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ABSTRACT 
We present a real world steel stacking problem 
featuring non-instantaneous crane movements, 
continuous production and retrieval and stacking 
constraints based on the dimensions as well as 
temperature of the slabs. An exact Branch & Bound 
solver as well as three tree-search based heuristics is 
developed. Random benchmark instances derived from 
the real world problem are used to evaluate the 
performance of the heuristic solvers and compare them 
to the exact solver. 
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1. INTRODUCTION 
Stacking problems arise in many sectors of industry in a 
great number of variants. A good overview of the 
different problem variants including solvers and 
complexity considerations is given in (Lehnfeld & 
Knust, 2014). They differentiate loading, unloading, 
premarshalling and combined problems. According to 
their categorisation the problem considered in this paper 
is a combined loading unloading problem. 

The work most closely related to this one is probably 
(Rei & Pedroso, 2013). They also describe a stacking 
problem with continuous production and delivery but 
with instantaneous crane movements and without any 
capacity or stacking constraints. They develop a 
stochastic tree search algorithm in order to tackle big 
problem instances. 

The Stacking Problem considered in this paper arises in 
the operation of a steel factory. Steel slabs are casted 
according to a fixed schedule and have to be put onto a 
delivery stack according to a fixed list of delivery lots. 
The slabs can be moved by a crane which can only 
move a single slab at a time and only access the slabs on 

top of a stack. Every crane movement requires time to 
perform and the stacking is subject to some restrictions.  

 Figure 1 shows a possible layout of a stacking area 
with a single caster at the left, nine partially used buffer 
stacks in the middle, and a crane moving a slab to the 
handover stack at the right.  

 

 Figure 1: Example of a stacking area 

If crane movements were instantaneous and the last slab 
was already casted this problem can be viewed as a 
variant of the Block Relocation Problem with additional 
stacking constraints. In this case the caster is simply 
viewed as another stack. The original authors of the 
BRP (Kim & Hong, 2006) use a Branch & Bound 
algorithm and a heuristic rule based on the expected 
number of additional relocations, called ENAR. 
Improvements on this approach come from (Ünlüyurt & 
Aydın, 2012). Two binary linear programming are 
introduced in (Caserta, et al., 2012) where one only 
considers strictly necessary moves and the other one 
also allows so called voluntary moves. Those models 
are improved upon by (Petering & Hussein, 2013) and 
(Expósito-Izquierdo, et al., 2015).  
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The remainder of this article is organised as follows. In 
Section 2 we describe the problem in detail. In Section 
3 we present an exact Branch & Bound algorithm as 
well as a heuristic approach. Section 4 compares the 
two solvers in terms of solution quality and runtime 
using randomly generated problem instances derived 
from real world problem instances. Finally we discuss 
the results of the experiments and present an outlook on 
further research. 

2. PROBLEM DESCRIPTION 
There is a set of 𝐾 casters C = {𝑐𝑘}𝑘=1𝐾  which produce 
𝑁 steel slabs S = {𝑠𝑖}𝑖=1𝑁  of different dimensions 
according to a fixed schedule. The slabs are to be placed 
onto a single handover stack ℎ where they are picked up 
according to fixed delivery lots. A delivery lot consists 
of the due-time and the order in which the slabs of that 
lot should be in. At the due-time all slabs of a lot must 
be on the handover stack so a transporter can deliver 
them all to their destination. It is important to note that 
if the casting schedule and the order of the slabs in the 
transport lots match up the problem becomes trivial, but 
this is not always possible. 

When a slab comes out of a caster and cannot be put 
directly onto a delivery stack can be put on one of M so 
called buffer stacks B = {𝑏𝑗}𝑗=1𝑀 . There is a single crane 
which can transport a slab from the top of a buffer stack 
or front of a caster to a handover or buffer stack using a 
certain amount of time given that none of the stacking 
constraints described in 2.1 are violated. Note that the 
crane is not allowed to take a slab from the handover 
stack or to put a slab back onto the caster.  

The objective is to deliver all the slabs according to the 
given delivery lots while performing as few crane 
movements as possible. 

2.1. Stacking constraints 
The height of the buffer stacks is limited but since the 
slabs have different dimensions this does not translate 
to a fixed amount of slabs per stack. 

In order to guarantee stability of the stack as well as to 
prevent deformation of the slabs there is a limit on the 
allowed length and width difference between each slab 
and all the slabs beneath it in the stack. Note that this 
constraint only has to be checked when a slab is placed 
on a buffer stack because the delivery lots are fixed. 

Another factor that determines if a slab can be stacked 
onto another is the temperature difference between the 
two. This constraint is necessary because the cooling is 
vitally important for the steel quality and reheating a 
slab by placing a hotter slab on top can mean that the 
slab is no longer usable. The temperature of a slab is 
calculated using a simple logarithmic cooling scheme 
starting at the casting temperature and time. 

2.2. Time constraints 
Every slab has a production timestamp and a delivery 
timestamp. The most basic temporal constraint is that a 
slab cannot be moved before its production or after its 

delivery. Since the caster can only hold a certain 
number of casted slabs and the casting schedule is fixed, 
there is a time window in which a slab can be taken out 
of the caster. This window is between the casting time 
of the slab and the casting time of the n+1 slab. 
Otherwise the caster would have to be stopped which 
should be avoided at all costs. 

Similarly, there is a time window for putting slabs on 
the handover stack, which begins with the delivery time 
of the previous transport lot and ends with the delivery 
time of the slab.  

3. SOLVING THE STACKING PROBLEM 
The solution of a stacking problem consists of a list of 
crane movements called moves from here on. A move is 
described as a tuple of the source and the target. Since 
there are different types of locations we distinguish 
between five different kinds of moves: 

• Put (C,Β) 

• Remove (B, h) 

• PutDirect (C, h) 

• Relocate (B,Β) 

• Delivery (h,−). 

Put moves take the first slab from a caster and put it on 
buffer stack. Removal moves are taking a slab from a 
buffer stack and putting it on the handover stack. Of 
course when a slab from the caster can be directly put 
onto the handover stack it would be nonsense and even 
potentially impossible to put it on a buffer stack first. 
This is what a PutDirect move is for. 

 A Relocation move is one that moves a slab from one 
buffer stack to another. The BRP literature differentiates 
two kinds of Relocation moves, namely forced and 
voluntary moves (Caserta, et al., 2012). If the slab that 
has to be removed next does not lie on the top of a stack 
the slabs above it have to be relocated. This is called a 
forced move. Not considering voluntary moves can lead 
to improved run time at the cost of potentially worse 
solutions. 

Delivery moves are special in a number of ways. They 
always move all the slabs of a transport lot at once. We 
considered them to be instantaneous because we are not 
concerned with the actual delivery process but instead 
only care when the handover stack is free to use again. 

All moves that put slabs on a buffer stack are subject to 
the stacking constraints described in 2.1. A slab can 
only be put on the delivery stack if the stack is either 
empty or already contains all the slabs that are in lower 
positions in the same delivery lot. 

The combination of the current time and the creation 
and delivery times of all slabs determine which moves 
are valid. On the other hand the exact time at which 
each move is performed is irrelevant as long as the 
constraints are respected. Given a valid sequence of 
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moves, it is easy to calculate a time window within 
which each move must be performed. 

Table 1: Example1 

Creation time Due-time/ Position Initial position 
0 20/1 b1/1 
0 10/0 b1/0 
10 20/1 c1 

 

Table 1 shows an example with a single caster, two 
buffer stacks and three slabs. Figure 2 shows the same 
sequence of moves and therefore the same solution 
distributed in time in three different ways.  

 

Figure 2: Solution of Example1 

3.1. Branch and bound 
In order to perform a branch and bound search we need 
a lower bound. In order to get a valid lower bound we 
consider that, for every remaining lot 𝑟𝑟 we need one 
Delivery move. Every slab that is not already at the 
handover stack needs to be moved at least once. If a 
slab lies on top of a slab that has to be put on the 
handover stack before, the upper slab must be moved at 
least two times. So if 𝑙𝑙(𝑥) is the sum of minimal 
required moves of all slabs at location 𝑥 and 𝑚 is the 
number of moves already performed a total lower bound 
is: 

𝐿𝐿 = 𝑚 + �𝑙𝑙(𝑏)
𝑏∈𝐵

+ �𝑙𝑙(𝑐)
𝑐∈𝐾

+ 𝑟𝑟 

Note that this lower bound is only valid if there is only 
a single handover stack because if there are multiple 
handover stacks a slab that is blocking another slab 
could potentially be placed directly on another handover 
stack instead of a buffer stack. 

We perform a depth first search using all possible 
moves but we use the same order as described below in 
order to improve the chances of finding good solutions 
earlier. 

3.2. Heuristic tree search  
Due to the time and stacking constraints every move has 
the potential to generate a situation where there is no 
valid solution. While choosing a valid move in a BRP 
will never lead to an invalid solution. So instead of 
using a heuristic that aims to choose the best move at 
every step, we propose a heuristic that uses a list of all 
“good” moves ordered by quality. So in most cases the 

first move on the list should be the one used in the final 
solution, but if there is a move that results in a situation 
where there is no solution, alternative moves can be 
applied. 

To find such a list of moves let us make some 
observations. Placing a slab on the handover stack is 
preferable to placing it on a buffer stack because once it 
is on the handover stack the crane never has to touch 
that slab again. Moving a slab from a buffer stack can 
always be done immediately. Moving a slab from the 
casters or the handover stack might involve waiting for 
the casting or delivery time of the slab. Therefore 
Remove moves should be done before PutDirect moves 
and Relocate moves before Put moves. So the moves 
that will be tried are in the following order: 

1. If a caster must be cleared (see 2.2)  

a. Return all PutDirect moves. 

b. Return safe Put moves. 

c. Return remaining Put moves. 

2. If a delivery must be performed (see 2.2) 
return the Delivery move. 

3. Otherwise return a list of all 

a. Removal moves 

b. PutDirect moves 

c. Safe Relocation moves 

d. Safe Put moves 

e. Delivery move 

4. If there are no safe moves return a forced 
move. 

A safe move is one that does not increase the lower 
bound LB described in Section 3.1. Removal and 
PutDirect moves are always safe because moving a slab 
away from the handover is not allowed. This means that 
if the move were unsafe it is also forbidden because it 
cannot lead to a feasible solution. Put and Relocate 
moves are considered safe, when any slab of the source 
stack has to be moved to the handover stack before the 
topmost slab and none of the slabs of the target stack 
have to be handed over before the topmost slab of the 
source stack. 

If there are multiple safe Put or Relocation moves that 
will put the same slab on different empty buffer stack 
only one of them is considered in order to reduce the 
total count of possible moves. This is however only 
valid if the crane movement times between all the 
stacks are equal and the height limits of the buffer 
stacks are also equal. 

Based on this list of good moves we define three 
different heuristic solvers. The first, we will call it H1, 
uses the list of good moves as defined above to do a 
depth first search and return the first solution found. 
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Note that a solution of H1 is a valid upper bound for the 
B&B solver described in Section 3.1. 

The second solver uses a two stage approach where in 
the first step a breadth first search is used to generate 
level after level of the search tree, using all possible 
moves, until a level is generated that has more than a 
certain number of nodes. Then each of these partial 
solutions is completed using H1. We call this solver 
H(n) where n is the minimum number of nodes that we 
generate in the first step. It would also be possible to 
specify the number of levels to generate, but this gives 
us better control over the runtime. One nice feature of 
this is that the second step can be parallelized because 
the partial solutions are totally independent of each 
other. 

Finally we use the B&B solver as described in Section 
3.1 but instead of considering all moves we only 
consider the moves specified before. From now in order 
to distinguish between the two variants we will refer to 
the exact solver as E B&B and the heuristic one as H 
B&B. 

4. EXPERIMENTS 
We evaluated the solvers presented above using a set of 
randomly generated test instances of different sizes. The 
test instances have two casters that are used to produce 
a varying number of lots with four slabs per lot. The 
production dates of the slabs, as well as the due dates of 
the lots are randomly chosen. Then a random start date 
is chosen and all the slabs are put either in a caster or in 
one of the 𝑀 buffer stacks depending on their 
production dates. Using this schema we generate eight 
different scenarios with 10 random instances each. The 
scenarios have 4, 8, 16 or 32 lots and 4 or 8 buffer 
stacks.  

We perform three different experiments using this test 
instances. In Section 4.1 we compare the runtime and 
solution quality of our heuristic solvers. Afterwards we 
compare the best solution of the H B&B solver against 
the optimal solution found by the E B&B in order to 
judge the quality of our heuristic solutions. 

Finally because the real world application of the solvers 
requires us to be able to find a solution quickly we 
compare how the heuristics perform when given a time 
limit of one minute. So the search is aborted after one 
minute and the best solution reached so far is reported. 
The reason we need to be able to find solutions quickly 
is that it can easily happen that the real-world 
circumstances change in such a way that our solution is 
no longer valid. If we require hours to come up with a 
new solution this is a problem. 

All solvers were implemented in C# using the .NET 
Framework 4.6.1 using the Task Parallel Library. All 
tests were run on a Dell Latitude E6540 with an Intel i7 
4810MQ CPU @2.80GHz and 16 GB RAM running 
Windows 7. 

4.1. Comparing the heuristics 
Table 2 shows a comparison of the average solution 
quality of the heuristic solvers for eight different 
scenarios with ten instances each. The N and M 
columns are the number of slabs and the number of 
buffer stacks respectively. LB is the average lower 
bound as described in Section 3.1. The remaining three 
columns contain the number of moves more than lower 
bound the algorithms described in Section 3.2 required 
on average. 

The problems get harder the more slabs they contain. 
Interestingly the problems are also harder if they 
contain fewer buffer stacks. This may seem counter 
intuitive because having more stacks also means there 
are more possible moves. What increases the difficulty 
is that the likelihood of producing a new conflict when 
putting a slab on a buffer stack is higher the fewer 
buffer stacks there are.  

Table 2: Best Solutions of Heuristic Solvers. 

 

Even the simple H1 manages to find solutions within 
10% of the lower bound for the majority of problem 
instances. As described above H(50) runs H1 on all the 
nodes of the first level of the search tree which has 
more than 50 nodes. For the problem sizes we looked at 
this means evaluating all possible combinations of the 
first 2-3 moves. This brings an improvement over H1 
for 25 out of 80 problem instances. 

 

Table 3: Runtime of Heuristics in Seconds. 

N M H1 H(50) H B&B 
16 4 0.00 0.01 0.00 
16 8 0.00 0.03 0.00 
32 4 0.00 0.03 550.85 
32 8 0.00 0.82 782.58 
64 4 0.00 0.07 2624.04 
64 8 0.00 0.58 2528.75 

128 4 0.01 0.36 3600.00 
128 8 0.16 9.78 3600.00 

 

N M LB H1 H(50) H B&B 
16 4 26.5 0.6 0.6 0.5 
16 8 25.8 0.4 0.3 0.3 
32 4 55.0 5.8 4.9 2.6 
32 8 54.3 3.0 2.6 1.5 
64 4 112.3 12.7 11.0 4.4 
64 8 111.6 9.5 9.0 4.0 

128 4 226.0 22.6 21.9 15.9 
128 8 225.2 19.0 18.7 14.4 
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H B&B is never worse than H(50) and outperforms it 
on 54 out of 80 problem instances but as can be seen in 
Table 3 is the runtime much higher. The runtime of H1 
is less than 0.1 seconds for all but one problem instance 
with 128 slabs and 8 buffer stacks. H(50) takes less than 
10 seconds to run for all instances except the one 
mentioned above. The H B&B solver fails to complete 
in less than one hour for at least one instance in every 
problem class except for the two with only 16 slabs. For 
the two biggest problem classes no instance can be 
solved in less than one hour. 
 

4.2. Optimality gap 
In Figure 3 we can see that of our 80 test instances only 
33 could be solved by the exact B&B within one hour. 
H1 solved 21 instances to optimality while H(50) 
managed to solve 23. The H B&B solver found the 
optimal solution in 30 cases. The solutions to the 
remaining three instances all required one more move 
than would have been optimal. Additionally there are 
two instances where the E B&B managed to find better 
solutions than the H B&B despite not running to 
completion. 

 

Figure 3: Number of Problem Instances Solved 
Optimally 

It is interesting to look at situations where the heuristic 
is unable to find the optimal solution. One problem is 
that sometimes it is necessary to perform otherwise 
useless moves in order to enable save moves that are 
vital for the final quality. 

Another point is that our heuristics manage contain 
rules about which moves are “good” and which are not 
based on general considerations about slab stacking as 
well as the temporal constraints. The stacking 
constraints described in Section 2.1 however are only 
used to forbid moves that would violate them 
completely but not in deciding which legal move would 
be better. This can lead to poor decisions where a stack 
is blocked by a slab that cannot be stacked upon. 

4.3. Comparing the heuristics with time limit 
In  Figure 4 and Figure 5 we show the best solutions 
found divided by the lower bound for all problem 
categories after one hour and one minute respectively. 

The two smallest problem sizes are the same because 
they were all solved in less than one minute. Five of the 
twenty problems with eight lots could not be solved. 
The one minute solution was worse in three instances 
by at most three moves. 

For the problems with 16 and 32 lots the additional 
runtime made more of a difference. But even in those 
larger problems was the biggest improvement that an 
additional 59 minutes of runtime could bring was eight 
moves. 

What the graphs do not show is that for 49 out of 80 
problem instances the quality did not differ at all 
between the run with a one hour time limit and a one 
minute time limit. All of this suggests that the order we 
choose the moves in is good since the heuristic manages 
find the good solutions early.  

 Figure 4: Best Solutions of H B&B after 1 hour 

 
Figure 5: Best Solutions of H B&B after 1 Minute 

5. CONCLUSION 
The exact solver is unable to solve all but the smallest 
problems in reasonable time and where it did manage to 
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find a solution there was barely an improvement over 
the heuristic. 

We showed that our heuristic works and that finding a 
better solution than the first one which is returned by 
H1 takes considerably more effort for all but small 
problems. Running H1 from multiple starting points can 
improve the result, but the time is better spent on 
running the H B&B for as long as possible. 

While it is good to give the H B&B solver as much time 
as possible, because it could find better solutions, it is 
often not necessary to run it to completion because the 
heuristic aims at looking at the most promising moves 
first. 

6. MANAGERIAL INSIGHTS 
Efficiently stacking the slabs coming out of the caster 
and preparing transport lots previously required an 
experienced worker. We showed that automatization is 
indeed possible using the approach presented in this 
paper. Our heuristic is able to deliver high quality 
solutions in a reasonable runtime. In addition to this 
work we are also currently working on optimization 
algorithms for the transport lot building as well as the 
transportation and on integrating 

In addition to freeing human resources and reducing 
labour costs are these optimizers also useful for 
evaluating the impact of planned changes on the 
performance of the system. 

7. OUTLOOK 
We are working on applying our results to the real 
world case. One difficulty is that sometimes it is 
necessary to bend the rules laid out in Section 2.1 and 
2.2 slightly in order to find a solution at all. If that is the 
case our algorithms cannot find an answer. There are a 
few possible solutions to this problem. One approach is 
to relax the constraints and try again if no solution was 
found. This is problematic because if the algorithm uses 
all the time we allotted only to be started again 
afterwards we may not have a solution in time. The 
better solution would be to allow but penalize violating 
the constraints. We are currently investigating how we 
can accomplish that. 
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