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ABSTRACT 
In this paper we apply convolutional neuronal networks 
in different configurations to solve prediction tasks on 
medical data: Given 27 blood parameters obtained by 
labor blood examination the classes of tumor markers 
C153 and PSA should be predicted. Based on former 
work the results of trained Multi-Layer-Perceptrons 
(MLP) were moderate. Our major interest was now 
focused on the question if the prediction quality of CNN 
models outperforms MLPs. We had to transform the 
vector of input data into a two-dimensional pseudo 
image and augment it with different correlation values 
for increasing spatial structure. Various experiments 
with CNNs show that the prediction quality slightly 
increases compared to MLPs.      
 
Keywords: deep learning, convolutional neural 
networks, Multi-Layer-Perceptron, transformation of 
vector into pseudo image 
 
1. INTRODUCTION 
Analyzing biomedical data is most times a classification 
task. Given a series of sample data a model should be 
provided which assigns each sample to one of several 
predefined output classes which can be used for 
prediction tasks. 
Typically in labor blood examination numerous blood 
parameters such as HB, WBC, HKT, MCV, RBC, PLT, 
KREA, BUN, GT37, ALT, AST, TBIL, CRP, LD37, 
HS, CNEA, CMOA, CLYA, CEOA, CBAA, CHOL, 
HDL, CH37, FER, FE, BSG1, TF and tumor markers 
such as AFP, C125, C153, C199, C724, CEA, CYFRA, 
NSE, PSA, S100, SCC, TPS etc. are measured and used 
for diagnostic purposes (Djavan et al. 2002; Harrison et 
al. 2005; Jung at al. 2005 ). The value ranges of tumor 
markers are divided into four non-overlapping intervals, 
called classes. Class 1 includes all values less than 
Normal Value of marker, Class 2 includes all values 
between Normal Value and Extreme Normal Value of 
marker, Class 3 includes values between Extreme 
Normal Value and Plausible Value of marker and Class 
4 includes all values Greater than Plausible Value. 
The question is to find a model to predict the classes of 
each tumor marker separately using only the 
measurements of the blood examination as input. 
One major problem of this task are missing values in 
the input data. It may be that a specific medical 
procedure was not considered necessary in a particular 

case or that the procedure was taken in a different 
laboratory with the values not available in the patient 
record, or that the measurement was taken but not 
recorded due to time constraints.  
In previous work we focused on a variety of methods to 
handle missing data, including relatively simple 
approaches like discarding samples containing missing  
data values, replacing missing values with zero or 
applying mean imputation. We also applied different 
approaches for estimation of missing values in the input 
data: neural network based estimation of a specific 
marker value depending on existing values of a related 
marker and neural network based estimation of missing 
tumor markers depending on standard blood parameter 
measurements (Jacak et al. 2014; Markey et al. 2006, 
Liparini et al. 2005 ).  
Additionally we trained Neural Networks (MLPs) with 
different configurations using the blood parameters as 
input and the tumor marker classes as output we could 
observe different prediction quality of the models for 
each marker type  (Jacak et al. 2011;  Jacak et al. 2010a; 
Jacak et al. 2010b). 
In all experiments prediction quality of the models was 
moderate but the best results were obtained for models 
of tumor marker C153 and the worst for models of 
tumor marker PSA.  
Our major interest in the current experiments was now 
focused on the question if the prediction quality of CNN 
models outperforms prediction quality of traditional 
MLPs. In our experiments we compared prediction 
quality of CNN Models (deep learning) to traditional 
MLPs (shallow approach) for C153 and PSA tumor 
markers. We did not apply sophisticated methods for 
missing value imputation but simply replaced missing 
value data with zero.   
At our disposal examples of 27 blood parameters (see 
above) with known output classes of tumor marker 
C153 of approximately 6200 patients are provided.  
So our data set comprises 27 blood parameters as input 
and C153 class values as output of approximately 6200 
patients.  
Secondly examples of 27 blood parameters with known 
output classes of tumor marker PSA of approximately 
4300 patients are available.  
 
1.1. State of the art: 
Deep learning has in recent years set an exciting new 
trend in machine learning. The theoretical foundations 

Proceedings of the European Modeling and Simulation Symposium, 2017 
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds. 

176



of deep learning are well rooted in the classical neural 
network (NN) literature. But different to more 
traditional use of NNs, deep learning accounts for the 
use of many hidden neurons and layers—typically more 
than two—as an architectural advantage combined with 
new training paradigms. While resorting to many 
neurons allows an extensive coverage of the raw data at 
hand, the layer-by-layer pipeline of nonlinear 
combination of their outputs generates a lower 
dimensional projection of the input space. Every lower-
dimensional projection corresponds to a higher 
perceptual level. Provided that the network is optimally 
weighted, it results in an effective high-level abstraction 
of the raw data or images. This high level of abstraction 
render an automatic feature set, which otherwise would 
have required hand-crafted or bespoke features (Miotto 
et al. 2017; Schmidhuber 2015). 

In domains such as health informatics, the generation of 
this automatic feature set without human intervention 
has many advantages:  

Clinical Imaging: Following the success in computer 
vision, the first applications of deep learning to clinical 
data were on image processing, especially on the 
analysis of brain Magnetic Resonance Imaging (MRI) 
scans to predict Alzheimer disease and its variations. In 
other medical domains, CNNs were used to infer a 
hierarchical representation of low-field knee MRI scans 
to automatically segment cartilage and predict the risk 
of osteoarthritis. Deep learning was also applied to 
segment multiple sclerosis lesions in multi-channel 3D 
MRI and for the differential diagnosis of benign and 
malignant breast nodules from ultrasound images. More 
recently, CNNs were used to identify diabetic 
retinopathy in retinal fundus photographs, obtaining 
high sensitivity and specificity over about 10 000 test 
images with respect to certified ophthalmologist 
annotations. CNNs also obtained performances on 
classifying biopsy-proven clinical images of different 
types of skin cancer over a large data set of 130 000 
images.  

Electronic health record (EHR): More recently deep 
learning has been applied to process aggregated EHRs, 
including both structured (e.g. diagnosis, medications, 
laboratory tests) and unstructured (e.g. free-text clinical 
notes) data. The greatest part using deep architectures is 
applied for a specific, usually supervised, predictive 
clinical task. In particular, a common approach is to 
show that deep learning obtains better results than 
conventional machine learning models with respect to 
certain metrics, such as Area Under the Receiver 
Operating Characteristic Curve, accuracy and F-score. 
Most applications present end-to-end supervised 
networks, some works also propose unsupervised 
models to derive latent patient representations, which 
are then evaluated using shallow classifiers (e.g. 
random forests, logistic regression). 
Several works applied deep learning to predict diseases 
from the patient clinical status. A four-layer CNN was 
used to predict congestive heart failure and chronic 

obstructive pulmonary disease and showed significant 
advantages over the baselines.  
A comprehensive literature review about deep learning 
for healthcare, including a summary of articles can be 
found in (Miotto et al. 2017;  Rav et al. 2017). 
 
2. EXPERIMENTAL DATA 

 
2.1. Initial Situation: 
Compared to typical input data sets used in deep 
learning tasks we have to deal with the following 
problems in connection with our available data set: 

 Input vectors comprise only 27 parameters 
(small dimension) per patient and the number 
of those sample vectors is limited to about 
6200 for C153 and 4300 for PSA records.  

 Many of the input vectors have a huge number 
of missing parameter values as blood 
examinations are expensive and therefore only 
a small subset of parameters is of interest for a 
specific diagnosis. The C153 data sets contains 
about 40 % and the PSA data set about 30% 
missing values in the blood examination data. 

 The input vectors are not uniformly distributed 
among the four output classes. The major part 
of the input vectors is assigned to class value 1 
which indicates no clinical evidence. We 
discarded samples of class 1 to obtain a 
proportion of not more than 50 % data sets of 
class 1 and 50 % in classes 2, 3 and 4. 

 
2.2. Transformation of dimension: 
The major problem for the CNN approach was the 
transformation of the one dimensional vector of 27 
parameters of blood examination into a two dimensional 
augmented matrix without having additional 
information to be included. So the task was to transform 
the one dimensional vector of blood examination 
parameters of every patient into a two dimensional 
pseudo image. These images are considered as a matrix 
of pixel values with grey scaled values representing the 
values of blood examination. To increase the number of 
dimensions and to obtain a local spatial structure among 
every parameter value the following transformation 
methods for increasing the number of dimensions were 
applied: 
Correlation was calculated 

 between input parameters and 
 between input parameter and tumor markers   

and added as further dimensions to the pixel matrix. 
This results in a non-quadratic matrix which was finally 
resized to a quadratic one with 28x28 dimensions. 
These pseudo images were used as input data to train 
MLPs and CNNs with different configurations.  
In Table 1 correlation of blood parameters to tumor 
markers C153 and PSA are shown. 
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Table 1: Correlation of blood parameters to tumor 
markers C153 and PSA 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
These pseudo images were used as input data to train 
MLPs and CNNs with different configurations. In 
Figure 1 und Figure 2 examples of such pseudo images 
are presented. 
 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 
 
 
Figure 1: Example of a pseudo image for a Class 1 
patient. Black fields indicate missing values.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Example of a pseudo image for a Class 4 
patient. Black fields indicate missing values.  

 
2.3. Experiments 
Our major interest in the experiments was focused on 
the prediction quality of CNN models in comparison to 
traditional MLPs. To perform the experiments we 
separated the data set with the 6200 and 3400 pseudo 
images into a collection of training and test set. The 
experiments with MLPs were conducted using the 
Neural Network ToolboxTM  of MATLAB 2016a.  The 
CNN experiments are based on the DeepLearnToolbox 
(Berg 2012) with slightly modified code. 

After processing a training set its performance was 
measured on the corresponding test set. The following 
experiments were performed: 

1. Experiments with MLPs: Traditional MLPs 
with various numbers of neurons were applied 
to train the pseudo images. The best result 
could be obtained using a two hidden layer 
MLP with 54 neurons.  

2. Experiments with CNNs: For CNNs we used 
different configurations concerning: 
 Number of filters 
 Dimension of filters 
 Type of filters 
 Number of convolutional layers 
 Different scales of maxpooling 

 
2.3.1. Experiments with tumor marker C153 
For experiments with marker C153 we divided all 
samples (=6200) into 70% training data and 30% test 
data. Table 2 presents the different configurations for 
CNNs used for 10 experiments for marker type C153.  

 

Blood 

Parameter

Correlation to 

C153

Correlation to 

PSA

ALT 0,2 ‐0,1

AST 0,4 0,0

BSG1 0,2 0,2

BUN 0,1 0,1

CBAA ‐0,1 ‐0,1

CEOA ‐0,1 ‐0,1

CH37 ‐0,1 ‐0,1

CHOL 0,0 ‐0,1

CLYA ‐0,2 ‐0,2

CMOA 0,0 0,0

CNEA 0,2 0,2

CRP 0,3 0,2

FE ‐0,3 ‐0,1

FER 0,3 0,1

GT37 0,4 0,0

HB ‐0,4 ‐0,2

HDL ‐0,1 0,1

HKT ‐0,4 ‐0,2

HS 0,1 ‐0,1

KREA 0,1 0,1

LD37 0,5 0,2

MCV 0,0 0,1

PLT 0,2 0,1

RBC ‐0,3 ‐0,2

TBIL 0,0 0,0

TF ‐0,3 ‐0,1

WBC 0,0 0,1
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Table 2: Configuration of CNNs in experiments for 
tumor marker C153 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The best result could be obtained using the 
configuration of CNN in experiment 9: 

 Number of filters: 3 
 Dimensions of filters:  5x5 
 Types of filters: random 
 Number of convolutional layers: 1 
 Scale of maxpooling: 4 

 
Performance in all experiments was measured by the 
following criteria: 

 Percent of correct classification of samples 
(true positives) 

 Distribution quality: Distribution of samples to 
correct classes 

 Cohen's kappa coefficient 
 
The results of the C153 experiments are shown in 
Figure 3.  

 

 
Figure 3: Comparison of results for marker C153 
between ten different configuration setups of CNNs and 
one MLP based on the quality criteria: Percent of 
correct classification of samples, distribution quality 
among classes and Cohen's kappa coefficient 

 

2.3.2. Experiments with tumor marker PSA 
From previous work we know that the prediction 
quality of models for the PSA data is low. Therefore our 
experiments were focused on an increasing number of 
kernels working with random filters. The samples 
(=3412) were divided into 70% training data and 30% 
test data.  Table 3 presents the different configurations 
for CNNs used for 4 different experiments for marker 
type PSA. The best result could be obtained using the 
configuration of CNN in experiment 3 with 7 random 
filters. Filter numbers greater 7 tend to over fit, the 
recognition rate of the test samples decreases. 
 
Table 3: Configuration of CNNs in experiments for 
tumor marker PSA 
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exp 1 3 5x5 1 4 random

exp 2 5 5x5 1 4 random

exp 3 7 5x5 1 4 random

exp 4 9 5x5 1 4 random  
 

The best result could be obtained using the 
configuration of CNN in experiment 4: 
 

 Number of filters: 7 
 Dimensions of filters:  5x5 
 Types of filters: Random 
 Number of convolutional layers: 1 
 Scale of maxpooling: 4 

 
The results of the PSA experiments are presented in 
Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Comparison of results for marker PSA 
between four different configuration setups of CNNs 
and one MLP based on the quality criteria: Percent of 
correct classification of samples, distribution quality 
among classes and Cohen's kappa coefficient 
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exp 1 1 5x5 1 4 average

exp 2 1 5x5 1 4 gaussian

exp 3 1 5x5 1 4 log

exp 4 1 5x5 1 4 prewitt

exp 5 1 5x5 1 4 random

exp 6 3 5x5 1 4

average, log, 

gaussian

exp 7 3 5x5 1 4

average, 

random, 

gaussian

exp 8 3 5x5 1 4

prewitt, log, 

random

exp 9 3 5x5 1 4 random

exp 10 3 5x5 1 4

prewitt, 

prewitt, log
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3. RESULTS  
We have achieved moderate increase of performance 
(about 3%) applying convolutional neural networks 
compared to MLPs trained on human blood parameters 
as input and C153 and PSA tumor marker as output.    
The quality of the learned systems is primarily 
dependent of quality and size of the training sets. In the 
available blood examination data sets in our 
experiments we had to deal with about 40% missing 
values and input vectors are not uniformly distributed 
among the four output classes. We replaced missing 
values by imputation with zero value and discarded 
samples of class 1 to get a proportion of 50% class 1 
samples and 50% samples of class 2, 3 and 4.  
Standard neural networks are state-of-the-art classifiers 
that operate on vectors, without knowledge of the input 
topology. However, convolutional neural network 
exploit the knowledge that the inputs are not 
independent elements, but arise from a spatial structure. 
Therefore we did several experiments with different 
configurations for CNNs augmenting the blood 
examination vector with correlation values  between 
input parameter and tumor marker values and 
transformed it into a pseudo image. 
In all experiments we found a CNN configuration which 
outperforms MLPs. Therefore we will apply further 
work in data preparation especially in context of 
missing value imputation and perform continue 
experiments with different CNN configurations on 
tumor markers other than C153 and PSA.  
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