn×
ℜ  - the set of mn ×  real matrices, 

mn×

+ℜ  

- the set of mn ×  matrices with nonnegative entries and 
1×

++ ℜ=ℜ
nn

, nM - the set of nn ×  Metzler matrices 

(real matrices with nonnegative off-diagonal entries), 

nI - the nn ×  identity matrix. 

 

2. PRELIMINARIES 

Consider the fractional time-varying linear system 
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is the Caputo definition of ℜ∈α  order derivative of 

)(tx  and 
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is the Euler gamma function. 

To find the matrix nntXX ×
ℜ∈= )(  of solutions to the 

equation (1) the following extension of the Picard 

method to fractional equations will be used 

 

1)( −= k
k XtA

dt
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 for ,...2,1=k                   (4) 

 

with nIX =)0(0 . 

From (2) and (4) we obtain 
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and 10 << α , ,...2,1=k . 

Using (5) for ,...2,1=k  we obtain 
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Using (5) in the form 
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where 
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At
A , t≤≤ τ0                  (7b) 

 

the proof can be accomplished in a similar way as in 

(Gantmacher 1959, Idezak and Kamocki 2011, 

Kaczorek 2009) since )(τA  is continuous and bounded 

function of τ. □ 

Definition 1. The fractional time-varying linear system 

(1) is called the internally positive fractional system if 
n

tx +ℜ∈)( , 0≥t  for any initial conditions n
x +ℜ∈0 . 

Theorem 1. The fractional time-varying linear system 

(1) is internally positive if and only if  

 

nMtA ∈)(  for ),0[ +∞∈t .                        (8) 

 

Proof. From (7b) it follows that nMtA ∈)(  if and only 

if the condition (8) is satisfied. In (Kaczorek 2009) it 

was shown that the time-varying linear system 

 

xtAtx )()( =&                                   (9) 

 

is positive if and only if nMtA ∈)( . □ 

In a similar way as in (Gantmacher 1959, Kaczorek 

2009) the above considerations can be easily extended 

to the fractional time-varying linear systems 
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)()()()()( tutDtxtCty +=                   (10b) 

 

where n
tx ℜ∈)( , m

tu ℜ∈)( , p
ty ℜ∈)(  are the state, 

input and output vectors and ,)( nn
tA

×
ℜ∈  mn

tB
×

ℜ∈)( , 

,)( np
tC

×
ℜ∈  mp

tD
×

ℜ∈)(  are real matrices with 

entries depending continuously on time ),0[ +∞∈t . 

Definition 2. The fractional time-varying linear system 

(10) is called positive if n
tx +ℜ∈)( , p

ty +ℜ∈)( , 

),0[ +∞∈t  for any initial conditions n
x +ℜ∈0  and all 

inputs ,)( m
tu +ℜ∈  ),0[ +∞∈t .  

Theorem 2. The fractional time-varying linear system 

(10) is positive if and only if 

 

nMtA ∈)( , mn
tB

×

+ℜ∈)( , 

np
tC

×

+ℜ∈)( , mp
tD

×

+ℜ∈)( , ),0[ +∞∈t .             (11) 

 

 

3. FRACTIONAL POSITIVE TIME-VARYING 

LINEAR ELECTRICAL CIRCUITS 

 It is well-known that for fractional time-varying 

electrical circuits we have 
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where ℜ∈α  is the fractional order derivative, )(tC  is 

the capacitance, )(tL  is the inductance, )(tu  is the 

voltage and )(ti  is the current. 

To overcome this drawback the following definitions of 

the capacitance and inductance for fractional time-

varying linear electrical circuits are proposed. 

Definition 3. The ratio of the current )(ti  and α-order 

derivative of voltage )(tu , 
α

α

dt

tud )(
 i.e.  
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is called the capacitance of fractional electrical 

capacitor. 

Definition 4. The ratio of the voltage )(tu  and α-order 

derivative of current )(ti , 
α

α

dt

tid )(
 i.e. 

 

α

α
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tu
tL
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)(
)( =                                   (14) 

 

is called the inductance of fractional electrical inductor 

(coil). 

Example 1. Consider the fractional electrical circuit 

shown in Figure 1 with given resistances )(1 tR , )(2 tR , 

)(3 tR , inductances )(1 tL , )(2 tL  and source voltages 

0)(1 ≥te , 0)(2 ≥te  for ),0[ +∞∈t . 10 << α  

 
Figure 1: Electrical circuit. 

 

Using the Definition 4 and Kirchhoff’s laws we can 

write the equations 
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which can be written in the form 
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The electrical circuit is positive, since the matrix A is 

the Metzler matrix and the matrix B has nonnegative 

entries. 

It is easy to show (Kaczorek 2015g) that in general 

case the linear fractional electrical circuit composed of 

time-varying resistors, coils and voltage sources is 

positive for any values of the resistances, inductances 

and source voltages if and only if the number of coils is 

less or equal to the number of its linearly independent 

meshes and the directions of the mesh currents are 

consistent with the directions of the mesh source 

voltages. 

Example 2. Consider the fractional time-varying 

electrical circuit shown in Fig. 1 with given nonzero 

resistances )(1 tR , )(2 tR , )(3 tR , inductance 0)( >tL , 

capacitance 0)( >tC  and source voltage 0)( ≥te  for 

),0[ +∞∈t .  

 
Figure 2: Fractional time-varying electrical circuit 

 

Using the Definitions 3, 4 and Kirchhoff’s laws, we can 

write the equation 
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The equations (17) can be written in the form 
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where 
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From (18b) it follows that 2)( MtA ∈  if and only if 

0)(1 =tR  for ),0[ +∞∈t . Therefore, the electrical 

circuit is a fractional positive time-varying system if 

and only if 0)(1 =tR  for ),0[ +∞∈t . 

Now let us consider electrical circuit shown on Fig. 3 

with given positive resistances nktRk ,...,1,0),( = , 

inductances 2,...,4,2),( nitLi = , capacitances 

1,...,3,1),( njtC j =  depending on time t and source 

voltages )(),...,(),( 21 tetete n .  We shall show that this 

electrical circuit is a fractional positive time-varying 

linear system. 

Using the Definitions 3, 4 and Kirchhoff’s law we can 

write the equations 
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The equations (19) can be written in the form 
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Figure 3: Fractional positive time-varying electrical circuit. 

where 
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The electrical circuit is a fractional positive time-

varying linear system since all diagonal entries of the 

matrix )(tA  are negative functions of ),0[ +∞∈t  and 

the matrix )(tB  has nonnegative entries for ),0[ +∞∈t . 

 

4. CONCLUDING REMARKS 

The positivity of fractional time-varying continuous-

time linear electrical circuits have been addressed. 

Necessary and sufficient conditions for the positivity of 

the system and electrical circuits have been established. 

New definitions of the capacitance and inductance of 

fractional time-varying electrical circuits have been 

proposed. It has been shown that there exists a large 

class of fractional positive electrical circuits with time-

varying parameters. The considerations have been 

illustrated by fractional positive electrical circuits. The 

consideration can be extended to a class of fractional 

time-varying nonlinear electrical circuits. 
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