
HIGH-PERFORMANCE WEB SIMULATION

Jan Voracek(a)

(a) Faculty of Electrical Engineering and Informatics, University of Pardubice

(a)jan.voracek@student.upce.cz

ABSTRACT
This paper demonstrates a possibility of
creating high-performance web simulations. It
utilizes Emscripten and asm.js to create a
performance-optimized simulation that runs in
a web browser. The paper provides a short
introduction into used technologies and
compares the performance of optimized
simulation of fluid dynamics with usual
approach of creating web simulations.

Keywords: computer simulation, web-based
simulations, javascript, compilation.

1. INTRODUCTION
Computer simulation is an effective approach
to study the behaviour of various systems over
time. Simulated systems are often quite
complex, and therefore have usually high
demands on performance of the environment
where they are executed. When creating a
simulation model, it is necessary to take this
into account and use corresponding level of
abstraction. For example, we can replace
complex input systems (systems from which
data is entered into our model) with random
number generators with corresponding
probability distribution.
 Sometimes, however, even abstraction
from everything unessential may not be
enough. Some simulation systems are
computationally intensive themselves. The
selection of appropriate technologies for the
implementation of the simulator can help here.

1 In Dartium web browser you can run scripts
written in the Dart language. However,

Generally, we can follow rules saying that
compiled languages provide higher
performance than interpreted and that
languages translated into native code provide
higher performance than languages compiled
into bytecode and run in a virtual machine (Java
VM, CLR).
 This paper, however, focuses on the web
simulation and introduces possibilities of
creating performance-optimized web
simulations to the reader.

2. WEB SIMULATION
Web technologies are already used for several
years in the field of simulation and are still
gaining popularity. They are often utilized
thanks to their portability. All you need to run
a simulation is a modern web browser. You can
run the simulation on a desktop computer,
laptop, tablet, smartphone or smart TV
(Voráček, 2015).
 Lower performance is often referred as the
biggest disadvantage of web simulation
(Karták, 2015). We will see how it is possible
to mitigate this disadvantage in the following
chapters.

3. JAVASCRIPT
JavaScript is the only language that can run in
the web browser1 (on the client side). It is an
interpreted language with a dynamic type
system. This means that the source code is not
compiled but runs directly.
 All variables in JavaScript are dynamic. It
means that their type can be changed by

Dartium is not intended for common use. See
www.dartlang.org/tools/dartium/.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

73

assigning another value and their true type is
determined on run time. When you assign a one
to a variable, it will have some numeric type.
Whether it will be integer or floating point
number depends on JIT (Hanenberg, 2010).
 JIT (just-in-time optimization) is a process
when the interpreter executing the source code
tries to optimize the code during the execution
(Sanghoon, 2012).

4. ASM.JS
Asm.js is a strict subset of JavaScript that can
be used as a low-level, efficient target language
for compilers. This sublanguage effectively
describes a sandboxed virtual machine for
memory-unsafe languages like C or C++. A
combination of static and dynamic validation
allows JavaScript engines to employ an ahead-
of-time2 (AOT) optimizing compilation
strategy for valid asm.js code (Herman, 2014).
 As JavaScript is a language with a dynamic
type system, asm.js uses type annotations to
indicate the type of variable. For example:

• var x = f()|0; tells that x is an integer,
• var y = +f(); tells that y is a double,
• var z = f()>>>0; uses output as unsigned

int.

Another very important part of asm.js
specification is typed arrays. Software written
in JavaScript usually uses simple, generic
arrays (in fact they are maps). However,
JavaScript contains also typed, fixed arrays
which have better both memory and time
complexity, for example:

• Uint8Array – array of 8-bit unsigned
integers,

• Int32Array – array of 32-bit unsigned
integers,

• Float64Array – array of 64-bit
floating point numbers.

See the JavaScript reference for more.

5. EMSCRIPTEN
Emscripten is a source-to-source compiler that
runs as a back end to the LLVM (Low Level

2 Ahead-of-time optimization is an approach
used by compiled languages where the
optimization runs within the compilation step.

Virtual Machine) compiler and produces a
subset of JavaScript known as asm.js described
in the previous chapter (Zakai, 2011).
 Emscripten also do some optimization of
the code, for example:

• Variable nativization: Converts
variables that are on the stack – which
is implemented using addresses in the
HEAP array (see Zakai, 2011 for more)
– into native JavaScript variables.

• Relooping: Recreate high-level loop
and if structures from the low-level
code block data that appears in LLVM
assembly.

Emscripten’s compilation approach is to
generate “natural” JavaScript, as close as
possible to normal JavaScript on the web, so
that modern JavaScript engines perform well
on it (Zakai, 2011).
 However, there are some limitations of
Emscripten:

• 64-bit Integers: JavaScript numbers
are all 64-bit doubles, with engines
typically implementing them as 32-bit
integers where possible for speed. A
consequence of this is that it is
impossible to directly implement 64-bit
integers in JavaScript, as integer values
larger than 32 bits will become doubles,
with only 53 significant bits (Zakai,
2011).

• Multithreading: JavaScript has Web
Workers, which are additional threads
(or processes) that communicate via
message passing. There is no shared
state in this model, which means that it
is not directly possible to compile
multithreaded code in C++ into
JavaScript (Zakai, 2011).

6. LLVM
An LLVM is a compiler or a compiler
infrastructure which compilers can be
implemented in.
 A simple diagram illustrating the LLVM
workflow is shown in Figure 4. An LLVM

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

74

consists of a front-end and a back-end. The
front-end translates high-level programming
languages, e.g. C, C++, Java, Python, into a
LLVM-IR (intermediate representation), which
is a low-level programming language similar to
assembly languages and is a language
independent code. The back-end then translates
the LLVM-IR into the architecture- and
hardware-specific code (Lattner, 2004).

Figure 1 – LLVM architecture

7. PERFORMANCE
A computation of the Fibonacci sequence was
chosen as a simple test for initial performance
comparison. You can see the source codes
below. The experiment was made with plain
JavaScript (executed in NodeJS), for C++
(compiled by clang) and with asm.js (also
executed in NodeJS).
 This microbenchmark is indeed very
simple; however, even this simple code can
demonstrate that the performance asm.js is
quite higher than hand-written JavaScript.

Source code 1 – Computation of 50th number of Fibonacci
sequence in C++

Code written in JavaScript is not very different.
Besides the data types they are substantially
identical.

Source code 2 – Computation of 50th number of Fibonacci
sequence in plain JavaScript

In the following example you can see the code
generated by Emscripten. It is a JavaScript code
compiled from C++ code (Source code 1). You
can see, for example, the type annotations
mentioned in chapter 4 or that the AOT
optimization removed one of the recursive
calls.

Source code 3 – Computation of 50th number of Fibonacci
sequence – source code generated by Emscripten

On the following graph you can see the
comparison of execution times. You may notice
that the code compiled from C++ to JavaScript
is quite faster than hand-written JavaScript.

#include <iostream>

long fib(int x) {
 if (x < 2) {
 return 1;
 } else {
 return fib(x - 1) + fib(x - 2);
 }
}

int main() {
 long result = fib(50);
 std::cout << result << std::endl;
 return 0;
}

function fib(x) {
 if (x < 2) {
 return 1;
 } else {
 return fib(x - 1) + fib(x - 2);
 }
}

var result = fib(50);
console.log(result);

function __Z3fibl($x) {
 $x = $x|0;
 var $0 = 0, $1 = 0, $2 = 0, $3 = 0, $4 = 0,
$5 = 0, $accumulator$tr$lcssa = 0,
$accumulator$tr1 = 0, xtr2 = 0, label = 0, sp
= 0;
 sp = STACKTOP;
 $0 = ($x|0)<(2);
 if ($0) {
 $accumulator$tr$lcssa = 1;
 return ($accumulator$tr$lcssa|0);
 } else {
 $accumulator$tr1 = 1;xtr2 = $x;
 }
 while(1) {
 $1 = (($x$tr2) + -1)|0;
 $2 = (__Z3fibl($1)|0);
 $3 = (($x$tr2) + -2)|0;
 $4 = (($2) + ($accumulator$tr1))|0;
 $5 = ($3|0)<(2);
 if ($5) {
 $accumulator$tr$lcssa = $4;
 break;
 } else {
 $accumulator$tr1 = $4;$x$tr2 = $3;
 }
 }
 return ($accumulator$tr$lcssa|0);
}
 // Global variables:

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

75

Figure 2 – Comparison of execution time of calculation of 50th
number of Fibonacci sequence

As you can see on Figure 3, also other
benchmarks confirm that JavaScript code
compiled from C++ is almost always faster than
hand-written JavaScript.

Figure 3 – Comparison of benchmark results [Data source:
arewefastyet.com on March 24, 2016]

8. CASE STUDY
In 2013 Daniel Schroeder from Department of
Physics at Weber State University, Utah has
implemented a simple fluid dynamics simulator
in JavaScript based on Lattice-Boltzman
methods. You can see this simulator on Figure
4.

Figure 4 – Fluid dynamics simulator

This simulator was chosen as a reference for the
comparison. It was reimplemented in C++ and
transpiled back to JavaScript using Emscripten.
It was chosen because fluid dynamics is not
entirely trivial in terms of mathematical
calculations and it is simple to animate.
 As you can see on Figure 5, there is a
difference in how many simulation steps per
second are executed. The original JavaScript
implementation performs 1050 steps per
second while the C++ implementation
compiled to JavaScript performs 1434 steps
(average number of steps after 5 minutes of
simulation). That is 36.57% higher
performance.

Figure 5 – Performance test of fluid dynamics simulators

9. CONCLUSION
Performance optimization is an important and
frequently discussed topic, especially in the
context of web-based simulation. Results
presented in this paper indicate that
implementing simulators in languages with
strong type system like C++ and their

195,39

133,22

86,01

0

50

100

150

200

250

JavaScript asm.js C++	native

EX
EC

UT
IO
N	
TI
M
E	
[S
]

0 2000 4000 6000 8000 10000

copy

corrections

fannkuch

fasta

box2d

bullet

lua-binarytrees

zlib

Execution	time	[ms]

Benchmark	comparison

Firefox	(no	asm.js)
Firefox	(asm.js)
C++

1050

1434

0

200

400

600

800

1000

1200

1400

1600

JavaScript C++	->	JavaScript

St
ep

s	p
er
	se

co
nd

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

76

compiling to JavaScript is worth considering.
JavaScript optimized by Emscripten gave often
better performance than hand-written
JavaScript.
 There is also a lot of mathematical and
physical libraries for C++ and this approach
allows you to use them easily in your web-
based simulators.

REFERENCES
Hanenberg S., 2010. An experiment about

static and dynamic type systems: doubts
about the positive impact of static type
systems on development time. In
Proceedings of the ACM international
conference on Object oriented
programming systems languages and
applications, pp. 22–35, New York, NY,
USA.

Herman D., Wagner L., Zakai A., 2014.
Specification of asm.js. Available from:
http://asmjs.org/spec/latest/ [November
2015].

Karták Š., 2015. Web simulation as a platform
for training software application. In
Proceedings of the 27th European
Modeling and Simulation Symposium
(EMSS 2015), pp. 70-78, Bergeggi, Italia.

Lattner C., Adve V., 2004. LLVM: A
Compilation Framework for Lifelong
Program Analysis & Transformation. In
Proceedings of the international
symposium on Code generation and
optimization: feedback-directed and
runtime optimization (CGO '04), pp. 75-,
Washington, DC, USA.

Sanghoon J., Jaeyoung C., 2012. Reuse of JIT
compiled code in JavaScript engine. In
Proceedings of the 27th Annual ACM
Symposium on Applied Computing (SAC
'12), pp 1840-1842, New York, NY, USA.

Voráček J., 2015. Web Simulation with
Support of Mobile Agents. In Proceedings
of the 27th European Modeling and
Simulation Symposium (EMSS 2015), pp.
32-35, Bergeggi, Italia.

Zakai A., 2011. Emscripten: an LLVM-to-
JavaScript compiler. In Proceedings of the
ACM international conference companion
on Object oriented programming systems
languages and applications companion
(OOPSLA '11), pp. 301-312, New York,
NY, USA.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

77

