
HLA LISTENER – A GUI DRIVEN MAPPING OF HLA STANDARD SERVICES

Mostafa Ali(a), Yasser Mohamed(b)

(a)PhD Candidate, University of Alberta

(b)Associate Professor, University of Alberta

(a)MostafaAli@ualberta.ca

(b)yaly@ualberta.ca

ABSTRACT

High Level Architecture (HLA) is a distributed

simulation framework that offers integration, reusability,

and flexibility. Nonetheless, it has been criticized for its

complexity and overwhelming services. Consequently, it

has been rarely used on a day-to-day basis in industrial

world. A very steep learning curve is one of the main

challenge that faces a new user of HLA distributed

simulation. The user has to be familiar with different

HLA services (e.g. objects and time management) beside

a programming language to develop a basic simulation.

In order to overcome this challenge, we developed a tool

with friendly graphical user interface that encapsulates

all HLA services. This tool allows a new user to explore

services as described in the standards without the need

for programming language. In addition, the interface can

be used by an experienced simulator to debug existing

federation quickly and efficiently.

Keywords: Distributed Simulation, HLA, HLA Listener

1. INTRODUCTION

Simulation provides an affordable means for teaching,

analyzing, and testing complex physical system that

would usually require a huge investment and manpower

to perform in a real-world environment. For example,

flight simulation has been widely used in commercial

and military aviation for training potential pilots (Page,

2000).

Over the years, Different simulation paradigms such as

discrete event, agent based, system dynamic simulations

have been proposed to address specific domains and

applications. Each simulation approach advocates a

modelling system that simplifies real-world system. For

example, discrete event simulation depends on event

scheduling basis to simulate real world scenarios (Goti,

2010). While Agent-based simulation relies on a set of

autonomous agents that interacts with each other and

with the environment to simulate systems like socio-

economic science (Helbing, 2012; Jennings, 2000;

Wooldridge, 1997).

On the other hand, distributed simulation takes a unique

approach by suggesting decomposing the simulation

domain into separate manageable components that

interact with each other to provide a complete simulation

solution. Distributed simulation manages interactions

and interoperation between different simulation

components; however, it does not intervene with any of

the component internal mechanism. Each component can

use different simulation type internally to model its scope

without affecting another component. This powerful

flexibility allows combining multiple simulation model

into one scenario easily and effectively.

High Level Architecture (HLA) is a popular distributed

simulation standard. HLA has been originally developed

by the Department of Defense in the United States

(Borshchev et al., 2002; Fujimoto, 2003). It is currently

regulated by IEEE, and the latest version is 1516-2010

known as HLA evolved.

Distributed simulation has been used in different

domains; like logistical processes, traffic management

systems, and freight transportation (Schulze et al., 1999;

Zacharewicz et al., 2011); optimizing supply chain from

manufacturing through distributer to end customer

(Turner et al., 2000); tunneling (AbouRizk, 2010); fleet

optimization in earthmoving operations (Ali et al., 2014),

manufacturing (Hibino et al., 2002), 3D virtual

environment for marine port environments (Bruzzone

and Longo, 2013), and combat simulation (Ham et al.,

2014).

Although distributed simulation has many potential

beneficial application in industry such as supply chain

and digital factories (Taylor et al., 2002), it is not fully

embraced in industry comparing to research and military

domains (Boer et al., 2006a; Lendermann et al., 2007;

Taylor et al., 2002). Poor understanding of industrial

needs, complexity of distributed simulation, ambiguities

in HLA standards, and steep learning curves are main

reasons that hinder applying distributed simulation on

day-to-day basis in industrial domain (Boer et al., 2008,

2006b; Taylor et al., 2002).

A non-expert user who wants to investigate HLA

distributed simulation has to spend substantial time to

gain knowledge in three areas: 1) Distributed simulation;

2) Understanding HLA standards (“IEEE Standard for

Modeling and Simulation (M\&S) High Level

Architecture (HLA)-- Federate Interface Specification,”

2010); and 3) Using a programming language to write a

simple start-up distributed simulation scenario. This

steep learning curve turns practitioners away from

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

32

mailto:MostafaAli@ualberta.ca
mailto:yaly@ualberta.ca

embracing distributed simulation. This shows the

necessity for providing simplified approaches that allow

non-expert to develop distributed simulation with

minimum knowledge requirements.

This paper shows our effort to develop an intuitive

graphical interface that encapsulates all services

provided in HLA distributed simulation. Graphical User

Interface dramatically improves reception, and learning

(Gerhardt‐Powals, 1996; Staggers and Kobus, 2000), as

it simplifies complex concepts into an intuitive user

interface that is familiar to anyone with a minimal

computer knowledge.

The developed prototype, named HLA Listener, allows

non-experts to try distributed simulation with almost

zero-learning-curve. Through the interface, the user can

create a new federation, join an existing one, and

interacts with other federates without the need for a

programing language.

Although HLA Listener is not sufficient to develop a

complete real-world scenario simulation, it can be used

for two scenarios. First, it provides a first step for

learning and understanding basic HLA distributed

simulation concepts such as: Federation management,

Object management, and Time management. In addition,

it can be used by experts to debug existing federation

through scripting window as will be shown later.

The remainder of the paper is structured as follows: The

next section will discuss the structure of HLA Listener

and discuss briefly its different components; then a

sample use of HLA Listener in training and debugging is

provided. Finally, we will conclude by providing our

vision for potential improvements for this tool.

2. HLA LISTENER STRUCTURE

HLA Listener aims to provide an intuitive interface for

all HLA distributed services to allow a beginner to make

sense of the distributed simulation without requiring

knowing much about HLA standards or mastering any

programming languages. HLA Listener is written in Java

which is one of the two Application Programming

Interfaces (API), along C++, that are considered part of

the HLA standards. Despite that the HLA standard

encourages third-parties to develop APIs for other

programming languages, we found that most of the

commercial and open-source RTI implementations

support these two APIs only. Java Virtual Machine®

allows running HLA Listener on different operating

systems without having to rewrite the code.

HLA Listener consists of five main components, as

shown in Figure 1, HLA Interface which is the Java API

that ships with HLA standard and it allows running the

simulation with any HLA-compatible RTI

implementation; FOM parser retrieves the simulation

FOM and provides object classes, interaction classes,

attributes, parameters, and data types to the other

components; RTI ambassador is responsible for

sending requests from the user to the RTI, these requests

represent different services provided in the HLA

standards such as “create a federation” and “Publish

object class”; Federate ambassador receives callbacks,

such as “Discover object instance” and “Time regulation

enabled” from the RTI and displays them to the end user;

Scripting module allows the automation of RTI and

Federate ambassador tasks by writing java scripts as will

be shown later.

E
x
te

rn
a

l
C

o
m

p
o

n
e

n
ts

H
L
A

 S
ta

n
d

a
rd

s
H

L
A

 L
is

te
n

e
r

RTI Implementation

RTI Interface

FOM ParserRTI Ambassador
Federate

Ambassador

Requests
Callbacks

Scripting

FOM

Figure 1 HLA Listener Structure

2.1. Dynamic Link Compatibility

One of the key issues with earlier versions of HLA

distributed simulation was the overhead effort required

to run the simulation with different RTI

implementations; as each RTI implementation has

different interface specifications and the simulator has to

readjust the simulation to comply with the RTI. The latest

version of HLA standards (“IEEE Standard for Modeling

and Simulation (M\&S) High Level Architecture (HLA)-

- Federate Interface Specification,” 2010) resolves this

problem though Dynamic Link Compatibility (Möller et

al., 2008). Dynamic Link Compatibility enables the

simulator to develop a simulation using a specific RTI

implementation that can be replaced with another

implementation without requiring any changes in the

simulation’s internal structure.

In addition, Dynamic Link Compatibility allows

selecting the RTI implementation dynamically at

runtime. Using this feature, HLA Listener can work with

any HLA-compatible RTI implementation. When

launching HLA Listener, it will ask the user to select RTI

implementation to run the simulation; we tested it with

two commercial and one open-source RTI

implementation, and it works as expected without having

to change any line of code. The following sample java

code demonstrates Dynamic Link Compatibility.
public class DynHLA {

 //List all available RTI

implementations

 RtiFactoryFactory.getAvailableRtiFa

ctories().stream().forEach((rti) -> {

 System.out.println(rti.rtiName());

 });

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

33

 private final String preferedRTI =

"RTI A"; // the name of the RTI

implementation

 //Work with a specific RTI

implementation

 RtiFactory rtiFactory =

RtiFactoryFactory.getRtiFactory(prefer

edRTI);

}

2.2. FOM Parser

HLA Standard defines Federation Object Model (FOM)

“A specification defining the information exchanged at

runtime to achieve a given set of federation objectives.

This information includes object classes, object class

attributes, interaction classes, interaction parameters,

and other relevant information” (“IEEE Standard for

Modeling and Simulation (M\&S) High Level

Architecture (HLA)-- Federate Interface Specification,”

2010). Latest HLA standards support modular FOMs

(Möller et al., 2007) which allows different federates to

add one or more FOM files. Those FOMs along MOM

and Initialization Module (MIM) are merged into one

simulation FOM according to merging rules specified in

HLA standards.

This flexibility means that FOM module could change

during the simulation model and a well-designed federate

should track those changes during simulation execution.

HLA Listener tracks any changes in simulation FOM

during the simulation execution by subscribing to

“HLAcurrentFDD” attribute in

“HLAobjectRoot.HLAmanager.HLAfederation” class,

which is part of the standard MIM. By subscribing to this

attribute, RTI will send a “Reflect attribute value”

callback to HLA Listener whenever the simulation FOM

gets updated; the callback contains the updated

simulation FOM in XML format.

Because HLA Listener is a general-purpose tool and the

FOM is processed solely based on the callback provided

by the RTI. FOM parser component processes the FOM

to get the following information:

1. Date types: FOM parser extracts all data types:

basic, simple, enumerated, array, fixed record,

and variant record. Those data types are used in

many HLA services such as “Update attribute

value”

2. Update rate: FOM module contains different

update rate (in Hz) that specifies the maximum

rate for sending updates to a specific federate

when used with “Best-effort attribute”. Update

rate is used in many HLA services such as

“Subscribe Object Class Attributes”.

3. Transportation type: There are two basic

transportation types “Reliable” and “Best-

effort”; however, a FOM might define

additional transportation types.

4. Dimensions: It defines intervals for each

attribute in a format [0, upper value], which is

used for Data Distribution Management (DDM)

service.

5. Object Classes and Attributes: a FOM

contains a hierarchy of object classes and their

attributes, these classes are used in exchange

information between federates. FOM parser

retrieves all classes that are used in many

services such as “Publish Object classes

attribute” and “Register Object Instances”

services.

6. Interaction Classes and Parameters:

Interaction classes and their parameters are very

similar to Object Classes and they are used in

“Publish Interaction Class” and “Send

Interaction” services.

2.3. HLA standard mapping

Although HLA Listener simplifies HLA distributed

simulations’ services, it does not obfuscate it. The user

can still map all graphical components to the standards.

In order to encourage the user to utilize and lookup the

standards, each graphical component in HLA Listener

has been numbered according to its section number in the

standards (“IEEE Standard for Modeling and Simulation

(M\&S) High Level Architecture (HLA)-- Federate

Interface Specification,” 2010). The section number and

text in standards are displayed for Menu, Menu items,

dialog boxes’ titles, requests, and callbacks as in Figure

3.

3. HLA LISTENER EXAMPLE

This section provides an example of using HLA Listener

to explore HLA distributed simulation. It does not

provide a complete demo of its capability but rather a

short introduction of the main steps in a distributed

simulation life cycle as shown in Figure 2. An interested

reader can come up with more advanced scenario to use

HLA Listener to explore advanced services in the HLA

standards.

Fed A RTI Fed B

Time
Figure 2 A typical life cycle of HLA distributed

simulation.

When a user runs HLA Listener, it will ask for a jar file

for the HLA-compliant RTI to connect to through

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

34

Dynamic Link Compatibility. All RTI implementations

(commercial and open-source) would work exactly the

same way. If the link is successful, the main interface for

HLA Listener will be shown as in Figure 3. Each menu

item represents a section in the HLA distributed

simulation standards. The left part shows a history of

requests and callbacks while the right section gives more

details about the selected request/callback.

The latest version of the standards introduced the concept

of the “Connection Mode” which flags each federate

either connected or disconnected. Any HLA service,

such as create or join federation, must run by a connected

federate. Consequently, the first step is connecting to RTI

through “Connect service” in Figure 4 (a).

One of the connected federates creates the federation

execution by providing its name, a set of FOM modules,

and federation logical time type (integer or float) as in

Figure 4 (b). Once created, all federates join the

federation through the “Join federation execution” as

Figure 4 (c). Each federate has the chance to add

additional FOM modules during joining the federation.

Time management is a key service in HLA standards;

however, a beginner might find it hard to understand all

of its associated concepts such as “Look ahead”, “Time

regulation / constrained”, and “Advance in time”. HLA

Listener can be used to explore all scenarios related to

the time management as in Figure 4 (d).

In order to exchange data between federates, each

federate should declare object classes and interactions

that it will publish or subscribe to. RTI uses these

declarations to manage the transfer of updates from

publishing federate to subscribing ones. A federate might

publish / subscribe many object classes and interactions

and an object class / interaction can be published or

subscribed by many federates. The declaration menu in

HLA Listener can be used to publish / subscribe as in

Figure 5 (a). A federate that publishes an object class

should register object instance as in Figure 5 (b) and a

subscribing federate will receive “Discover Object

Instance” callback.

Publishing data in the federation is done through “Update

Attribute Values” and “Send Interaction” services, while

receiving the data is done though “Reflect Attribute

Values” and “Receive Interaction” services. “Update

Attribute Values” service, shown in Figure 5 (c), requires

providing values for owned published attributes for an

instance along a user-supplied tag and optional time

stamp.

After sending all updates and processing all received

values, a federate should request advance in time through

“Time Advance Request” as in Figure 5 (d), “Time

advance Request Available”, “Next Message Request”,

“Next Message Request Available” services. Time

advance tells the RTI that the federate will not send

updates with time stamp less than requested time advance

plus look ahead value (Figure 4 (d)). When all regulating

federates request to advance a certain point in time, RTI

will send “Time Advance Granted” to all federates

requesting time advance.

This cycle of sending / receiving updates, request time

advance, and time advance granted may be repeated

many time during federation execution. When the

simulation is complete, each federate should exit

gracefully by invoking “Resign Federation Execution”

service as in Figure 5 (e), afterwards, one federate should

destroy the federation by invoking “Destroy Federation

Execution” service as in Figure 5 (f). Finally, all

federates should disconnect from the RTI.

The previous demo briefly explained the workflow for a

beginner user who wants to explore HLA distributed

simulation capabilities without going into too much

details. However, HLA Listener can be also used by

professionals to test and debug existing federations. If,

for example, a federate is expected to receive specific

values at certain point of time but it did not, then we have

to determine if there is a problem with the sending or

receiving federate. Typically, a minimal federate will be

used to replace either the sending or receiving federate to

determine the problem source. Instead of writing this

minimal federate from scratch, HLA Listener can be used

for this purpose. A professional user can use the interface

to imitate sending or receiving the values. Additionally,

the script window, Figure 6, can be used to write a

minimal code for testing and debugging.

Figure 3 The main interface of HLA Listener.

4. LESSON LEARNED AND FUTURE WORK

The comprehensive investigation of HLA services and its

standards during the development of the HLA Listener

revealed a number of issues that has to be addressed in

the next version of HLA standards. These issues are

related to ambiguities and discrepancies in the HLA

standards as follows:

1. HLA standard (1516.1 section 4.3) states that

“Disconnect service” should raise “Not

connected” exception if a disconnected federate

invokes “Disconnect service”. However, the

accompanying Java API does not include this

exception.

2. According to the standards, multi-dimensional

array is supported. However, it was left to the

simulator to determine how to encode and chain

different array’s dimensions (i.e. by row or

column basis) which will severely affect

simulation integration and reusability as

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

35

different simulators might opt to different

encoding preferences.

3. There are not enough learning resources that

explain in details the HLA distributed

simulation.

For future work, we are planning to add the capability to

record user interaction with HLA Listener and auto

generate the corresponding code. This will reduce

developing time and effort significantly and allows the

development of more advanced and complex federation

with minimal coding effort. Another proposed

enhancement would be the ability to add custom basic

data types by manually defining its encoding and

decoding factories.

(a)

(b)

(c)

(d)

Figure 4 A typical federation execution will start with a)

Connect, b) Create Federation (if not exist), c) Join

Federation Execution, and d)Enable time regulation /

constrained.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5 a) Publish / subscribe object classes and

interactions, b) Register / discover object instance, c)

Send / receive updates, d) Advance in time and repeat

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

36

steps c) and d) for the simulation execution lifecycle,

then e) Resign federation, f) Destroy federation and / or

disconnect.

Figure 6 The script window can be used to interact with

RTI through code.

5. HLA LISTENER SOURCE CODE

HLA Listener is published publicly under Apache

License agreement. The source code and binaries can be

obtained through its GitHub web page:

https://github.com/EMostafaAli/HlaListener.

6. CONCLUSION

Distributed simulation is a powerful and flexible

framework that enhances flexibility, reusability, and

integration of large scale simulations. Nonetheless, it has

a very steep learning curve and its standard is written in

rigid technical style. This complexity turns away

industrial world from utilizing this simulation

framework. In this paper, we presented “HLA Listener”,

a tool that encapsulates all services provided in the HLA

distributed simulation through a graphical user interface.

HLA Listener was developed with two use cases in mind.

The first usage is oriented to a beginner who wants to

explore HLA capabilities without going into much

details about programming. Through the interface, the

user is able to invoke calls and receive callbacks from the

RTI, it can also be used to run a simulation with other

federates. In addition, HLA Listener can be used by an

experienced simulator to test and debug existing

federates as it has a console to write code along the

interface. We plan to extend HLA Listener by adding the

capability to record user interactions with the interface

and automatically generate the corresponding code.

REFERENCES

AbouRizk, S.M., 2010. Role of Simulation in

Construction Engineering and Management.

Journal of Construction Engineering and

Management 136, 1140–1153.

doi:10.1061/(ASCE)CO.1943-7862.0000220

Ali, M., Fagiar, M., Mohamed, Y., AbouRizk, S.M.,

2014. Beyond classic models—design and

development of a comprehensive earthmoving

simulator, in: 14th International Conference on

Construction Applications of Virtual Reality in

Construction and Conference on Islamic

Architecture. Sharjah, UAE.

Boer, C.A., Bruin, A.D., Verbraeck, A., 2006a.

Distributed Simulation in Industry - A Survey

Part 1 - The Cots Vendors, in: Simulation

Conference, 2006. WSC 06. Proceedings of the

Winter. Presented at the Simulation

Conference, 2006. WSC 06. Proceedings of the

Winter, pp. 1053–1060.

doi:10.1109/WSC.2006.323194

Boer, C.A., Bruin, A.D., Verbraeck, A., 2006b.

Distributed Simulation in Industry - A Survey

Part 2 - Experts on Distributed Simulation, in:

Simulation Conference, 2006. WSC 06.

Proceedings of the Winter. Presented at the

Simulation Conference, 2006. WSC 06.

Proceedings of the Winter, pp. 1061–1068.

doi:10.1109/WSC.2006.323195

Boer, C.A., Bruin, A. de, Verbraeck, A., 2008.

Distributed simulation in industry - a survey

Part 3 - the HLA standard in industry, in:

Simulation Conference, 2008. WSC 2008.

Winter. Presented at the Simulation

Conference, 2008. WSC 2008. Winter, pp.

1094–1102. doi:10.1109/WSC.2008.4736178

Borshchev, A., Karpov, Y., Kharitonov, V., 2002.

Distributed simulation of hybrid systems with

AnyLogic and HLA. Future Generation

Computer Systems, Selected Papers presented

at the 6th Int. Conf. on Parallel Computing

Technologies (PaCT-2001) 18, 829–839.

doi:10.1016/S0167-739X(02)00055-9

Bruzzone, A.G., Longo, F., 2013. 3D simulation as

training tool in container terminals: The

TRAINPORTS simulator. Journal of

Manufacturing Systems 32, 85–98.

doi:10.1016/j.jmsy.2012.07.016

Fujimoto, R.M., 2003. Distributed simulation systems,

in: Simulation Conference, 2003. Proceedings

of the 2003 Winter. Presented at the Simulation

Conference, 2003. Proceedings of the 2003

Winter, p. 124–134 Vol.1.

doi:10.1109/WSC.2003.1261415

Gerhardt‐Powals, J., 1996. Cognitive engineering

principles for enhancing human‐computer

performance. International Journal of Human-

Computer Interaction 8, 189–211.

doi:10.1080/10447319609526147

Goti, A., 2010. Discrete event simulations. Sciyo, Rijeka.

Ham, W.K., Kwon, Y., Park, S.C., 2014. Combat

Simulation Framework Including Continuous

Detection System. International Journal of

Simulation Modelling 13, 395–408.

doi:10.2507/IJSIMM13(4)1.262

Helbing, D., 2012. Agent-Based Modeling, in: Helbing,

D. (Ed.), Social Self-Organization,

Understanding Complex Systems. Springer

Berlin Heidelberg, pp. 25–70.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

37

https://github.com/EMostafaAli/HlaListener

Hibino, H., Yura, Y., Fukuda, Y., Mitsuyuki, K., Kaneda,

K., 2002. Manufacturing Modeling

Architectures: Manufacturing Adapter of

Distributed Simulation Systems Using HLA, in:

Proceedings of the 34th Conference on Winter

Simulation: Exploring New Frontiers, WSC

’02. Winter Simulation Conference, San Diego,

California, pp. 1099–1107.

IEEE Standard for Modeling and Simulation (M\&S)

High Level Architecture (HLA)-- Federate

Interface Specification, 2010. . IEEE Std

1516.1-2010 (Revision of IEEE Std 1516.1-

2000) 1,378.

doi:10.1109/IEEESTD.2010.5557728

Jennings, N.R., 2000. On agent-based software

engineering. Artificial Intelligence 117, 277–

296. doi:10.1016/S0004-3702(99)00107-1

Lendermann, P., Heinicke, M.U., McGinnis, L.F.,

McLean, C., Strassburger, S., Taylor, S.J.E.,

2007. Panel: distributed simulation in industry -

a real-world necessity or ivory tower fancy?, in:

Simulation Conference, 2007 Winter. Presented

at the Simulation Conference, 2007 Winter, pp.

1053–1062. doi:10.1109/WSC.2007.4419704

Möller, B., Löfstrand, B., Karlsson, M., 2007. An

overview of the HLA evolved modular FOMs,

in: Simulation Interoperability Workshop,

Spring.

Möller, B., Morse, K.L., Lightner, M., Little, R., Lutz,

R., 2008. HLA evolved–a summary of major

technical improvements, in: Proceedings of

2008 Spring Simulation Interoperability

Workshop, 08F-SIW-064.

Page, R.L., 2000. Brief history of flight simulation.

SimTecT 2000 Proceedings 11–17.

Schulze, T., Strassburger, S., Klein, U., 1999. Migration

of HLA into Civil Domains: Solutions and

Prototypes for Transportation Applications.

SIMULATION 73, 296–303.

doi:10.1177/003754979907300506

Staggers, N., Kobus, D., 2000. Comparing Response

Time, Errors, and Satisfaction Between Text-

based and Graphical User Interfaces During

Nursing Order Tasks. Journal of the American

Medical Informatics Association 7, 164–176.

doi:10.1136/jamia.2000.0070164

Taylor, S.J.E., Bruzzone, A., Fujimoto, R., Gan, B.P.,

Strassburger, S., Paul, R.J., 2002. Distributed

simulation and industry: potentials and pitfalls,

in: Simulation Conference, 2002. Proceedings

of the Winter. Presented at the Simulation

Conference, 2002. Proceedings of the Winter,

pp. 688–694 vol.1.

doi:10.1109/WSC.2002.1172948

Turner, S.J., Cai, W., Gan, B.P., 2000. Adapting a

supply-chain simulation for HLA, in: Fourth

IEEE International Workshop on Distributed

Simulation and Real-Time Applications, 2000.

(DS-RT 2000). Proceedings. Presented at the

Fourth IEEE International Workshop on

Distributed Simulation and Real-Time

Applications, 2000. (DS-RT 2000).

Proceedings, pp. 71–78.

doi:10.1109/DISRTA.2000.874065

Wooldridge, M., 1997. Agent-based software

engineering. IEE Proceedings - Software

Engineering 144, 26–37. doi:10.1049/ip-

sen:19971026

Zacharewicz, G., Deschamps, J.-C., Francois, J., 2011.

Distributed simulation platform to design

advanced RFID based freight transportation

systems. Computers in Industry, Special Issue:

Grand Challenges for Discrete Event Logistics

SystemsGrand Challenges for Discrete Event

Logistics Systems 62, 597–612.

doi:10.1016/j.compind.2011.04.009

AUTHORS BIOGRAPHY

Mostafa Ali is a PhD candidate at the Department of

Civil and Environmental Engineering at the University

of Alberta. His e-mail address is

MostafaAli@ualberta.ca.

Yasser Mohamed is an Associate Professor in the

Department of Civil and Environmental Engineering at

the University of Alberta. His research interest includes

modeling and simulation of construction processes and

the integrating of simulation models and knowledge

engineering tools into construction management and

decision making processes. His e-mail address is

yaly@ualberta.ca.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

38

mailto:MostafaAli@ualberta.ca
mailto:yaly@ualberta.ca

