
SYNCHRONIZATION ALGORITHM FOR PEER-TO-PEER INTERACTIVE

DISTRIBUTED SIMULATION IMPLEMENTED IN A SINGLE-THREADED WEB

APPLICATION

Štěpán Karták

University of Pardubice, Faculty of Electrical Engineering and Informatics

stepan.kartak@student.upce.cz

ABSTRACT

This article presents a synchronization algorithm for

distributed interactive peer-to-peer simulation in a web

browser. It is a practical utilization of web browsers in

combination with modern technologies for realization of

computation- and network-heavy simulation tasks. Due

to present limitations of web browsers, especially due to

their limited computing power, a class of realizable

tasks is defined. Such tasks can be successfully solved

with web browsers. The article also covers the operating

principles of web applications, with focus on JavaScript

and problems arising from its concept. The text

describes the algorithm and used network topologies of

the logical processes, and their synchronization

methods. Advantages and disadvantages of realizing a

simulation with a web browser are described as well, as

well as the reasons why the not-so-frequently used peer-

to-peer simulation was used. To conclude, a use case for

application scope testing is characterized, i.e.

identifying the appropriate number of logical processes,

frequency of interactive interventions, usable numbers

of objects, etc., for which the presented algorithm is

appropriate.

Keywords: Distributed Simulation, Web-based

simulation, HTML5, WebRTC

1. INTRODUCTION

This article is focused on using a web browser to realize

a user-friendly interactive distributed simulation. The

goal is to design and create a relatively general

algorithm (in terms of defined class and application

scope), which would provide the user with basic

functionality (simulation core, synchronization,

interactive approach, …) to realize simple simulations.

The user does not have to solve the basic

implementation problems in the limiting environment of

a web browser, and can focus on the implementation of

the simulator behavior.

Today, web browsers are very well suited for such

applications. Since the year 2012 (Karták 2014), web

browsers have offered functionalities that allow

realization without the use of third-party plugins.

However, even in spite of the significant advances made

by web browsers in the last few years, the realization of

a distributed simulation is not possible without

a number of compromises.

The core of the solution is based on the previous work

on distributed web simulations (Kartak 2015, 2016),

which focused on trainer applications, that is for

applications for testing (examination, education) of

workers / dispatchers and distributed web simulations in

general. This solution served as a proof of concept, and

the article expands the concept.

2. WEB APPLICATIONS AND

TECHNOLOGIES

A web application from our point of view is considered

to be distributed from the web server (in a certain

configuration) through a computer network (local or

global Internet network) into the client device, which is

an instance of a web browser window. The application

is distributed statically (an HTML description of the

page structure is downloaded from the server, as well as

additional information – uncompiled JavaScript code,

CSS files, images, fonts etc.). After loading all the static

parts listed above, the dynamic part of the web is

launched – the program code written in JavaScript. This

code is distributed to the client computer uncompiled,

and is run according to the requirements of the author of

the code.

The program of the webpage reacts to user interaction

(typically mouse and keyboard) or external information

(application state update by the server, information and

events provided by the web browser itself).

All the actions stated above are called events (js event),

and are executed sequentially, in the chronological

order of their creation. The order or priority of their

processing cannot be influenced on the browser level.

This approach is suited for primarily static web pages

with minimal amounts of program code or time-

consuming calculations. When realizing heavily

interactive applications, such as interactive distributed

simulations, this approach is generally inappropriate

(see chapter 4.4).

Web applications are always downloaded from a web

server, which may or may not participate on further

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

149

mailto:stepan.kartak@student.upce.cz

client-side runtime. The server is often only a source of

static content, and does not store any user states, or

provides only elementary functionality, such as user

identification, and is not informed of any further states

of the client-side, or the server receives only the results

of the algorithm that was run on the client-side, with no

interaction or interruptions by the server after the static

content is downloaded. Sending the results of user or

script activity is typical for web applications.

Web applications can transfer workload to the client-

side (web browser). From this point of view, a browser

may be considered a thick client as well as thin client,

depending on the used approach.

3. CHARACTERISTICS OF APPLICATIONS IN

THE TARGET DOMAIN OF THE

ALGORITHM

In this chapter, used terminology is stated, along with a

basic introduction to the algorithm.

First, it must be stated that the algorithm assumes use of

discrete distributed simulation, that is to say that the

behavior of applications for which the algorithm is

suitable must be determined by discrete events.

3.1. Basic terminology

As stated above, the simulation runs in web browsers.

One specific instance of a web page (in a web browser)

represents one logical process (LP). A group of logical

processes forms a distributed simulation.

The algorithm primarily works with three elements:

 Entity ... in fact an object passing through the

simulation,

 Activity ... an event handling procedure,

 Simulation event ... a planned discrete event

of a concrete activity.

Interactive interventions are realized as interruptions of

discrete planned activities.

3.2. Application aspect

Use of web browsers presents an inexpensive way of

realizing distributed interactive simulation. A typical

user might be a small company, requiring a trainer

simulator or training software, that can be described by

an algorithm of discrete events.

The introduced algorithm is designed for three

application classes:

1. Trainer simulator applications. Assume a

group of workers that forms a single team

solving a problem or reacting to a chosen

situation. Every worker/user works with a

browser, where he or she observes a simulation

scene, and interacts with the simulation

runtime within the frame of the assigned

logical process.

Another example may be a railway station

dispatcher in the scope of a region (where there

are more dispatchers). Another example may

be the simulation of a technological process /

production, where every employee is

responsible for a part of the process.

2. Realization of a simple multiplayer game,

where logical processes represent the space for

individual players, with implicitly shared state-

space of the simulation (the game

environment). This application class is covered

by the use cases (chapter 7).

3. Distributed space for data exchange within a

work group. This application class does not

directly represent a simulation. Only the

synchronization methods are used to keep the

memory space up to date for all of the logical

processes.

The primary application class can be generally

classified as a distributed system requiring interactive

approach, based on discrete events and with no complex

calculations present.

3.3. Networking aspect and topology of the logical

processes

This solution utilizes primarily web browsers, that

contain a majority of the simulation calculations. The

server part is not present in the calculations or logic,

and serves only for undemanding secondary activities

(initialization of the connection between clients,

creation process of the simulation, etc.).

The solution is a purely peer-to-peer simulation.

This solution was chosen due to the fact that web

browsers are commonly found on computers, and

nothing prevents their participation in simulations. The

opposing server architecture (for example the

commonly used HLA architecture with federates

running on servers) requires high-end (and expensive,

or not widely accessible) servers (Kuhl et al. 2007).

Creating a peer-to-peer network of clients allows to tap

into the potential of the client computers and, at the

same time, requires no extra expenses such as powerful

servers or software. With web browsers, there are

usually no connectivity issues in terms of firewall

limitations and similar problems, as web browsers

activities are generally considered safe, due to the

sandbox nature of the browsers themselves.

This solution however has certain disadvantages as

well. The most significant disadvantage is the

considerably lower performance in comparison to

desktop applications. This is another reason why direct

connection between the clients is beneficial, as opposed

to communicating through a server. The sent message

travels directly to the target client, instead of two

messages being sent (client-server and server-client). If

we consider a local network (low latency, high

bandwidth), the theoretical time needed to deliver a

message from client to client when using a server

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

150

architecture is double the time needed in a peer-to-peer

architecture.

3.4. Implementation scope of the synchronization

algorithm

The introduced algorithm is a general algorithm that

solves the synchronization problems of logical

processes.

The implementation of the algorithm solves the

following (details in chapters 6 and 7):

 discrete simulation core (primarily the event

calendar queue),

 events,

 prototypes of logical processes,

 prototypes of discrete activities and auxiliary

discrete activities (running in the background

for algorithm needs),

 prototypes of entities,

 synchronization of logical processes,

 handling of interactive user input,

 elementary handling of entity collisions,

 (optional) rendering of a simple 2D scene,

 (optional) simulation interruption handling

when waiting for user input.

The following is not solved by the algorithm:

 specific implementation of the target

application,

 specific logical processes,

 specific simulation activities,

 specific entities,

 specific collisions (of entities) and exceptions

of interactive user input handling.

The primary goal is to provide an algorithm that

implements the necessary structures and solves the

above stated problems for the user, allowing him or her

to concentrate on the process of modelling the solved

use case – the logic (activities) and objects (entities),

and their interactions.

The aim of this work is not to create competition for

extensive standards such as DIS, HLA, TENA etc.

(IEEE 1278.1-2012; Kuhl et al. 2007), and similar, as

that is, due to the limitations (see chapter 4.4) of web

browsers, impossible.

3.5. Reusability of the solution

The aforementioned algorithm will be available as a

JavaScript function library, which shall implement the

following functionalities:

 Connection of a logical process into the

administration interface,

 synchronization of a running simulation,

 basic functional support for realization of

animated output.

4. USED TECHNOLOGIES

Web distributed simulation could not be realized

without new technologies, collectively referred to as

HTML5. These functions expand the capabilities of web

browsers with functions that were formerly the domain

of desktop or server applications (a typical example

would be two-way network communication), and

achieving the desired effect before HTML5 required use

of third-party plugins (typically Java applets), or

inefficient solutions (an example might client’s

periodical queries about state changes, instead of direct

“state changed” notice sent directly from the server to

the client).

An enumeration of the fundamental HTML5

technologies, on which this solution is based, of

follows.

4.1. WebRTC

The WebRTC technology servers to connect clients

(instances of browser windows) directly, without the

need to use a server as a connecting link. This

technology is primarily used for peer-to-peer sound and

video transmission (typically videoconferences).

However, pure data transmission is implemented as

well, which can be used to send user data, and is

fundamental for the algorithm’s operation.

4.2. WebSocket

This network technology serves to create a permanent

(until the browser window is closed) two-way server-

client connection. The client may be informed of the

server state changes directly by a message from the

server, bypassing the need to periodically ask the server

“Are there any news?”. The second, equally important

benefit is the persistent client-server connection. When

sending messages, it is no longer necessary to create the

connection every time. This can save up to tens of

milliseconds, depending on how busy the server is.

4.3. Canvas

The HTML tag <canvas /> defines area for 2D

drawing. Thanks to this HTML element, a drawing area

of any size can be created, and drawn upon using

JavaScript.

However, the <canvas /> tag does not allow the scene

to be partially redrawn. This is a limiting factor.

Depending on the size of the drawing area and the

number of the rendered objects (generally graphic

primitive types) the time needed to redraw the scene

may increase significantly.

The WebRTC, WebSocket and Canvas technologies are

the fundamental building stones of the web simulation

realization.

4.4. Basic characteristics of JavaScript

The JavaScript programming language, generally used

by web browsers to realize dynamic behavior of web

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

151

pages, is a weakly-typed prototype language. JavaScript

also contains several functions which significantly

complicate optimization of compiled code, which in

turn means that the resulting program performs

significantly worse than desktop applications. However,

this state improves with new versions of web browsers.

Optimization libraries (such as the asm.js) exist, which

compile C/C++ language code into strongly optimized

JavaScript code (Voracek 2016). However, this

approach does not solve the second, more significant,

problem – the fact, that JavaScript has a “single-

threaded” (this expression is not completely accurate,

but captures the essence of the problem, which is why

the expression will be used further in the text) approach.

A single-threaded event-based system of executing user

code is a critical problem for a distributed simulation-

type application. This property of JavaScript means that

in practice, all operations are executed synchronously in

a single thread. There are no concurrent multi-threading

approaches available to the user (Processes that cannot

be influenced by the user, such as data rendering,

network communication etc. are, however, done

asynchronously by the browser). This state does not

present a problem to a large group of algorithms that are

commonly realized in a browser, but generally

complicates construction of algorithms for tasks that

require parallel execution of operations (in terms of

multi-threading and multi-processor execution), be it for

effectiveness or individual tasks’ time complexity

reasons. Chapter 6.1 covers the specific reasons because

of which this state presents a significant problem to

realization of web (distributed) simulations.

5. AUXILIARY SOFTWARE SOLUTIONS

As stated before, the presented solution assumes the

simulation runs only in a web browser (with no

participation from the server), purely peer-to-peer.

However, no peer-to-peer solution is capable of

bypassing the server side completely. At the very least,

connection initialization must be solved, which is

impossible without the participation of a sever element.

If we want to conduct distributed simulation, we have to

build it somewhere, or at least save the configuration

(for example on a web server), from where it will be

available to the clients. Due to the fact that the

presented solution works with up to 40 connected

clients, it is necessary to observe the state and behavior

of the client computers.

There are 4 auxiliary server applications, connected into

the Administration interface, which runs in the

“background” of the simulation itself:

5.1. Model configuration

The fundamental part of the server-side Administration

interface of this solution. Serves to register individual

types of logical processes and consequentially use then

when building the model of the distributed simulation.

Figure 1: Administration web interface, visual editor;

blue lines are network connections between logical

processes (chapter 3.2 part 1)

Figure 2: Administration web interface, visual editor;

20 logical processes represents 20 players (chapter 3.2

part 2 and use case – chapter 7)

5.2. Simulation control

A server-side application to which all the clients –

logical processes – are connected. Through this

application, it is possible to pass commands and

instructions or gather runtime information from clients

(in bulk). This application serves to control the

simulation (initialization, start, pause, end, etc.) in a

centralized fashion.

Figure 3: JSRC: Prepared command set, one square is

user-defined command (or commands), prepared for

touch-devices

5.3. Centralized visualization

This server part (realized as a component of the

Administration interface) facilitates recording of the

animation output. Screenshots for static preview (see

figure 4) of the logical processes’ state are captured, as

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

152

well as the animation activities, making it possible to

reconstruct the logical processes and simulation

runtime.

Figure 4: Overview of logical process in simulation in

central visualisation, 8 LP/player, shared

space/playground, differences between pictures are

caused by the creation of a screenshot at different times

5.4. Initialization server

The initialization server serves to create a peer-to-peer

connection between browsers. This component also

graphically depicts the state of connections between the

individual clients.

6. ALGORITHM CHARACTERISTICS

6.1. Simulator as a single-threaded application

A simulator faces four critical tasks, which are

independent and running at all times: (i) simulation

core, executing discrete events, (ii) network

communication (sending and receiving messages) with

other simulation participants, (iii) reactions to user input

and (iv) animation output.

These four parts are commonly realized as parallel tasks

in classic desktop applications. In JavaScript, this is not

possible. This is why the simulator is realized as a series

of cyclically repeated operations (only fundamental

steps are listed):

1. Interpretation of incoming messages.

2. Interpretation of user input.

3. Synchronization of the logical process, based

on steps 1 and 2 (see chapter 6.3).

4. Execution of available (especially in relation to

synchronization of logical processes) discrete

events.

5. Calculation of animation output:

(a) entity position calculation,

(b) calculation of collisions or other

interactions between entities,

6. Broadcast data (local LP state information) to

other logical processes.

7. Rendering of the situation onto the animation

output.

8. Continue by step 1.

6.2. Basic structure of logical processes

A logical process is made up of 6 parts (for an UML

diagram see Image 5):

1. Simulation core: operates simulation activities,

ensures synchronisation. Includes:

(a) Calendar: priority queue for simulation

activity planning.

(b) Environment: contains environment and

state information related to the simulation

(primarily activity handler).

(c) Modules: any named data structure,

usually auxiliary, available to all

dependent parts (usually activity handler).

Used, among others, for the text report of

simulation states.

2. Simulation activity: specified the type of

activity, time of execution and any other

additional information

3. Activity Handler: execution of given activity

type

4. ConnectionRegister: logical process

communication realisation layer

5. Animation Activity: Described a graphic

element for animation rendering. One of the

modules of the simulation core.

6. AnimationManager: renders a scene based on

the animation activities

Other program parts that are not critical for the

execution of a logical process:

7. SettingsManager: contains a description of the

simulation configuration.

8. EntityManager: contains information about

entity types and individual entities.

9. ActionManager: describes interactions and

eventual reactions of individual entity types.

The solution as a whole works under several basic

premises:

 All simulation and animation activities can be

serialized.

 All simulation and animation activities can be

interrupted at any time (removed from the

queue or scene).

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

153

Figure 5: Basic UML schema of logical process (the

simulator itself)

The algorithm stated above is only a simplified

framework of the used solution, Provided for a basic

understanding of the function.

Moreover, the problem presented by the event-based

approach of JavaScript is not solved. That means that at

any given time, the execution of the algorithm may be

interrupted by executing different tasks (user input into

the simulation, receiving messages, etc.). The event-

based approach is not a problem in general, as the

“main” algorithm will continue after the interrupting

operation is finished. The problem is that these

“unexpected” actions take some time to complete, and

thus slow down the calculations and have a negative

impact on the animation smoothness, which in the end

means worse user experience.

6.3. Topology of connection between logical

processes in the simulation model

A one-on-one connection is realized (through the

WebRTC technology). During the initialization process

of the simulation, a connection is made between each

logical process. The connection is established primarily

in order to maintain a global memory space. All state

changes of a logical process are sent to all other logical

processes (in fact a broadcast of state changes). Every

receiving logical process then decides whether and how

to process the received data. This process was inspired

by the DIS standard.

This broadcast of changes between all logical processes

is also used for synchronization purposes.

6.4. Logical process synchronization

Optimistic methods of synchronization are generally

more suited for interactive simulation, as they do not

require strict time synchronization of the logical

processes runtime, which in turn means the calculations

(and animations as well) are smoother (thanks to not

having to wait for the “slow” logical processes). To

ensure smooth operation (especially in terms of

animation), the conservative approach is not effective,

as it requires a short look-ahead (briefly: max. look-

ahead must equals to delay of animation slides –

animation FPS 25 required 40 ms between slides / 40

ms look-ahead) to ensure smooth animation, which

increases communication load.

A “two-level” synchronization method was chosen:

1. For basic synchronization, the Conservative

synchronization technique of sending null

messages with a look-ahead (Chandy-Misra-

Bryant Distributed Discrete-Event Simulation

Algorithm, Fujimoto 2000) was used – the

specific implementation can be found in the

previous work (Kartak 2015). This method is

utilized primarily in during the simulation

initialization, and to capture above-average

fluctuations (delays) in network

communications.

2. For precise synchronization purposes, state

information timestamp readings are used, as

sent by other logical processes. The received

times are compared to the actual system time

of the client computer, and based on the

differences of the other logical processes and

the client logical process (and its anticipated

behavior), the speed of the logical process is

adjusted – and with it, the animation speed, as

it is animation speed that determines the speed

of the simulation.

In this second level of synchronization, the

strict time synchronization with conservation

of local causality of time is not applied. We

assume a deviation (depending on the scope of

the simulation model) of up to 100 ms. We

consider the deviations in this interval to be

negligible, and (nearly) imperceptible by the

user.

Due to the facts stated above, use on local (e.g.

company) networks is presumed, where the latency of

messages sent through the WebRTC is usually around

10 ms, which allows smooth runtime of the application.

6.5. Algorithm

We are in a web browser / JavaScript environment, a

single thread event based approach.

Initialization

1. Create (WebRTC) connection between all LPs.

n logical processes make

n × n − n

full-duplex connections

2. Waiting until a every connection is established

Start of simulation

Every one logical process

1. Sync level 1: Conservative synchronization

technique (see chapter 6.4)

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

154

2. Waiting until all logic processes are obstructed

to run and initialization is not performed. (For

example: waiting 5000 ms)

Running simulation (one logical process execution),

inc. sync level 2

Every one logical process

SC ... Simulation core

A ... Animation

A.ActivityList ... list of animation activities

E ... simulation event

SC.E ... current (executing) event

SC[C] ... calendar of events/activities

DECLARE SC.run

BEGIN

1. SC.executeUserAndNetworkEvents()

2. isAnimTimeInFuture = A.time>=SC.time

3. IF isAnimTimeInFuture

THEN

1. WHILE SC.time<=A.time

 THEN

1. IF SC[C].isEmpty()

THEN A.start(); follow step 1

ELSE

1. follow step 9 to 11

2. IF SC[C].isEmpty()

THEN A.start(); follow step 1

4.

5. IF SC.time>A.time

6. THEN

1. A.setTime(SC.time)

2. A.setSpeedRatio(1)

ELSE

1. A.setSpeedRatio(0.98)

7. A.start()

8.

9. SC.E = Shift first E from CS[C]

10. SC.time = SC.E.time

11. e.execute()

12. IF SC[C].nextEvent().time == SC.time

THEN follow step 3

ELSE follow step 8

DECLARE A.start

BEGIN

SC.executeUserAndNetworkEvents()

stepStart = NOW.time

IF A.stepLastTime != 0

THEN timePlus = stepStart − A.stepLastTime

ELSE timePlus = 200 # magic constant for first step

timeAdd = timePlus*A.speedRatio*0.98 # 0.98 is a

constant defining a delay in the execution of the script

itself, experimental value

A.time += _timeAdd

A.stepLastTime = stepStart

WHILE A.ActivityList.hasNext()

1. AACurrent = A.ActivityList.next()

2. AACurrent.timePrepare(A.time) # Calc new

position

SC.collisionCalculation()

WHILE A.ActivityList.hasNext()

1. IF AACurrent.getStartTime()>A.time

THEN continue;

2. AACurrent.draw(A.time) # (re)draw activity to

output buffer

A.outputFrame() # Render to screen

WHILE A.ActivityList.hasNext()

1. AACurrent = A.ActivityList.next()

2. IF AACurrent.isFinished(A.time)

3. THEN A.ActivityList.remove(AACurrent)

animNextDiff = 1000 / A.fps # requested FPS

timeAnimDuration = NOW.time − stepStart

timePlanPlus = animNextDiff − timeAnimDuration

IF timeNextAnimX<0

THEN timePlanPlus = 2

plan(A.start, timePlanPlus)

plan A.start() by x ms, where timePlanPlus is

demanded delay between now and next output frame

(by requested FPS)

END

A.time = SC[C]. nextEvent().time # Setup time of

animation output, example

SC.run()

SC.broadcastStateInfoInterval(ms=30) # Send state info

to all another LPs every 30 ms, this is realized as

standard E planned every x ms

SC.initMessageReceiver(# Receive message event

 (scSender.name, listOfStateInfo) =>

 stateInfoEv = new E

 stateInfoEv.listOfUpdates = listOfStateInfo

 SC[C].addEvent(stateInfoEv, SC.time+1ms)

)

7. USE CASE AND TRACKED METRICS

Algorithm and implementation of distributed simulation

in a web browser were tested on a game type program

(see figures 6 and 7):

 Each LP contains a single user-controlled

entity (UCE).

 One shared scene, representing the playing

field (all logical processes share a single scene

i.e. all users see the same).

 The playing field will be restricted by screen

size (the area of the canvas is 1 MPx),

 The user controls the UCE with a keyboard

(arrows allow movement in 4 basic directions,

spacebar allows the user to shoot) and a mouse

(click into the playing field represents a travel

destination), figure 8.

 A shot (realized as an entity) travels with a

limited speed, giving the remaining users time

to react (figure 9).

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

155

 The collision of a shot with a soldier causes an

action (frag count, unimportant for the use

case), figure 10.

Figure 6: Conceptual picture of use case, LP topology

Figure 7: The screenshot from use case – a simple

multiplayer game

Figure 8: Detailed information about the use case

Figure 9: Example of interaction, player 1 shoots bullets

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

156

Figure 10: Example of interaction, player 2 was killed –

player & bullet interaction and subsequent animation

(explosion), gray indicates the end of the local player

The following properties of the simulation was tested:

User interactions (in relation to algorithm runtime

interruptions) – event handler does not represent a

measurable delay.

Entity-entity collisions (soldier-soldier, soldier-shot) –

complexity is determined by the complexity of

calculation and optimization of data structures,

generally not a problem.

Entity-environment collisions (restriction of access to

certain areas of the scene) – depending on the choice of

the appropriate data structures and the required

accuracy. For example, cross-border control of players'

playgrounds was performed once every 100 ms (about 6

to 10 animation frames). This without a visible problem

from the player's experience, an FTP increase of 1-2.

User interaction latency during the interaction of a

local process with a remote one. The response delay is

dependent on the frequency of the message forwarding,

at a 30 ms status update, a response of up to 30 seconds

for sending the static data, 5 ms for network

transmission, max. 30 for sending the response back

(sending the status data), 5 ms for network

transmission. It follows that the response required after

a remote logic process can take up to 70 ms (about 3

animations).

Number of synchronization messages and message

latencies.

Scene rendering delays (FPS – max, min, avg) in

relation to the number of animated objects – see table 1

Look-ahead for the first level of time

synchronization is not relevant.

Differences between local simulation times and

global average – the difference is on average several

ms, the difference amount decreases with the increasing

number of LPs because the increasing sync level 2

algorithm better compensates for the differences.

All the stated properties was tested on simulation model

configurations of 8, 12, 20 and 40 logical processes.

Measurements took place on identically configured PCs

(Intel® Core™ i3-3240 CPU @ 3.40 GHz, 4 GB RAM,

Windows 10 64bit, only one application running –

Google Chrome browser, version 58). The best

performance (FPS plus user experience) is when

configuring 20 LPs.

Table 1: Results of tested use case, critical data for simulation run with focusing on animation output and interactive

approach

Tested properties #1 #2 #3 #4 #5 #6 #7 #8

LP count 8 8 12 12 20 20 40 40

User interaction & collision calc enabled NO YES NO YES NO YES NO YES

Animation FPS (AVG) 85 80 65 60 33 32 15 11

Sync request count 186 142 137 44 108 119 219 246

Animation 1 frame draw time (AVG) [ms] 34 32 42 42 61 60 92 95

Animation 1 frame draw time (MAX) [ms] 37 50 78 71 79 82 155 180

Animation activity count in animation scene 215 245 278 266 552 548 980 1005

Result notes (table 1):

 User interaction (mouse click, press key

SPACE) was programmatically generated.

Calculated by uniform distribution (min 400

ms, max 2000 ms) between simulated

interactions.

 One animation activity is consists from 5

graphics base elements / primitives (real

canvas draw elements) in average.

 Results were collected after 5 minutes (real

time) run.

From the table 1, read that the limiting invoice is not the

number of LPs (within the specified numbers), but (a)

the complexity of the; calculations and (b) the scope

(especially in terms of quantity) of the animation.

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

157

8. CONCLUSION

The primary motivation for use of web-based

simulation is the availability of the runtime environment

– web browser – on any computer or modern device

connected to a computer network. JavaScript is very

well supported by modern-day browsers, and is

extensible and well known. This comfort of availability

and simplicity is not without a cost – when compared to

native applications, the scripts are slow. Web browser

simulations can not be compared with native application

(using standards like HLA, DIS, TENA, etc. or in

general) due to the inequality between compiled

languages, multi-threaded access, and graphical output

– ie (relatively) direct access to the graphics card.

Altogether, the introduced solution is suited to solving

small tasks that do not require complicated calculations

and complicated graphical output, but require

distributed space or operator workstation. A good

example may be the training software operators of the

(technological) process, where the distributed approach

(different workplaces) is used and complex graphics

output is not required – it is just an interactive diagram

of the relevant technological process.

Regarding presented use case is at the edge of the

technology possibilities. The only possibility of

improvement seems to rewrite (source code) the

graphics output to WebGL, which allows use graphics

card to generate the output. There is the opportunity to

reduce the load of current software approach to drawing

the output, and use the new available (processor) time

for more detailed calculations or larger scale (more

entities, events, etc.) simulation itself.

REFERENCES

Fujimoto, Richard M. Parallel and distribution

simulation systems. New York: Wiley, 2000.

Print.

Kartak, Stepan, and Antonin Kavicka. "WebRTC

Technology as a Solution for a Web-Based

Distributed Simulation". Proceedings of the

European Modeling and Simulation Symposium

2014. Genova: Università di Genova, 2014, s. 343-

349. ISBN 978-88-97999-38-6.

Kartak, Stepan. "Web Simulation as a Platform for

Training Software Application". Proceedings of

the European Modeling and Simulation

Symposium 2015. Genova: Università di Genova,

2015, s. 70-78. ISBN 978-88-97999-57-7.

Kartak, Stepan. "Web Simulation as a Platform for

Training Software Application". Proceedings of

the European Modeling and Simulation

Symposium 2016. Genova: Università di Genova,

2016, s. 78-86. ISBN 978-88-97999-76-8.

Voracek, Jan. "Web Simulation as a Platform for

Training Software Application". Proceedings of

the European Modeling and Simulation

Symposium 2016. Genova: Università di Genova,

2016, s. 73-77. ISBN 978-88-97999-76-8.

Kuhl, Frederick, Judith Dahmann, and Richard

Weatherly. Creating computer simulation system:

an introduction to the high level architecture.

Upper Saddle River, NJ: Prentice Hall PTR, 2000.

Print.

Tropper, Carl. Parallel and distributed discrete event

simulation. New York: Nova Science, 2002. Print.

Kuhl, Frederick, Dahmann, Judith, Weatherly, Richard,

Creating Computer Simulation Systems: An

Introduction to the High Level Architecture,

c2000, Upper Saddle River, NJ; Prentice Hall

PTR. ISBN 01-302-2511-8.

Hridel, Jan, and Stepan Kartak. "Web-based simulation

in teaching". The European Simulation and

Modelling Conference 2013. EUROSIS-ETI,

2013. Print.

The Institute Of Electrical And Electronics Engineers,

Inc, 2012, 1278.1-2012: IEEE Standard for

Distributed Interactive Simulation - Application

Protocols. New York; IEEE. 2012. ISBN 978-0-

7381-7310-8.

The Institute Of Electrical And Electronics Engineers,

Inc, 1996, 1278.2-1995: IEEE Standard for

Distributed Interactive Simulation -

Communication Services and Profiles. New York;

IEEE. 2002. ISBN 0-7381-0994-0.

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

158

