
A TREE-SEARCH BASED HEURISTIC FOR A COMPLEX STACKING PROBLEM WITH
CONTINUOUS PRODUCTION AND RETRIEVAL

Sebastian Raggl(a), Beham Andreas(b), Fabien Tricoire (c), Michael Affenzeller(d)

(a,b,d) Heuristic and Evolutionary Algorithms Laboratory, University of Applied
Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria

(b,d) Institute for Formal Models and Verification, Johannes Kepler University Linz,
Altenberger Straße 69, 4040 Linz, Austria

(c) Department of Business Administration, University of Vienna,
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

(a)sebastian.raggl@fh-hagenberg.at, (b)andreas.beham@fh-hagenberg.at, (c) fabien.tricoire@univie.ac.at

(d)michael.affenzeller@fh-hagenberg.at

ABSTRACT
We present a real world steel stacking problem
featuring non-instantaneous crane movements,
continuous production and retrieval and stacking
constraints based on the dimensions as well as
temperature of the slabs. An exact Branch & Bound
solver as well as three tree-search based heuristics is
developed. Random benchmark instances derived from
the real world problem are used to evaluate the
performance of the heuristic solvers and compare them
to the exact solver.

Keywords:
Stacking Problem, Branch & bound, Heuristic

1. INTRODUCTION
Stacking problems arise in many sectors of industry in a
great number of variants. A good overview of the
different problem variants including solvers and
complexity considerations is given in (Lehnfeld &
Knust, 2014). They differentiate loading, unloading,
premarshalling and combined problems. According to
their categorisation the problem considered in this paper
is a combined loading unloading problem.

The work most closely related to this one is probably
(Rei & Pedroso, 2013). They also describe a stacking
problem with continuous production and delivery but
with instantaneous crane movements and without any
capacity or stacking constraints. They develop a
stochastic tree search algorithm in order to tackle big
problem instances.

The Stacking Problem considered in this paper arises in
the operation of a steel factory. Steel slabs are casted
according to a fixed schedule and have to be put onto a
delivery stack according to a fixed list of delivery lots.
The slabs can be moved by a crane which can only
move a single slab at a time and only access the slabs on

top of a stack. Every crane movement requires time to
perform and the stacking is subject to some restrictions.

 Figure 1 shows a possible layout of a stacking area
with a single caster at the left, nine partially used buffer
stacks in the middle, and a crane moving a slab to the
handover stack at the right.

 Figure 1: Example of a stacking area

If crane movements were instantaneous and the last slab
was already casted this problem can be viewed as a
variant of the Block Relocation Problem with additional
stacking constraints. In this case the caster is simply
viewed as another stack. The original authors of the
BRP (Kim & Hong, 2006) use a Branch & Bound
algorithm and a heuristic rule based on the expected
number of additional relocations, called ENAR.
Improvements on this approach come from (Ünlüyurt &
Aydın, 2012). Two binary linear programming are
introduced in (Caserta, et al., 2012) where one only
considers strictly necessary moves and the other one
also allows so called voluntary moves. Those models
are improved upon by (Petering & Hussein, 2013) and
(Expósito-Izquierdo, et al., 2015).

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

56

mailto:sebastian.raggl@fh-hagenberg.at
mailto:andreas.beham@fh-hagenberg.at
mailto:michael.affenzeller@fh-hagenberg.at

The remainder of this article is organised as follows. In
Section 2 we describe the problem in detail. In Section
3 we present an exact Branch & Bound algorithm as
well as a heuristic approach. Section 4 compares the
two solvers in terms of solution quality and runtime
using randomly generated problem instances derived
from real world problem instances. Finally we discuss
the results of the experiments and present an outlook on
further research.

2. PROBLEM DESCRIPTION
There is a set of 𝐾 casters C = {𝑐𝑘}𝑘=1𝐾 which produce
𝑁 steel slabs S = {𝑠𝑖}𝑖=1𝑁 of different dimensions
according to a fixed schedule. The slabs are to be placed
onto a single handover stack ℎ where they are picked up
according to fixed delivery lots. A delivery lot consists
of the due-time and the order in which the slabs of that
lot should be in. At the due-time all slabs of a lot must
be on the handover stack so a transporter can deliver
them all to their destination. It is important to note that
if the casting schedule and the order of the slabs in the
transport lots match up the problem becomes trivial, but
this is not always possible.

When a slab comes out of a caster and cannot be put
directly onto a delivery stack can be put on one of M so
called buffer stacks B = {𝑏𝑗}𝑗=1𝑀 . There is a single crane
which can transport a slab from the top of a buffer stack
or front of a caster to a handover or buffer stack using a
certain amount of time given that none of the stacking
constraints described in 2.1 are violated. Note that the
crane is not allowed to take a slab from the handover
stack or to put a slab back onto the caster.

The objective is to deliver all the slabs according to the
given delivery lots while performing as few crane
movements as possible.

2.1. Stacking constraints
The height of the buffer stacks is limited but since the
slabs have different dimensions this does not translate
to a fixed amount of slabs per stack.

In order to guarantee stability of the stack as well as to
prevent deformation of the slabs there is a limit on the
allowed length and width difference between each slab
and all the slabs beneath it in the stack. Note that this
constraint only has to be checked when a slab is placed
on a buffer stack because the delivery lots are fixed.

Another factor that determines if a slab can be stacked
onto another is the temperature difference between the
two. This constraint is necessary because the cooling is
vitally important for the steel quality and reheating a
slab by placing a hotter slab on top can mean that the
slab is no longer usable. The temperature of a slab is
calculated using a simple logarithmic cooling scheme
starting at the casting temperature and time.

2.2. Time constraints
Every slab has a production timestamp and a delivery
timestamp. The most basic temporal constraint is that a
slab cannot be moved before its production or after its

delivery. Since the caster can only hold a certain
number of casted slabs and the casting schedule is fixed,
there is a time window in which a slab can be taken out
of the caster. This window is between the casting time
of the slab and the casting time of the n+1 slab.
Otherwise the caster would have to be stopped which
should be avoided at all costs.

Similarly, there is a time window for putting slabs on
the handover stack, which begins with the delivery time
of the previous transport lot and ends with the delivery
time of the slab.

3. SOLVING THE STACKING PROBLEM
The solution of a stacking problem consists of a list of
crane movements called moves from here on. A move is
described as a tuple of the source and the target. Since
there are different types of locations we distinguish
between five different kinds of moves:

• Put (C,Β)

• Remove (B, h)

• PutDirect (C, h)

• Relocate (B,Β)

• Delivery (h,−).

Put moves take the first slab from a caster and put it on
buffer stack. Removal moves are taking a slab from a
buffer stack and putting it on the handover stack. Of
course when a slab from the caster can be directly put
onto the handover stack it would be nonsense and even
potentially impossible to put it on a buffer stack first.
This is what a PutDirect move is for.

 A Relocation move is one that moves a slab from one
buffer stack to another. The BRP literature differentiates
two kinds of Relocation moves, namely forced and
voluntary moves (Caserta, et al., 2012). If the slab that
has to be removed next does not lie on the top of a stack
the slabs above it have to be relocated. This is called a
forced move. Not considering voluntary moves can lead
to improved run time at the cost of potentially worse
solutions.

Delivery moves are special in a number of ways. They
always move all the slabs of a transport lot at once. We
considered them to be instantaneous because we are not
concerned with the actual delivery process but instead
only care when the handover stack is free to use again.

All moves that put slabs on a buffer stack are subject to
the stacking constraints described in 2.1. A slab can
only be put on the delivery stack if the stack is either
empty or already contains all the slabs that are in lower
positions in the same delivery lot.

The combination of the current time and the creation
and delivery times of all slabs determine which moves
are valid. On the other hand the exact time at which
each move is performed is irrelevant as long as the
constraints are respected. Given a valid sequence of

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

57

moves, it is easy to calculate a time window within
which each move must be performed.

Table 1: Example1

Creation time Due-time/ Position Initial position
0 20/1 b1/1
0 10/0 b1/0
10 20/1 c1

Table 1 shows an example with a single caster, two
buffer stacks and three slabs. Figure 2 shows the same
sequence of moves and therefore the same solution
distributed in time in three different ways.

Figure 2: Solution of Example1

3.1. Branch and bound
In order to perform a branch and bound search we need
a lower bound. In order to get a valid lower bound we
consider that, for every remaining lot 𝑟𝑟 we need one
Delivery move. Every slab that is not already at the
handover stack needs to be moved at least once. If a
slab lies on top of a slab that has to be put on the
handover stack before, the upper slab must be moved at
least two times. So if 𝑟𝑏(𝑥) is the sum of minimal
required moves of all slabs at location 𝑥 and 𝑚 is the
number of moves already performed a total lower bound
is:

𝐿𝐿 = 𝑚 + �𝑟𝑏(𝑏)
𝑏∈𝐵

+ �𝑟𝑏(𝑐)
𝑐∈𝐾

+ 𝑟𝑟

Note that this lower bound is only valid if there is only
a single handover stack because if there are multiple
handover stacks a slab that is blocking another slab
could potentially be placed directly on another handover
stack instead of a buffer stack.

We perform a depth first search using all possible
moves but we use the same order as described below in
order to improve the chances of finding good solutions
earlier.

3.2. Heuristic tree search
Due to the time and stacking constraints every move has
the potential to generate a situation where there is no
valid solution. While choosing a valid move in a BRP
will never lead to an invalid solution. So instead of
using a heuristic that aims to choose the best move at
every step, we propose a heuristic that uses a list of all
“good” moves ordered by quality. So in most cases the

first move on the list should be the one used in the final
solution, but if there is a move that results in a situation
where there is no solution, alternative moves can be
applied.

To find such a list of moves let us make some
observations. Placing a slab on the handover stack is
preferable to placing it on a buffer stack because once it
is on the handover stack the crane never has to touch
that slab again. Moving a slab from a buffer stack can
always be done immediately. Moving a slab from the
casters or the handover stack might involve waiting for
the casting or delivery time of the slab. Therefore
Remove moves should be done before PutDirect moves
and Relocate moves before Put moves. So the moves
that will be tried are in the following order:

1. If a caster must be cleared (see 2.2)

a. Return all PutDirect moves.

b. Return safe Put moves.

c. Return remaining Put moves.

2. If a delivery must be performed (see 2.2)
return the Delivery move.

3. Otherwise return a list of all

a. Removal moves

b. PutDirect moves

c. Safe Relocation moves

d. Safe Put moves

e. Delivery move

4. If there are no safe moves return a forced
move.

A safe move is one that does not increase the lower
bound LB described in Section 3.1. Removal and
PutDirect moves are always safe because moving a slab
away from the handover is not allowed. This means that
if the move were unsafe it is also forbidden because it
cannot lead to a feasible solution. Put and Relocate
moves are considered safe, when any slab of the source
stack has to be moved to the handover stack before the
topmost slab and none of the slabs of the target stack
have to be handed over before the topmost slab of the
source stack.

If there are multiple safe Put or Relocation moves that
will put the same slab on different empty buffer stack
only one of them is considered in order to reduce the
total count of possible moves. This is however only
valid if the crane movement times between all the
stacks are equal and the height limits of the buffer
stacks are also equal.

Based on this list of good moves we define three
different heuristic solvers. The first, we will call it H1,
uses the list of good moves as defined above to do a
depth first search and return the first solution found.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

58

Note that a solution of H1 is a valid upper bound for the
B&B solver described in Section 3.1.

The second solver uses a two stage approach where in
the first step a breadth first search is used to generate
level after level of the search tree, using all possible
moves, until a level is generated that has more than a
certain number of nodes. Then each of these partial
solutions is completed using H1. We call this solver
H(n) where n is the minimum number of nodes that we
generate in the first step. It would also be possible to
specify the number of levels to generate, but this gives
us better control over the runtime. One nice feature of
this is that the second step can be parallelized because
the partial solutions are totally independent of each
other.

Finally we use the B&B solver as described in Section
3.1 but instead of considering all moves we only
consider the moves specified before. From now in order
to distinguish between the two variants we will refer to
the exact solver as E B&B and the heuristic one as H
B&B.

4. EXPERIMENTS
We evaluated the solvers presented above using a set of
randomly generated test instances of different sizes. The
test instances have two casters that are used to produce
a varying number of lots with four slabs per lot. The
production dates of the slabs, as well as the due dates of
the lots are randomly chosen. Then a random start date
is chosen and all the slabs are put either in a caster or in
one of the 𝑀 buffer stacks depending on their
production dates. Using this schema we generate eight
different scenarios with 10 random instances each. The
scenarios have 4, 8, 16 or 32 lots and 4 or 8 buffer
stacks.

We perform three different experiments using this test
instances. In Section 4.1 we compare the runtime and
solution quality of our heuristic solvers. Afterwards we
compare the best solution of the H B&B solver against
the optimal solution found by the E B&B in order to
judge the quality of our heuristic solutions.

Finally because the real world application of the solvers
requires us to be able to find a solution quickly we
compare how the heuristics perform when given a time
limit of one minute. So the search is aborted after one
minute and the best solution reached so far is reported.
The reason we need to be able to find solutions quickly
is that it can easily happen that the real-world
circumstances change in such a way that our solution is
no longer valid. If we require hours to come up with a
new solution this is a problem.

All solvers were implemented in C# using the .NET
Framework 4.6.1 using the Task Parallel Library. All
tests were run on a Dell Latitude E6540 with an Intel i7
4810MQ CPU @2.80GHz and 16 GB RAM running
Windows 7.

4.1. Comparing the heuristics
Table 2 shows a comparison of the average solution
quality of the heuristic solvers for eight different
scenarios with ten instances each. The N and M
columns are the number of slabs and the number of
buffer stacks respectively. LB is the average lower
bound as described in Section 3.1. The remaining three
columns contain the number of moves more than lower
bound the algorithms described in Section 3.2 required
on average.

The problems get harder the more slabs they contain.
Interestingly the problems are also harder if they
contain fewer buffer stacks. This may seem counter
intuitive because having more stacks also means there
are more possible moves. What increases the difficulty
is that the likelihood of producing a new conflict when
putting a slab on a buffer stack is higher the fewer
buffer stacks there are.

Table 2: Best Solutions of Heuristic Solvers.

Even the simple H1 manages to find solutions within
10% of the lower bound for the majority of problem
instances. As described above H(50) runs H1 on all the
nodes of the first level of the search tree which has
more than 50 nodes. For the problem sizes we looked at
this means evaluating all possible combinations of the
first 2-3 moves. This brings an improvement over H1
for 25 out of 80 problem instances.

Table 3: Runtime of Heuristics in Seconds.

N M H1 H(50) H B&B
16 4 0.00 0.01 0.00
16 8 0.00 0.03 0.00
32 4 0.00 0.03 550.85
32 8 0.00 0.82 782.58
64 4 0.00 0.07 2624.04
64 8 0.00 0.58 2528.75

128 4 0.01 0.36 3600.00
128 8 0.16 9.78 3600.00

N M LB H1 H(50) H B&B
16 4 26.5 0.6 0.6 0.5
16 8 25.8 0.4 0.3 0.3
32 4 55.0 5.8 4.9 2.6
32 8 54.3 3.0 2.6 1.5
64 4 112.3 12.7 11.0 4.4
64 8 111.6 9.5 9.0 4.0

128 4 226.0 22.6 21.9 15.9
128 8 225.2 19.0 18.7 14.4

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

59

H B&B is never worse than H(50) and outperforms it
on 54 out of 80 problem instances but as can be seen in
Table 3 is the runtime much higher. The runtime of H1
is less than 0.1 seconds for all but one problem instance
with 128 slabs and 8 buffer stacks. H(50) takes less than
10 seconds to run for all instances except the one
mentioned above. The H B&B solver fails to complete
in less than one hour for at least one instance in every
problem class except for the two with only 16 slabs. For
the two biggest problem classes no instance can be
solved in less than one hour.

4.2. Optimality gap
In Figure 3 we can see that of our 80 test instances only
33 could be solved by the exact B&B within one hour.
H1 solved 21 instances to optimality while H(50)
managed to solve 23. The H B&B solver found the
optimal solution in 30 cases. The solutions to the
remaining three instances all required one more move
than would have been optimal. Additionally there are
two instances where the E B&B managed to find better
solutions than the H B&B despite not running to
completion.

Figure 3: Number of Problem Instances Solved
Optimally

It is interesting to look at situations where the heuristic
is unable to find the optimal solution. One problem is
that sometimes it is necessary to perform otherwise
useless moves in order to enable save moves that are
vital for the final quality.

Another point is that our heuristics manage contain
rules about which moves are “good” and which are not
based on general considerations about slab stacking as
well as the temporal constraints. The stacking
constraints described in Section 2.1 however are only
used to forbid moves that would violate them
completely but not in deciding which legal move would
be better. This can lead to poor decisions where a stack
is blocked by a slab that cannot be stacked upon.

4.3. Comparing the heuristics with time limit
In Figure 4 and Figure 5 we show the best solutions
found divided by the lower bound for all problem
categories after one hour and one minute respectively.

The two smallest problem sizes are the same because
they were all solved in less than one minute. Five of the
twenty problems with eight lots could not be solved.
The one minute solution was worse in three instances
by at most three moves.

For the problems with 16 and 32 lots the additional
runtime made more of a difference. But even in those
larger problems was the biggest improvement that an
additional 59 minutes of runtime could bring was eight
moves.

What the graphs do not show is that for 49 out of 80
problem instances the quality did not differ at all
between the run with a one hour time limit and a one
minute time limit. All of this suggests that the order we
choose the moves in is good since the heuristic manages
find the good solutions early.

 Figure 4: Best Solutions of H B&B after 1 hour

Figure 5: Best Solutions of H B&B after 1 Minute

5. CONCLUSION
The exact solver is unable to solve all but the smallest
problems in reasonable time and where it did manage to

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

60

find a solution there was barely an improvement over
the heuristic.

We showed that our heuristic works and that finding a
better solution than the first one which is returned by
H1 takes considerably more effort for all but small
problems. Running H1 from multiple starting points can
improve the result, but the time is better spent on
running the H B&B for as long as possible.

While it is good to give the H B&B solver as much time
as possible, because it could find better solutions, it is
often not necessary to run it to completion because the
heuristic aims at looking at the most promising moves
first.

6. MANAGERIAL INSIGHTS
Efficiently stacking the slabs coming out of the caster
and preparing transport lots previously required an
experienced worker. We showed that automatization is
indeed possible using the approach presented in this
paper. Our heuristic is able to deliver high quality
solutions in a reasonable runtime. In addition to this
work we are also currently working on optimization
algorithms for the transport lot building as well as the
transportation and on integrating

In addition to freeing human resources and reducing
labour costs are these optimizers also useful for
evaluating the impact of planned changes on the
performance of the system.

7. OUTLOOK
We are working on applying our results to the real
world case. One difficulty is that sometimes it is
necessary to bend the rules laid out in Section 2.1 and
2.2 slightly in order to find a solution at all. If that is the
case our algorithms cannot find an answer. There are a
few possible solutions to this problem. One approach is
to relax the constraints and try again if no solution was
found. This is problematic because if the algorithm uses
all the time we allotted only to be started again
afterwards we may not have a solution in time. The
better solution would be to allow but penalize violating
the constraints. We are currently investigating how we
can accomplish that.

ACKNOWLEDGMENTS
The work described in this paper was done within the
COMET Project Heuristic Optimization in Production
and Logistics (HOPL), #843532 funded by the Austrian
Research Promotion Agency (FFG).

REFERENCES
Caserta, M., Schwarze, S. & Voß, S., 2012. A
mathematical formulation and complexity
considerations for the blocks relocation problem.
European Journal of Operational Research, 219(1), pp.
96-104.
Expósito-Izquierdo, C., Melián-Batista, B. & Moreno-
Vega, J. M., 2015. An exact approach for the Blocks

Relocation Problem. Expert Systems with Applications,
42(17), pp. 6408-6422.
Forster, F. & Bortfeldt, A., 2012. A tree search
procedure for the container relocation problem.
Computers and Operations Research, 39(2), pp. 299-
309.
Kim, K. H. & Hong, G.-P., 2006. A heuristic rule for
relocating blocks. Computers & Operations Research,
33(4), pp. 940-954.
Lehnfeld, J. & Knust, S., 2014. Loading, unloading and
premarshalling of stacks in storage areas: Survey and
classification. European Journal of Operational
Research, 239(2), pp. 297-312.
Petering, M. E. & Hussein, M. I., 2013. A new mixed
integer program and extended look-ahead heuristic
algorithm for the block relocation problem. European
Journal of Operational Research, 231(1), pp. 120-130.
Rei, R. J., Kubo, M. & Pedroso, J. P., 2008. Simulation-
based optimization for steel stacking.. In: H. A. Le Thi,
P. Bouvry & T. Pham Dinh, eds. Modelling,
Computation and Optimization in Information Systems
and Management Sciences. Berlin: Springer, pp. 254-
263.
Rei, R. J. & Pedroso, J. P., 2012. Heuristic search for
the stacking problem.. International Transactions in
Operational Research, 19(3), pp. 379-395.
Rei, R. J. & Pedroso, J. P., 2013. Tree search for the
stacking problem. International Transactions in
Operational Research, 203(1), pp. 371-388.
Ünlüyurt, T. & Aydın, C., 2012. Improved rehandling
strategies for the container retrieval process. Journal of
Advanced Transportation, 46(4), p. 378)393.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

61

