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ABSTRACT 

This paper is focused on the application of Artificial 

Neural Networks to model a recovery biomass boiler 

from the Joutseno paper mill (Finland). The cross-

validation technique has been used to train the neural 

model. The validation phase has been carried out with 

new data, which have never been known or seen during 

the training procedure. As a result of the validation 

stage, the model has achieve only 1.77% of MAPE error 

for the main output variable (net steam), and reaching 

good performance metrics for the estimation of the main 

gas emissions. This work will be the basis of a future 

development using Artificial Neural Networks, in order 

to control and minimise the impact of the air emissions 

produced by the industrial plant. 
 

Keywords: Artificial Neural Networks, recovery boiler, 

real plant data. 

 

1. INTRODUCTION 

Finland is a country of wood and trees and its main 

business is the industry of paper and pulp (Suhr et al. 

2015). The Kraft process (see Section 2 for details) is a 

basic process of making paper or pulp from wood. The 

Kraft pulp process consists of two lines; while in the 

main has as principal activity the extraction of wood 

pulp for producing paper the secondary line has the 

recovering of chemical elements to be reused. This 

work is focused on the recovery boiler, a key 

infrastructure as it is the principal responsible of both 

recover the white liquor and to generate electricity for 

the plant. Moreover, as any boiler, various chemicals 

are emitted to the environment so it is fundamental to 

control and limit those emissions (Vakkilainen 2005). 

The principal objective of this work is to develop 

intelligent control strategies able to improve their 

performance while keeping under control the emissions. 

Safety is an important aspect to take into account. While 

improving the recovery of chemicals, the air emissions 

shall never go over the safety limits. Therefore, it is 

very important to have models of the processes that 

allow us to carry out simulations or to be used within 

the controller itself. However, the complexity as well as 

the high computational cost of the mathematical models 

of these types of processes makes necessary the use of 

surrogated black-box models.  

Artificial Neural Networks (ANN) strategies have been 

used for years, but there are not commonly 

implemented in the industry. In process control this 

black-box modelling technique has been used 

successfully, but it is still possible to achieve better 

results. It can be more widely applied to solve some of 

the most nagging process control problems (Yen-Di 

Tsen et al. 1996). For example, ANN have been used to 

model the extraction of lignosulfonates from barley 

straw (Serna-Diaz et al. 2014). Furthermore, neural 

modelling has been used to reduce the maintenance cost 

and to improve the maintenance efficiency of the 

electricity generation by linking operational data and 

plant conditions (Fast and Palmé 2009). 

The purpose of this work is presented in Section 4 

where a model based on ANN of a biomass boiler 

installed in the secondary line of a Kraft process. The 

objective is obtained a fast response model to control 

the air emissions of the boiler 

Kraft process and biomass boiler introduction is 

performed and the main design parameters are 

presented in Section 2. Next Section describes the 

datasets that have been used. Then, Section 4 the 

modelling methodology is presented. Finally, the 

preliminary results and the obtained conclusions are 

illustrated in Section 5 and 6 respectively. 
 

2. KRAFT PULPING PROCESS 

The Kraft process was introduced in 1879 and currently 

it is the most distinguished pulp process worldwide. 

Gaining cellulose is the main purpose of this process 

(Gustafson et al. 1983). This type of plants use the 

maximum energy generated by raw materials, and 

minimises the amount of waste. We can consider these 

kinds of factories of minimal environmental impact due 

to the appliance of the energy recovery line. 
 Figure 1 shows the three main sections in which the 

manufacturing process is divided. Extraction of 

cellulose from the wood is considered as a main line. 

Recovery of chemical elements as a secondary sequence 

and finally, the last phase is the effluent treatment. The 

process begins with the logs. Their surface bark is 

removed and remaining wood is cut it in small pieces 

called chips. From the stockpile, the chips are extracted, 

classified and taken to the cooking process-continuous 

digester with white liquor. White liquor is an alkaline 
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Figure 1: Scheme of the Kraft Process and Situation of 

the Modelled Recovery Boiler (courtesy of Katriina 

Mielonen) 

 

solution of caustic soda and sodium sulfide, which 

reacts with the wood lignin. As a result of the cooking 

process two products are obtained: black liquor, which 

is the consequence of the reaction between the white  

liquor and the lignin, and cellulose pulp, which is 

classified, washed and bleached. 
Once the black liquor is obtained, the recovery phase 

begins. The process is gradually becoming better known 

and spread throughout the world. The increment of the 

production, raised up the second production line, which 

is based on the recovery of chemicals. When production 

was expanding, they realized that it is cheaper to recycle 

the black liquid than to buy more chemicals. This 

operation is carried out in all Kraft factories; here it is 

why it is called a closed system, due to the recovery of 

the chemicals used in the beginning of the process. 
The purpose of the recovery system is to return the 

inactivate sodium compounds at the end of the cooking 

process into activate compounds that can be reused at 

the beginning. The main operations for recovery the 

chemicals are based on the evaporation of black liquid, 

the black liquor combustion in the boiler, the 

causticizing of the sodium carbonate and the 

regeneration of lime mud. This recovery is also vital for 

a profitable process, without this step the waste would 

be very harmful for the environment and its treatment 

very expensive.  

The acquired black liquor is classified in weak or strong 

liquor. The weak black liquor is evaporated to remove 

the water excesses, and the strong black liquor is taken 

to feed the recovery boiler. The black liquor is burned 

in the recovery boiler to produce heat and a smelt 

consisting of the inorganic sodium-containing cooking 

chemicals. The smelt is dissolved in water to produce 

green liquor that is recausticized to form the white 

liquor which constitutes the main fed in the Kraft 

cooking process (Vakkilainen 2005). Finally, the black 

liquor is burned in the boiler as combustible to produce 

heat water and steam. With the steam produced in the 

boiler, a steam turbine is fed and the generated energy 

accomplishes to power the entire factory. The main 

parameters of the burner can be found in Table 1. 

 

Table 1: Main Design Parameters of Joutseno Recovery 

Boiler (Vakkilainen and Sandegard 1999) 

Continuous burning capacity (MCR) 3150tds/24h 

Peak Load burning capacity 3500tds/24h 

Steam Production  130kg/s 

Main steam pressure 9.3e+6 Pascal 

Main steam temperature 763.15K 

 

3. MATHERIALS AND METHODS 

For this study real data obtained in the boiler shown in 

Figure 2, from the Joutseno pulp mill located in eastern 

of Finland has been used (Hamaguchi and Vakkilainen 

2011). The main design features of Joutseno plant are 

shown in Table 1 (Vakkilainen and Sandegard 1999). 

32 variables were collected hourly and stored 

electronically for three non-consecutive months from 

January 2007 to April 2008 (2016 samples in total). The 

data has been divided in 1512 samples for training and 

168 samples for validation. As in any other dataset, 

failures always occur due to poor maintenance, human 

errors or device errors. Less than 4% of the data have 

been detected with anomalous behaviour, or above the 

physical possible limits. These values have been 

replaced by the linear interpolation of the closest valid 

measures. Table 2 shows the 32 variables, which are 

divided into sections and grouped by families. Chosen 

data include winter and summer months due to expert 

knowledge indicates that during the cold month, the 

amount of nitrogen embedded in the trees is lower, the 

quality of the wood is low, and therefore fuel quality 

decreases. On one hand, the variables related to the 

black liquor, air, steam, auxiliary flue and on the other 

hand the variables related to the emissions.  

The ANN recognizes the measurable interrelationship 

between input and output parameters. Hence, the correct 

determination of training data, from the accessible raw 

plant data is essential for increase the precision of the 

developed model (Kaiadi et al. 2007). Once the datasets 

have been 

 

 
Figure 2: Scheme of the Modelled Recovery Boiler 
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Table 2: Main Variables of Joutseno Recovery Boiler 

Variables to analyse Units Input/Output 

Black Liquor 

Liquor flow tds/d Input 

Ds at guns % Input 

Density at guns kg/l Input 

Temp in storage tank ºC Input 

Flow front l/s Input 

Flow right l/s Input 

Flow left l/s Input 

Flow rear l/s Input 

Water & Steam 

Feed Water kg/s Input 

CBD kg/s Output 

SB kg/s Output 

Net steam kg/s Output 

Auxiliar fuel in operation 

Load gas m3n/s Input 

Start up gas bar Input 

Load gas bar Input 

Air 

Primary left m3n/s Input 

Primary right m3n/s Input 

Secondary left m3n/s Input 

Secondary right m3n/s Input 

Load burner air m3n/s Input 

Tertiary front m3n/s Input 

Tertiary rear m3n/s Input 

Strong to combustion m3n/s Input 

Strong to combustion kg/s Input 

Flue gas 

CO left ppm Output 

CO right ppm Output 

SO2 mg/m3n Output 

TRS mg/m3n Output 

NOx mg/m3n Output 

Dust % Output 

O2 after BB left % Output 

O2 after BB left % Output 

 

pre-processed, a cross validation training procedure is 

carried out to obtain the neural model which has the 

best possible goodness fit.  Figure 3 illustrates a 

summary of the steps followed. First a selection of the 

most relevant output variables have been made, then a 

reduction of the input variables have been carried out 

and, finally, the neural structure have been selected 

(Ruiz 2016).  

Different tools have been used in this work: the pre-

processing step has been carried out with Microsoft 

Excel ® (version 2010), the selection of input and 

output variables have been made with the statistical 

software R (version 3.3.0) and, finally, the modelling 

procedure has been implemented using the Neural 

Network Toolbox package of the programming package 

MATLAB® (version 8.6, 2015b, Mathworks 

Company). 

 

 
Figure 3: Experimental Methodology 

 

4. NEURAL MODELLING 

Correlation analyses between each of the variables have 

been performed to select the most influential variables 

in the behaviour of the boiler. These analyses have been 

used to choose the inputs of the neural model between 

all the available information and to avoid redundant 

information. High absolute value of the correlation 

coefficient (R
2
) between two variables indicates the 

existence of a linear dependence; therefore, one of those 

variables would be removed because the election of 

both variables would be redundant. However, near zero 

R
2
 values implies, that there are not linear relations 

between the studied variables. 

First, the most important outputs of the biomass boiler 

have been chosen as the modelling objectives. The 

generated Net Steam has been chosen due to be the 

main product of the boiler in order to feed the steam 

turbine. The SO2, NOx and O2 (after burning left) output 

gases are some of the variables that must be kept under 

control avoiding exceed certain limits. Although SO2 

and NOx have not shown correlation with any input 

variable, they have been included to test if the neural 

model is able to relate them. Instead, the output O2 

(after burning right) has been discarded due to its high 

correlation with the included variable O2 (after burning 

left). 

Next, the input variables with higher correlation with 

the previously chosen outputs of the model have been 

selected. Those inputs variables not correlated with any 

output have been excluded. Moreover, some variables 

correlated with the outputs, such as the front, right, left 

and rear flows, have been finally discarded due to be 

highly correlated also with the Liquor Flow and Feed 

Water which are the main inputs variables of the boiler. 

Therefore, after the data pre-processing and variable 

selection step, only 10 variables were selected, 6 inputs 

and 4 outputs, due to its impact on the process 

behaviour. The Figure 4 represents the linear regression 

curve between the Liquor Flow and the Fed Water. The 

correlation coefficient is equal to 0.33887 between two 

analysed inputs, which means that both have varied 

behaviours and are needed on the final selection. 

Another clear example can be seen in Figure 5 between 

an input and output variables of the boiler. As can be 

observed the correlation coefficient index is remarkably 

high, thus it can be deduced that the Feed Water is 

(obviously) highly related to the Net Steam output. 

Table 3 resumes the finally selected variables to model 

the biomass boiler using the neural modelling approach. 

The main output variable is the Net Steam which will 

feed to the steam turbine. The other selected variables 

are divided in three groups: emissions to the air, air 

entries and liquid entries. Air emissions (SO2, NOx and 
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Figure 4: Regression Curve Between the Feed Water 

and Liquor Flow Inputs Variables 

 

 
Figure 5: Regression Curve Between the Feed Water 

Input Variable and the Net Steam Output Variable 

 

O2) have been selected because one of the final 

objectives of the model is to maintain these emissions 

under control. Inputs related to liquids (Liquor Flow 

and Feed Water) have also a great significance because 

they are the main combustible of the boiler and, finally 

the family associated to the air inlets (secondary and 

tertiary air) are those who control the boiler operation 

for an optimal combustion. 

Once finished the selection of the input and output 

variables, an iterative methodology modifying the 

number of layers and neurons in each layer has been 

carried out. Cross-Validation (CV) technique has been 

used in order to select the neural model structure that 

better fits the process. This technique consists of setting 

aside a set of data from the model training phase and 

only using them for the validation phase. The process is 

repeated until every single set of experiments is used in 

the validation stage. 9 weeks have being used for the 

training and validation datasets and 1 week for the final 

testing purpose. Therefore, each training fold is a whole 

week of data consisting of 168 samples, using the 

“week” criteria as divider. The chosen weeks have been 

taken from winter and summer months because expert 

knowledge indicates that during the cold month, the 

amount of nitrogen embedded in the trees is lower, the 

quality of the wood is low, and therefore fuel quality 

decrease. This implies regimes changes in the behaviour 

in the variables of the boiler. Consequently, the 

available data are divided into training, validation and 

test datasets. The training and validation datasets are 

used for the selection of the model structure and the 

most suitable training algorithm. The first one is used to 

train several models with different structures and using 

different training algorithms.  

The validation dataset consists of the excluded 

experiments from the training at each CV iteration and 

it is used to calculate the validation error that is used in 

the early stopping concept to avoid the overfitting. The 

training is stopped if the validation error increases in a 

sufficiently high number of consecutive iterations. 

 

Table 3: Selected Variables from the Database to be 

Included in the Neural Model 

Variables to 

analyse 
Units Input/Output 

Black Liquor 

Liquor flow tds/d Input 

Water & Steam 

Feed Water kg/s Input 

Net steam kg/s Output 

Air 

Secondary left m3n/s Input 

Secondary right m3n/s Input 

Tertiary front m3n/s Input 

Tertiary rear m3n/s Input 

Flue gas 

SO2 mg/m3n Output 

NOx mg/m3n Output 

O2 after BB left % Output 

 
Finally, the CV average error, calculated over the data 

that were excluded from the training at each iteration, is 

used to compare the model structures. This type of 

technique tests the generalization capability of a model 

structure (Kashani and Shahhosseini 2010). The error 

performance metric used in this procedure for the 

comparison of the model structures has been the Root 

Mean Squared Error (RMSE), the Mean Absolute Error 

(MAE) and the Mean Absolute Percentage Error 

(MAPE) (Equations 1, 2 and 3). 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝐴𝑐𝑡−𝑃𝑟𝑒𝑑)2𝑛

𝑖=1

𝑛
   (1) 

𝑀𝐴𝐸 =
∑ |𝐴𝑐𝑡−𝑃𝑟𝑒𝑑|𝑛

𝑖=1

𝑛
    (2) 
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Table 4: Average Errors for Each Normalized Output Variable, Neural Structure and Training Function 

 

Training Best 
Output RMSE MAE MAPE (%) 

function Structure 

NARX 

BR 6-100-4 

Net steam 0.01096 0.00744 1.56 

SO2 0.02408 0.01469 2.00 

NOx 0.09197 0.06130 83.17 

O2 0.02733 0.02120 2.81 

LM 6-4-4 

Net steam 0.05637 0.04620 11.68 

SO2 0.12369 0.08945 41.28 

NOx 0.28522 0.23312 166.52 

O2 0.08927 0.06856 9.77 

LM 6-11-4-4 

Net steam 0.06593 0.05386 14.67 

SO2 0.12804 0.08995 40.58 

NOx 0.26994 0.22028 155.11 

O2 0.09336 0.06855 9.57 

Feed-Forward 

BR 6-130-4 

Net steam 0.00959 0.00636 1.23 

SO2 0.02272 0.01353 1.78 

NOx 0.09016 0.05924 82.64 

O2 0.02550 0.01952 2.55 

LM 6-8-4 

Net steam 0.06229 0.04947 12.05 

SO2 0.13700 0.10143 40.64 

NOx 0.28147 0.22480 170.82 

O2 0.08958 0.06483 9.70 

LM 6-3-4-4 

Net steam 0.08174  0.06570  16.59  

SO2 0.12523  0.08844  38.64  

NOx 0.26801  0.22182  170.69  

O2 0.09411  0.07085  10.71  

 

𝑀𝐴𝑃𝐸 (%) = 100
1

𝑛
∑ |

𝐴𝑐𝑡−𝑃𝑟𝑒𝑑

𝐴𝑐𝑡
|𝑛

𝑖=1    (3) 

 

Once the neural model structure is selected and properly 

validated, the final model is trained with all the 

available data except for the test dataset which is used 

to estimate the generalization error of the fitted model. 

Nonlinear AutoRegressive with eXogeneous inputs 

(NARX) and Feed-Forward neural structures have been 

compared in this work in order to prove which is able to 

fit better the process. Furthermore, two different 

training functions have been test in both of the 

structures; Bayesian regularization backpropagation 

(BR) and Levenberg-Marquardt backpropagation (LM). 

In order to carry out properly the training procedure, 

giving equal weight to all the variables, all them have 

been normalized in the range [-1, 1]. Due to be a 

stochastic training procedure, all the training procedure 

has been repeated 10 times, in order to smooth the 

results Several neural structures have been test with 

neurons from 1 to 200 in the hidden layer and with 1 or 

2 hidden layers. Note that due to its high computational 

cost, for the NARX structure trained with BR function, 

it has been tested only up to 100 neurons. 

Based on the minimum average CV errors, the number 

of hidden neurons has been selected for each output. 

The RMSE has been selected as main indicator 

according to the literature (Chai and Draxler 2014). 

Figure 6, represents the CV RMSE error of output 

variables versus the number of hidden neurons. As can  

Figure 6: Evolution of the Cross Validation Average 

Error for the Net Steam Output with the Number of 

Neurons in the Hidden Layer 

 

be seen, the CV error reaches a minimum value with the 

selected hidden neurons. However, each output reaches 

a minimum CV error with a different number of 

neurons. Thus, between the “best structure” for each 

output is selected one that has the lower average error of 

the CV errors for all the variables. 

Table 4 illustrate the average CV results for each neural 

structure and for each output variable and training 

function. Hence, Figure 7 shows the selected ANN 

configuration which is a Feed-Forward neural network 
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with 1 hidden layer with 130 neurons, and trained with 

the BR function. 

Finally, the above selected neural structure is trained 

with all the available data except from the test data and 

validated using that unseeing dataset in order to test its 

generalization ability and to measure the goodness of fit 

of the final model. Table 5 shows the validation errors 

of the final model for the denormalized test dataset. The 

obtained results presents reasonable error values that 

allow to stand that the neural network based model has 

been able to successfully assimilate the behaviour of the 

process with an acceptable accuracy. The behaviour of 

the Net steam output has been simulated with a MAPE 

error of 1.77%. Moreover, the NOx and O2 presents 

MAPE of 5.75 and 3.73% respectively. Only the SO2 

gas emissions present a MAPE error near the 15%. 

Figure 8 shows the real and the estimated data of all 

output variables for 1 week of simulation time (1 

sample per hour). Note that the values are normalized in 

the range [-1, 1]. As expected, the selected model is 

able to follow the behaviour of each output variable, 

with more difficulties for the SO2 and NOx. Note that 

during the winter the nitrogen is stored in the root of the 

tree which radically changes the behaviour of the output 

variables depending the season of the year. Therefore, 

the operation regimes change with higher or lower 

values for the whole week, scrolling along the operation 

range. 

 

 
Figure 7: Neural Network Used to Model the Biomass 

Boiler 

 

Table 5: Validation Errors of 1 Week Unseeing Data for 

the Output Variables Using the Selected Neural 

Network 

Output RMSE MAE 
MAPE 

(%) 

Net steam (kg/l) 3.0543 2.6979 1.77 

SO2 (mg/m3n) 0.4908 0.3607 14.72 

NOx (mg/m3n) 13.748 10.173 5.75 

O2 (%) 0.1260 0.1006 3.73 

 

Additionally, Table 6 shows the validation errors 

obtained with an alternative neural model for the 

denormalized test dataset. Note that this alternative 

model is a NARX neural network with 2 hidden layers, 

the first one with 11 neurons and the second one with 4 

neurons, and trained with the LM function. The results 

obtained with this model are slightly worse but model 

size is noticeably smaller.  

 

5. DISCUSSION AND FUTURE WORKS 

In this work an Artificial Neural Networks based model 

of the recovery boiler of a Kraft process has been 

presented. The results suggest that a Feed-Forward 

neural model is able to assimilate the dynamics of the  

 

Table 6: Validation Errors of 1 week Unseeing Data for 

the Output Variables Using the Alternative Neural 

Network 

Output RMSE MAE 
MAPE 

(%) 

Net steam (kg/l) 3.4975 3.3480 2.22 

SO2 (mg/m3n) 0.9177 0.7807 31.00 

NOx (mg/m3n) 13.7195 9.9763 5.85 

O2 (%) 0.1958 0.1688 6.10 

 

process just with the information of the selected inputs: 

liquor flow, feed water and secondary and tertiary input 

air. The best results have been obtained with a neural 

model with 130 hidden neurons. 

The implemented model has been able to estimate the 

main output variable (Net steam) over the denormalized 

test dataset with a MAPE error of only 1.77 percentage 

points. The model also presents good performance for 

the O2 and NOx.  By contrast, it has not been able to 

properly model the behaviour of the SO2 gas emissions. 

However, to obtain the best results a high number of 

neurons are needed. While more simple structures such 

as a NARX neural network with 2 hidden layers, are 

able to obtain similar errors for three of the output 

variables. 

The final neural model will support future works in 

order to study the influence of the input variables and 

control set points into the electricity generation and 

contaminant emissions. 

 
Figure 8: One Week Simulation of the Biomass Boiler 

for all the Normalized Output Variables with the 

Selected Neural Model 
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