
COMPARISON OF PSO AND DE IN THE TASK OF OPTIMAL CONTROL OF 
CHAOTIC LOZI MAP 

Roman Senkerik(a), Michal Pluhacek(b), Ivan Zelinka(c), Adam Viktorin(d) 

(a),(b),(d)Tomas Bata University in Zlin , Faculty of Applied Informatics, Nam T.G. Masaryka 5555, 760 01 Zlin,  
Czech Republic  

(c) Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15, 708 33 
Ostrava-Poruba, Czech Republic 

(a)senkerik@fai.utb.cz, (c)ivan.zelinka@vsb.cz 

ABSTRACT 
In this paper, evolutionary algorithm Differential 
Evolution (DE) is compared with swarm based technique 
PSO in the task of optimal evolutionary tuning of 
controller parameters for the stabilization of selected 
discrete chaotic system, which is the two-dimensional 
Lozi map. The novelty of the approach is that the most 
utilized examples of evolutionary/swarm based 
algorithms are compared directly on the highly nonlinear 
and complex multimodal optimization and simulation 
task. The simulations were performed for three different 
required final behavior of the chaotic system. 

Keywords: Chaos control, Differential Evolution, PSO, 
optimization, evolutionary algorithms, swarm 
algorithms, soft computing. 

1. INTRODUCTION
In many applications, one of the most challenging tasks 
is the controlling of highly nonlinear dynamical systems 
in order to either eliminate or synchronize the chaos. The 
first successful approach to control chaotic dynamics by 
means of a simple linearization technique was introduced 
in 1990s by Ott, Grebogy and Yorke (i.e. OGY method) 
(Ott, Grebogi, and York 1990). Later, the rapid 
development of methods for stabilizing of chaotic 
dynamics has arisen and more advanced modern 
techniques have been applied for chaos control and chaos 
synchronization including unconvential methods from 
the soft computing field. 
The most current intelligent methods are mostly based on 
soft computing, representing a set of methods of special 
algorithms, belonging to the artificial intelligence 
paradigm. The most popular of these methods are neural 
networks, evolutionary algorithms (EA’s) and fuzzy 
logic. Currently, EA’s are known as a powerful set of 
tools for almost any difficult and complex optimization 
problem. 
The interest about the connection between evolutionary 
techniques and (not only) control of chaotic systems is 
rapidly spreading. The initial research was conducted in 
(Zelinka 2009), whereas (Zelinka, Senkerik, and Navratil 
2009) and (Senkerik et. al 2010) was more concerned 
with the tuning of parameters inside the existing chaos 

control technique based on the Pyragas extended delay 
feedback control (ETDAS) (Pyragas 1995). Later works 
(Senkerik et. al 2013; Kominkova-Oplatkova et al. 2013; 
Senkerik et al. 2014) show a novel approach as to how to 
generate the entire control law (control method) for the 
purpose of stabilization of any chaotic system. 
Other approaches utilizing the EA’s for the stabilizing of 
chaotic dynamics have mostly applied the Particle 
Swarm Optimization algorithm (PSO) (Kennedy and 
Eberhart 1995) and multi-interval gradient-method 
(Abedini, Vatankhaha and Assadian 2012) or minimum 
entropy control technique (Sadeghpour et al. 2011). EA’s 
have been also frequently used in the task of 
synchronization of chaos (Coleho and Grebogi 2012). In 
(Richter 2000) an EA for optimizing local control of 
chaos based on a Lyapunov approach is presented. 
This work is an extension of previous aforementioned 
research focused on optimal stabilization of chaotic 
systems by means of evolutionary algorithms. The 
novelty of this work and motivation was to perform a 
direct comparison between swarm based algorithms and 
evolutionary algorithms in such a highly nonlinear and 
complex multimodal simulation and optimization task. 
Firstly, a problem design is proposed. The next sections 
are focused on the description of used metaheuristics, 
experiment workflow, results and conclusion. 

2. PROBLEM DESIGN
The brief description of used chaotic system and original 
feedback chaos control method, ETDAS is given. 

2.1. Lozi Map Chaotic System 
The chosen example of chaotic system was the two-
dimensional Lozi map in form (1). 
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The Lozi map is a simple discrete two-dimensional 
chaotic map. The map equations are given in (1). The 
parameters used in this work are: a = 1.7 and b = 0.5 as 
suggested in (Sprott 2003). For these values, the system 
exhibits typical chaotic behavior and with this parameter 
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setting it is used in the most research papers and other 
literature sources (Aziz-Alaoui and Grebogi 2001). 
The x, y plot of the selected map is depicted in Figure 1. 
The chaotic behavior of the map, represented by the 
example of output iterations is depicted in Figure 2. 
 

 
Figure 1: x, y plot of chaotic Lozi map  

 

 
Figure 2: Iterations of the uncontrolled Lozi map. 

 
2.2. ETDAS Control Method 
This work is focused on the direct performance 
comparisons of DE and PSO algorithms in the task of 
tuning of parameters for ETDAS control method to 
stabilize desired Unstable Periodic Orbits (UPO). The 
original control method – ETDAS has form (2). 
  

( ) ( )[ ])(1)( txtSRKtF d=  
( )dtRStxtS += )()(  (2) 

 
Where: K and R are adjustable constants, F is the 
perturbation; S is given by a delay equation utilizing 
previous states of the system and d is a time delay. 
The original control method – ETDAS in the discrete 
form suitable for optimizations and connection with 
discrete maps has form (3). 
 
 

( )[ ]nmnn xSRKF = 1    

mnnn RSxS +=  (3) 
 

Where: m is the period of m-periodic orbit to be 
stabilized. The perturbation nF  in equations (3) may 
have arbitrarily large value, which can cause diverging 
of the system outside the interval {0, 1.0}. Therefore, nF  
should have a value between maxF , maxF . To find the 
optimal value, it is a task of metaheuristics. 
 
2.3. Cost Function 
The idea of the basic cost function (CFSimple), which 
could be used problem-free only for the stabilization of 
p-1 orbit (stable state of chaotic system – no oscillations), 
was to minimize the area created by the difference 
between the required state and the real system output on 
the whole simulation interval – τi. (4). This CF design is 
very convenient for the evolutionary searching process 
due to the relatively favorable CF surface and it is 
convenient for simple simulation based performance 
comparisons. Nevertheless, this simple approach has one 
big disadvantage, which is the including of initial chaotic 
transient behavior of not stabilized system into the CF 
value. As a result of this, the very tiny change in control 
method setting for extremely sensitive chaotic system 
(given by the very small change of CF value), can be 
suppressed by the above-mentioned including of initial 
chaotic transient. 
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where:  TS - target state, AS - actual state 
 
3. USED METAHEURISTICS 
This work has utilized two metaheuristics as an examples 
of swarm based algorithm, which is PSO and population 
(evolution) based algorithm DE. 
 
3.1. Particle Swarm Optimizer – PSO 
Original PSO algorithms take their inspiration from 
behaviour of fish and birds (Kennedy and Eberhart 
1995). The knowledge of the global best-found solution 
(typically denoted as gBest) is shared among the particles 
in the swarm. Furthermore, each particle has the 
knowledge of its own (personal) best-found solution 
(designated pBest). The last important part of the 
algorithm is the velocity of each particle, which is taken 
into account during the calculation of the particle´s 
movement. The new position of each particle is then 
given by (5), where xi

t+1 is the new particle position; xi
t 

refers to the current particle position and vi
t+1 is the new 

velocity of the particle. 
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To calculate the new velocity, the distance from pBest 
and gBest is taken into account along with its current 
velocity (6). 
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Where: 
vij

t+1 - New velocity of the ith particle in iteration t+1.; 
(component j of the dimension D). 
vij

t - Current velocity of the ith particle in iteration t.; 
(component j of the dimension D). 
c1, c2 = 2 - Acceleration constants. 
pBestij – Local (personal) best solution found by the ith 
particle;  (component j of the dimension D). 
gBestj - Best solution found in a population; (component 
j of the dimension D). 
xij

t - Current position of the ith particle; (component j of 
the dimension D) in iteration t.  
Rand – Pseudo-random number, interval (0, 1).  
 
3.2. Differential Evolution 
DE is a simple and powerful population-based 
optimization method that works either on real-number-
coded individuals or with small modifications on discrete 
type individuals (Price, Storn and Lampinen 2005), 
(Storn and Price 1997), (Price 1999). DE is quite robust, 
fast, and effective, with global optimization ability. This 
global optimization ability has been proven in many 
interdisciplinary researches. It works well even with 
noisy and time-dependent objective functions. The 
canonical basic principle is following. 

For each individual Gix ,
!

 in the current generation G, DE 
generates a new trial individual Gix ,

!
 by adding the 

weighted difference between two randomly selected 
individuals Grx ,1

!
 and Grx ,2

!
 to a randomly selected third 

individual Grx ,3
!

. The resulting individual Gix ,
!

 is crossed-

over with the original individual Gix ,
!

. The fitness of the 
resulting individual, referred to as a perturbed vector 

1, +Giu
!

, is then compared with the fitness of Gix ,
!

. If the 
fitness of 1, +Giu

!
 is greater than the fitness of Gix ,

!
, then 

Gix ,
!

 is replaced with 1, +Giu
!

; otherwise, Gix ,
!

 remains in the 
population as 1, +Gix

!
. 

Please refer to (7) for notation of crossover, and to (Price, 
Storn and Lampinen 2005) for the detailed description of 
used DERand1Bin strategy and all other DE strategies: 
 

( )GrGrGrGi xxFxu ,3,2,11, +=+  (7) 
 
4. SIMULATION RESULTS 
This research encompasses three case studies. Three 
different required behavior of the chaotic system were 
simulated in the following form: 

• Case study 1: p-1 UPO, Lozi map as controlled 
system with CFSimple. 

• Case study 2: p-2 UPO, Lozi map as controlled 
system with CFSimple. 

• Case study 3: higher order p-4 UPO, Lozi map as 
controlled system with CFSimple. 

The ranges of all evolutionary estimated parameters are 

given in Tab. 1. 

Table 1: Estimated parameters and ranges 
Parameter Min Max 
K -2 2 
R 0 0.99 
Fmax 0 0.9 

 

Within the research a total number of 50 simulations for 
each experiments were performed in an environment of 
Wolfram Mathematica. All experiments used different 
initialization, i.e. different initial population was 
generated in each run of DE/PSO.  
The parameter settings for both DE and PSO were given 
following way (see Table 2 and 3) 

 
Table2: DE settings 

Parameter Value 
PopSize 25 
F  0.5 
Cr  0.9 
Generations 300 
Max. CF Evaluations (CFE) 7500 
 

Table 3: PSO settings 
Parameter Value 
PopSize 25 
c1 , c2 2.0 
Iterations 300 
Max. CF Evaluations (CFE) 7500 
 

All simulations were successful and have given new 
optimal settings for ETDAS control method securing the 
fast stabilization of the chaotic system at required 
behaviors, which were p-1 UPO (stable state), p-2 UPO 
(oscillation between two values) and finally p-4 UPO. 
The organization of the results is following: 
Tables 5 -7 are focused on the performance comparisons 
between DE and swarm based PSO algorithm. These 
tables contain simple statistical overview of evolutionary 
optimization/simulation results i.e. average, median max, 
min (the best solution), std. dev. values for the particular 
cost function and for all 50 runs of both compared 
heuristics. Italic numbers represent the best result.  

The chaos stabilization properties for the particular case 
studies are given in the description (caption) of the 
figures with the simulation of the best individual 
solutions. These chaos stabilization properties contain 
parameters set up for ETDAS control method, also the 
Istab. Value representing the number of iterations 
required for stabilization on desired UPO and further the 
average error between desired output value and real 
system output from the last 20 iterations. 

Graphical simulation outputs of the best individual 
solutions for particular case studies are depicted in 
Figures 3, 5 and 7 whereas the Figures 4, 6 and 8 show 
the simulation output of all 50 runs of the best performing 
metaheuristic, thus confirm the robustness of this 
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approach. For the illustrative purposes, all graphical 
simulations outputs are depicted only for the variable x 
of the stabilized chaotic system. 

The graphical comparisons for the performance analysis 
of DE and PSO within all 3 case studies are given in 
complex Figure 9. It shows the comparisons of time 
evolution of average CF values for all 50 runs of 
DE/PSO, thus it confirms the robustness of both used 
metaheuristic strategies within many repeated runs. 

The values for desired UPOs of unperturbed chaotic Lozi 
map based on the mathematical analysis of the systems 
are given in Table 4. 

Table 4: The values for desiredUPOs. 
UPO Values of UPO of unperturbed 

system 
p-1 xF = 0.454545 
p-2 x1 = -0.382166 ; x2 = 0.700637 

p-4 x1 = -0.691899 ; x2 = 0.334059 
x3 = 0.086151 ; x4 = 1.020573 

 
4.1. Case study 1 
In the simplest case, the performance of both heuristic is 
similar from the statistical point of view. Nevertheless, 
the DE has converged very fast towards optimal solution 
in 20 generations, as in Fig 9, (multiplied by population 
size, it means only 50 CF evaluations were required). All 
50 runs of heuristic have given identical results (Fig 4), 
i.e. confirmed the robustness of the DE algorithm while 
searching in very nonlinear solution space. Convergence 
of PSO is much slower, DE is therefore suitable also for 
on-line control of nonlinear chaotic dynamics. 

 
Table 5: Comparison for DE and PSO case study 1. 
Statistical 
data 

DE PSO 
CF Value CF Value 

Min 0.520639 0.530679 
Max 0.527132 0.573742 
Average 0.520769 0.548688 
Median 0.520639 0.549588 
Std.Dev. 9.18·10-4 1.07·10-2 

 

 
Figure 3: Simulation of the best individual solution – DE and 

Lozi map: Case study 1, K = -1.11259, Fmax = 0.9,  
R = 0.289232, Istab. Value = 21, Avg. err. = 7.21·10-15 

 

 
Figure 4: All 50 runs of EA – DE and Lozi map: Case study 1. 

4.2. Case study 2 
As in the previous case, results structure, as well as 
simulation outputs show similar features, even with a 
larger difference in favor of the algorithm DE.  

 
Table 6: Comparison for DE and PSO case study 2. 
Statistical 
data 

DE PSO 
CF Value CF Value 

Min 6.99829 7.29818 
Max 7.33379 8.05143 
Average 7.2827 7.67487 
Median 7.33379 7.6944 
Std.Dev. 9.29·10-2 0.216771 

 

 
Figure 5: Simulation of the best individual solution – DE and 

Lozi map: Case study 2, K = 0.5740, Fmax = 0.4308,  
R = 0.4454, Istab. Value = 22, Avg. err. = 2.98·10-8 

 

 
Figure 6: All 50 runs of EA – DE and Lozi map: Case study 2. 
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4.3. Case study 3 
 

Table 7: Comparison for DE and PSO case study 3. 
Statistical 
data 

DE PSO 
CF Value CF Value 

Min 13.7305 14.9151 
Max 51.9391 29.6333 
Average 15.4354 21.794 
Median 14.2548 22.4428 
Std.Dev. 5.4219 3.5719 

 

 
Figure 7: Simulation of the best individual solution – DE and 

Lozi map: Case study 1, K = -0.8693, Fmax = 0.25556,  
R = 0.4093, Istab. Value = 46, Avg. err. = 2.96·10-4 

 

 
Figure 8: All 50 runs of EA – DE and Lozi map: Case study 3. 

The last case study dealing with the most complex and  
highly nonlinear dynamics shows interesting features. 
Classical geometrical (vector crossover) based 
evolutionary algorithm has been stacked in many 
suboptimal solutions, with small chance to leave this area 
of solution space. While PSO (swarm based) algorithm 
was statistically better in searching process (lower 
standard deviation, range of CF). Even though the DE 
has found lower final CF value, the PSO seems to be a 
better and more robust choice for optimization in 
extremely nonlinear solution space due to its natural 
better exploration ability. 
 

 

 

 

 

 

 
Figure 9: Comparisons of time evolution of average cost function values of the best solutions from all 50 runs of DE and 
PSO; from left to right and from above to bottom: Case study 1 – Case study 3. 
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5. CONCLUSION 
In this paper, evolutionary algorithm Differential 
Evolution and swarm algorithm PSO were used for the 
evolutionary tuning of controller parameters for the 
stabilization of selected discrete chaotic system, which 
was the two-dimensional Lozi map.  
The originality of the presented approach is that the 
examples of swarm based algorithms and evolutionary 
algorithms are compared in such a highly nonlinear and 
complex multimodal optimization task, which is optimal 
control of chaotic systems. 
Comparisons between both DE versions and swarm 
based PSO algorithm show, that PSO is not good choice 
in the task of nonlinear/chaos control optimization.  
Future research will be aimed at energy costs and more 
precise and faster stabilization and at the time-continuous 
systems, not only discrete chaotic maps. 
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