
ANALYSIS AND EVALUATION OF PERFORMANCE ISSUES OF PARALLEL 

SOFTWARE ON MULTI-CORE PROCESSORS 
 

 

Franz Wiesinger(a), Mustafa Tunca(b), Michael Bogner(c) 

 

 
(a), (b), (c) University of Applied Sciences Upper Austria – Embedded Systems Design,  

Softwarepark 11, A-4232 Hagenberg, AUSTRIA 

(a) franz.wiesinger@fh-hagenberg.at, (b) mustafa.tunca@fh-hagenberg.at, (c) michael.bogner@fh-hagenberg.at 

 

 

 

ABSTRACT 

For decades, the processor manufacturers have attempt-

ed to achieve performance gains by increasing the clock 

frequency on single-core processors. But physical prob-

lems – such as the high power dissipation – lead to the 

release of the first multi-core processors on the market 

in 2005. 

To benefit from the multi-core architecture, parallel 

programming is required. However, this programming 

model requires a different approach and is associated 

with certain risks and pitfalls. 

This paper focuses on modelling of certain test scenari-

os for two common multi-core specific problems, name-

ly oversubscription and false sharing. Various simula-

tions and tests offered solutions and design patterns to 

avoid such problems. Results have shown that the prob-

lems have a fatal impact on the execution time, so that 

the performance gain on the multi-core system is nearly 

nonexistent. Thence, any software developer must have 

in-depth knowledge of the used hardware and software 

to benefit as much as possible from multi-core architec-

tures. 

 

Keywords: multi-core, parallel software, performance 

analysis, oversubscription, false sharing 

 

1. INTRODUCTION 

For decades, processor manufacturers have tried to 

achieve more performance of their processors mainly by 

increasing the clock frequency. But despite technical 

countermeasures, this methodology of improving the 

performance of single-core processors has led to an in-

crease of the power consumption and to an unmanagea-

ble heat generation when using conventional cooling 

techniques. 

This fact and the growing demands of customers induc-

es the large processor manufacturers such as Intel, IBM 

and AMD to further improve the development of single-

core processors and to focus on the development of 

multi-core processors. 

This was achieved by increasing the number of transis-

tors – the main component of a processor – by improv-

ing the manufacturing techniques. As a result, these ad-

ditional transistors serve in the processor development 

for many architectural advantages (Rauber and Rünger 

2012). Instead of further increasing the chip packing 

density on a single-core processor and making it even 

more complicated, the available surface area on the sili-

con is now used for multiple cores which allows the dis-

tribution of the workload across these cores. Thereby, it 

is possible to increase the throughput and in further 

consequence, the performance referring to the power 

consumption is improved (Gove 2010). 

The first multi-core processors reached the end-user in 

2005 – thus, a new era of information processing was 

born.  However, this resulted also in a new challenge 

for software developers. Because so far, the processor 

manufacturers were primarily responsible for perfor-

mance improvements on their processors. Existing 

software was automatically faster with each generation 

of processors due to technological advances. But now 

having multi-core chips, it is no longer possible to get 

such improvements by only replacing the processor on a 

system. Instead, the software engineers have to use par-

allel software development to benefit from the new 

hardware architecture and to gain from performance 

improvements. 

The parallel software development existed long before 

the era of the multi-core processors and therefore had 

been used by a minority of software developers in mul-

ti-processor environments. But now the multi-core pro-

cessors being the new standard, all software developers 

have to deal with the issue of parallelism. Generally 

spoken, parallelism requires, inter alia, the decomposi-

tion of a given problem to a set of threads, which pro-

cess the problem on different cores of the processor. 

However, this approach of development differs from the 

former sequential execution on a single-core processor, 

so in turn the software development requires a new way 

of thinking in modelling parallel software, which further 

yield to various difficulties and pitfalls. 

As mentioned above, these problems and pitfalls are not 

really new and are known from former multi-processor 

systems. For this reason, the main focus of this paper is 

to check whether the performance-reducing problems 

also have an impact on current multi-core systems. 

Therefore, we have modelled some typical test scenari-

os which are most common. In this paper, we present 

our results for the issues oversubscription and false 

sharing. We have simulated and analyzed the run-time 

behavior of our software implementations and have de-

rived some solutions, which will be explained in detail 

in this paper. 

 

Proceedings of the European Modeling and Simulation Symposium, 2016 
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

256

mailto:franz.wiesinger@fh-hagenberg.at
mailto:mustafa.tunca@fh-hagenberg.at
mailto:michael.bogner@fh-hagenberg.at


2. RELATED WORK 

As the multi-core systems became the new standard, 

numerous well-documented papers about these systems 

are available, especially from the processor manufactur-

ers. Since the described issues already existed before 

the multi-core processors got popular, there are many 

well-documented works which deal with the general is-

sues on parallel systems (Duffy 2008, Tanenbaum 

2009). 

Since the developers tend to use too many threads in 

their applications, the common problem of oversub-

scription arises. Blumofe and Leiserson (1999) analyze 

and discuss a way of scheduling multithreaded applica-

tions on parallel systems and create the so-called work-

stealing technique. Yanyong Zhang et al. (2003)provide 

a deeper analysis of the oversubscription problem, by 

comparing existing techniques and migrating the solu-

tions into large scale parallel systems. 

In contrast to the active community for scheduling prob-

lems on parallel systems, there is sparely research re-

garding the problems on hardware-level on such sys-

tems. The work of Torrellas et al. (1994)are one of the 

first in this field analyzing the issue of false sharing, 

one of the problems occurring in shared-memory paral-

lel systems.  

However, regarding problems on hardware and software 

in parallel systems, most of them do not deal with the 

new hardware platform and present no in-depth discus-

sion according the special issues of concurrent multi-

core systems. On the other hand, there are works which 

discuss this issues also for multi-core systems, but they 

are mainly theoretically, do not focus on special hard-

ware and derive no suggestions or design patterns 

(Akhter and Roberts 2006, Gove 2010, Gleim and 

Schüle 2012, Rauber and Rünger 2012, Williams 2012). 

 

3. TEST ENVIRONMENT 

To analyze the problems precisely, the measurements 

have to be made according to specific criteria, which are 

defined in the following sections. 

 

3.1. Test System 

The test system uses a multi-core processor with Sandy 

Bridge microarchitecture with the model name Intel 

Core i7 2670QM. The processor has four physical cores 

and supports eight logical processors. Furthermore, the 

test system has 6 GB of memory and three cache levels, 

wherein a cache line in each cache-level has the size of 

64 bytes. The L3-cache is shared among all cores and 

allows inter-core communication on the chip. Windows 

7 Professional (64-bit) has been used as the operating 

system. 

 

3.2. IDE and Profiler 

For the implementation of the test scenarios the inte-

grated development environment Microsoft Visual Stu-

dio 2013 has been used.  

The analysis of the run-time behavior has been done 

with the profiler integrated in the IDE, the Visual Stu-

dio Profiling Tools. 

In addition to the integrated profiler, an official plug-in 

from Microsoft for Visual Studio 2013 called Concur-

rency Visualizer has been used for visualization. 

 

3.3. Libraries and Programming Language 

The elaboration of the test scenarios takes place in the 

programming language C++. For managing the threads 

the std::thread class has been used, which is part of the 

C++11 language standard.  

The renunciation of the operating system interface e.g. 

to create threads or synchronize them, means that the 

source code is independent of the operating system. 

Thereby, it is possible to run the test scenarios on any 

system with a compiler that supports the C++11 lan-

guage standard. In our research, we used the compiler 

Visual C++ 2013. 

 

3.4. Class Design 

For our simulations, we decided to use an extensible 

software design to allow further implementations of 

other critical problems. The software design encapsu-

lates the concrete implementations by using the strategy 

design pattern. So the developer can easily exchange the 

implementation of the concrete problem at run-time. 

 

Figure 1 illustrates this structure represented in a UML 

class diagram. There are two important interfaces. The 

interface CriticalProblem offers methods which can be 

overridden by the implementation of a test scenario for 

a specific problem. And the class ScenarioStarter has 

methods, which have a concrete strategy such as for 

oversubscription to run its operations. 

 

 
Figure 1: Class diagram modelling a general structure 

for implementing the test scenarios. 

Listing 1 shows an example where the design pattern 

illustrated in Figure 1 is applied. The object to-

kenizerObj gets the user-given command line arguments 

respectively initial values for the test scenario and ana-

Proceedings of the European Modeling and Simulation Symposium, 2016 
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

257



lyzes it for correctness. Then a test scenario oversub-

scriptionObj is attached to starter. The test scenario is 

finally initialized with the user-given options from the 

tokenizerObj and can be started with the Run() method. 

After the test scenario has finished another type of test 

scenario can be started directly afterwards.  

 

Listing 2: Program code showing a typical usage of the 

class design. 
 

1 int main(int argc, char** argv) 

2 { 

3  CmdLineTokenizer tokenizerObj; 

4  ScenarioStarter starter; 

5  Oversubscription oversubscriptionObj; 

6 FalseSharing falsesharingObj; 
7  
8  tokenizerObj.LoadCommandLine(argc, argv); 

9  starter.AttchCmdTokenizer(&tokenizerObj); 

10  starter.SetScenario(&oversubscriptionObj); 

11  starter.Init(); 

12  starter.Run(); // run and measure run-time 
13 
14  starter.SetScenario(&falsesharingObj); 

15  starter.Init(); 

16  starter.Run(); // run and measure run-time 

17 return 0; 

18 } 

 

3.5. Time Measurement 

In addition to the integrated profiler, time measurements 

have been done on specific sequences in the source 

code. To gain detailed and accurate measurement re-

sults, we have taken the class std::chrono with nano-

second precision from the C++11 language standard 

(simple high resolution timer in C++ 2015). The class 

Timer encapsulates the time measurement functionality. 

It has been used by the concrete strategy respectively by 

the test scenario for every specific problem. 

 

4. CRITICAL PROBLEMS 

This section discusses the performance degradations 

caused by oversubscription and false sharing in the par-

allel software development. These will, of course, lead 

to correct program results and also to a certain progress 

in the program execution. However, by false assump-

tions and a wrong way of thinking belonging the devel-

opment of parallel software for these multi-core sys-

tems, the performance potential given by the hardware 

cannot be fully exploited. 

 

4.1. Oversubscription 

Since the operating system is responsible for creating 

and managing the threads, this circumstance is very im-

portant for the performance of a parallel application 

(Akhter and Roberts 2006). 

Depending on the concrete implementation of the 

scheduler, the user simply misses the desired perfor-

mance in a program. 

Oversubscription is a problem that occurs when there 

are more active threads – which are managed by the op-

erating system and referred as software threads – than 

hardware threads, which define the number of virtual 

processors (Akhter and Roberts 2006). 

Most of the operating systems use the time slicing tech-

nique, also known as round-robin scheduling, which 

negatively influences the situation of oversubscription. 

Although blocked threads are not part of the active 

round-robin scheduling, since these threads are 

dequeued from the waiting queue, the problem still ex-

ists. This scheduling technique leads to context switches 

of all active threads in which the footprint of the inter-

rupted process, such as the used registers are saved and 

the register data from the next thread that has received a 

time slice, is loaded (Tanenbaum 2009). 

Since each thread gets a time slice, none of them suffers 

from starvation. However, the context switch causes a 

certain overhead by recovering and storing the thread 

conditions, which results – when having a high number 

of software threads – in poor performance (Akhter and 

Roberts 2006). 

Not only by the context switches, but also at memory-

level, oversubscription causes problems. Processors try 

to use the caches for storing frequently used data to 

avoid accessing the slower main memory. But as the 

cache memory is – compared to the main memory – 

very small, oversubscription forces to outsource the data 

from previous time slots to a slower memory. Accord-

ingly, this critical problem forces the threads to compete 

for the cache memory, which in turn affects the perfor-

mance of the program badly (Akhter and Roberts 2006). 

 

4.1.1. Simulation 

To reproduce the oversubscription problem, the follow-

ing test scenario has been modelled: 

The goal is to measure the time needed to count up a 

variable from zero to a user-specified limit in the main 

thread. During this counting up, a user-defined amount 

of worker threads calculate the Fibonacci numbers. By 

this simulation, we can measure how the worker threads 

impact the task of the main thread.  

 

4.1.2. Measurement Analysis 

A summary of the measurement results testing up to 70 

threads is shown in Table 1, supplemented by the exe-

cution time and the speedup – a value for describing the 

ratio between the serial and multithreaded execution 

time. The results indicate that although the workload of 

the main thread does not change, the run-time behavior 

starts to get worse at 8 active threads. 

 

Proceedings of the European Modeling and Simulation Symposium, 2016 
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

258



Table 1: Summary of results of the oversubscription test 

Run-time behavior of the test scenario 

Threads Run-time [sec] Speedup 

1 0.0600001 1 

8 0.155009 0.387074944 

17 0.35402 0.169482233 

25 1.00306 0.05981706 

33 2.3088 0.025987569 

49 5.60041 0.010713519 

57 7.69081 0.007801532 

65 10.3428 0.005801147 

70 12.2304 0.004905817 

 

Since 8 logical processors exist on the test system and 

hence 7 worker threads and the main thread can run 

simultaneously, oversubscription starts to occur only at 

8 worker threads. This in turn describes the increase of 

the run-time exactly at this number of active threads.  

The graphical representation of the simulation results is 

shown in Figure 2. The horizontal axis shows the num-

ber of active threads and the vertical axis represents the 

execution time in seconds. The diagram shows that the 

execution time progressively rises up in a curve for an 

increasing number of threads. A detailed view is illus-

trated for better readability in Figure 3, which shows the 

execution time up to 10 threads, where the run-time is 

almost nearly constant up to 7 threads. 

 

 
Figure 2: Run-time behavior of the oversubscription test 

scenario illustrated in a diagram. 

 

 
Figure 3: Detailed view of the execution time up to 10 

threads. 

 

To analyze what exactly happens when too many 

threads are active, a simulation with 40 threads has been 

started in the Concurrency Visualizer. The result illus-

trated in Figure 4 shows the various thread states at 

program execution. It shows that 77 % of the execution 

time is spent for the preemptions caused by the context 

switches and only 21 % of the run-time is actually used 

for the execution of the worker threads. 

 

 

Figure 4: Concurrency Visualizer analyzing the test 

scenario for oversubscription. 

 

4.1.3. Problem and Solution 

The simulations show, how drastically the round-robin 

scheduling technique affects the run-time behavior. 

Generally spoken, oversubscription can be eliminated 

by setting the maximum amount of active threads to the 

actual number of logical processors. 

Although, this does not affect the implemented test sce-

nario, but a reason for an intentional or unintentional 

high number of active threads used in a program can 

also be due to poor load distribution. To avoid the side 

effects of the time slicing technique one can make use 

of the so-called work-stealing technique. The aim of 

this technique is to avoid unloaded threads as much as 

possible. The specific procedure based on (Hwu 2011) 

is shown in Figure 5 as a flow chart. 

In the illustration, all the threads have their own work-

pool. If a thread has already processed a task, then it 

tries to take another one of its own tasks. If during run-

time new subtasks have been created, then these are also 

stored into the thread’s collection. Since the subtasks do 

often share data with the main task a better cache utili-

zation is achieved (Hwu 2011).  

 

Proceedings of the European Modeling and Simulation Symposium, 2016 
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

259



 
Figure 5: Flow chart illustration of the work-stealing 

technique. 

 

If a thread has already executed all tasks in its own col-

lection, then it tries to “steal” tasks from another thread 

by randomly looking into the collections of other 

threads. Since this search of tasks causes a certain 

amount of effort, it is the goal of this technique to pro-

vide the “thieves” big tasks to keep them busy as long 

as possible. 

 

4.2. False Sharing 

Due to the special hardware architecture of multi-core 

systems and the limited amount of memory, perfor-

mance bottlenecks can also lead to problems on soft-

ware-level or operating system level, and also on the 

hardware-level. 

The cache offers a very fast memory for outsourcing 

frequently used data of the processors. Since the mod-

ern cache-memories are well suited for sequential pro-

gramming, these fast memories are one of the main 

causes for substantial side effects in the parallel soft-

ware development. One of these effects respectively 

problems is cache line ping-pong (Akhter and Roberts 

2006).   

This problem occurs when multiple hardware threads 

try to perform operations on data in the same cache line. 

Therefore, it can happen that during an ongoing opera-

tion on two or more cores, the cache line gets copied 

like in a ping-pong game between the different cores of 

the processor through the memory bus (Akhter and 

Roberts 2006). 

One of the causes of cache line ping-pong is false shar-

ing. Since the cache line is the smallest storage unit in 

data transfer through the memory bus, multiple hard-

ware threads have often a local copy of exactly the same 

cache line. This does not represent an issue when only a 

reading access is performed on the cache-line, but is 

very critical on write operations (Gleim and Schüle 

2012).  

Although, in false sharing each hardware thread works 

in disjoint memory positions on their own copy of the 

cache line, all changes get invalidated in all copies to 

maintain the cache coherency (Gleim and Schüle 2012). 

Thus, the cache coherence protocol ensures that the 

cache line gets exchanged between the cores on every 

change of the cache line.  

For this purpose, the modified line has to be written 

back to the main memory, so it can be re-copied to all 

cache memories of the other hardware threads (Tian and 

Chiu-Pi Shih 2012). 

This sequence is shown with reference to (Tian and 

Chiu-Pi Shih 2012) in Figure 6: 

Two hardware threads, T1 and T2, load a cache line 

from the shared L2-cache in their own L1-cache. 

Thread T1 modifies a part of the cache line. This line 

gets invalidated by the cache coherency protocol and set 

to dirty (Tian and Chiu-Pi Shih 2012). Thread T2 wants 

to change an element in a disjoint memory location in 

the same copy of the cache line, but to maintain the 

cache coherency, the cache line from the core 0 is cop-

ied through the memory bus into the shared L2-cache. 

T2 loads the updated line from the L2-cache in its own 

L1-cache and writes its data into the memory location 

(Tian and Chiu-Pi Shih 2012). 

False sharing, therefore, strains the memory bus, alt-

hough looking at the source code no dependencies of 

the data can be seen at the first glance. 

Furthermore, the advantage of using the cache for fast 

data storage gets nullified, whereupon subsequently 

there is a substantial performance loss (Gove 2010). 

 

 

Figure 6: Visualization of the false sharing problem on 

a dual-core processor with shared L2-cache. 

 

4.2.1. Simulation 

In order to reproduce the false sharing problem, the cre-

ated threads have to share the same cache line but work 

in different memory locations. For this reason, the fol-

lowing scenario has been modelled: 

Several robots in a factory which are simulated by 

threads can only move in a rectilinear direction, which 

are controlled by an external program. This controlling 

Proceedings of the European Modeling and Simulation Symposium, 2016 
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

260



program fetches at certain intervals the current distance 

compared to the last measurement and stores for each 

robot the received data into disjoint memory locations 

into a random access container. In case of failure, these 

received values are used to reset all the robots back to 

their starting position, so the robots can proceed with 

their task again. 

The data type for the distance is int64_t which has the 

size of 8 bytes on the test system. The cache line size is 

64 bytes. Thus, up to 8 threads can work in the same 

cache line. 

 

4.2.2. Measurement Analysis 

In Table 2 a summary of the run-time behavior and the 

speedup can be found. The measured values show that 

the run-time increases linearly with the increasing num-

ber of threads, although the threads – of a semantic 

point of view – work on independent variables having 

write access to their memory locations. 

This worsening of the run-time is also shown in Figure 

7, in which on the horizontal axis the number of 

threads and the run-time in seconds on the vertical axis 

is plotted. 

 

 
Figure 7: Run-time behavior for the false sharing test 

scenario illustrated in a diagram. 

 

Table 2: Summary of results of the false sharing test 

Run-time behavior of the test scenario 

Threads Run-time [sec] Speedup 

0  0.0690473  1 

1  0.070049   0.98570001  

2  0.0820556   0.841469686  

4  0.151098   0.456970311  

7  0.203136   0.339906762  

8  0.234155   0.294878606  

10  0.277185   0.249101863  

20  0.484326   0.142563686  

 

4.2.3. Problem and Solution 

The biggest disadvantage with false sharing is that it is 

not easily recognizable at the first glance. Figure 8 

shows the measurement results of the Concurrency Vis-

ualizer. The profiler indicates that the program is up to 

72 % busy executing the program and the remaining 

20 % of the run-time is lost due to the console output 

through the main thread. Even further analysis with the 

Concurrency Visualizer still does not give any hints 

about false sharing. 

 

 

Figure 8: Results of the Concurrency Visualizer does 

not give any hints for false sharing. 

 

Therefore, there is still the possibility to make use of the 

so-called hardware performance counters which are 

supported by many modern processors. Using suitable 

tools like the Visual Studio profiling tools, this counter 

can be used to determine the amount of cache misses. A 

high value of cache misses indicates false sharing. 

The general solution for false sharing referring to the 

simulated test scenario is the following: 

The implemented example uses a container of type 

std::vector, in which each thread respectively robot has 

write access to an element in the container. But each 

element is not large enough to contain a whole cache 

line, which in turn results in the cache line being con-

stantly copied between the hardware threads on every 

change to preserve the cache coherency. For this reason, 

the software developer must take care of that each 

thread gets its own cache line for its changes (Gleim 

and Schüle 2012). 

The solution to fix this problem is illustrated in Figure 

9. In the implemented example, the basic data type of 

the container has been int64_t, which comprises 64 bits 

respectively 8 bytes on the test system. Since the test 

system has a cache line size of 64 bytes, to solve the 

problem we have to use the technique of spacing, in 

which we have to enlarge the container at least by a fac-

tor of 8. Thereafter, each thread can change an element 

with the multiplicative increment of 8 and with the as-

cending index of the threads. So the threads can access 

their own cache line without getting in conflict with the 

other threads. 

 

Proceedings of the European Modeling and Simulation Symposium, 2016 
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

261



 
Figure 9: One possible way to solve the false sharing 

problem by using the spacing technique. 

 

5. CONCLUSION 

The detailed problem analysis of the selected multi-core 

specific problems has on the one hand shown that the 

well-documented problems of the former multi-

processors are still applicable also for multi-core pro-

cessors. On the other hand, it has to be remarked that it 

is not sufficient to only know and avoid general prob-

lems such as deadlocks and race conditions. The soft-

ware developers need also to know about the processor, 

software and operating system used to avoid uncon-

scious performance bottlenecks. They have to be famil-

iar with modern parallel software development and 

must also have in-depth knowledge distributing tasks to 

multiple threads. Furthermore, the developers must be 

able to identify data dependencies and have to skillfully 

coordinate the involved threads by using appropriate 

synchronization techniques. The development trend of 

multi-core processors also shows that the number of 

such processors will increase further in the coming 

years. Thus, the developer must also learn to cope with 

this trend, so that the application does not only scale 

well with the problem size, but also with the increasing 

number of cores on such processors. 

REFERENCES 

Akhter S. and Roberts J. 2006. Multi-Core 

Programming: Increasing Performance through 

Software Multi-Threading. USA:Intel Press. 

Blumofe R. and Leiserson C., 1999. Scheduling 

multithreaded computations by work stealing. 

Journal of the ACM (JACM) 46:720-748. 

Duffy J., 2008. Concurrent Programming on Windows. 

Boston:Addison-Wesley. 

Gleim U. and Schüle T. 2012. Multicore-Software: 

Grundlagen, Architektur und Implementierung in 

C/C++, Java und C. dpunkt. Heidelberg:dpunkt. 

Gove D., 2010. Multicore Application Programming: 

For Windows, Linux, and Oracle Solaris. 

Crawfordsville:Addison-Wesley Professional. 

Hwu W.W., 2011. GPU Computing Gems, Volume 2. 

Boston:Elsevier. 

Rauber T. and Rünger G. 2012. Parallele 

Programmierung. Heidelberg:Springer-Verlag. 

Simple high resolution timer in C++ Available from 

https://gist.github.com/gongzhitaao/7062087 

[March 2015] 

Tanenbaum A.S., 2009. Moderne Betriebssysteme. 

München:Pearson Deutschland GmbH. 

Tian T. and Chiu-Pi Shih., 2012. Software Techniques 

for Shared-Cache Multi-Core Systems. Available 

from https://software.intel.com/en-

us/articles/software-techniques-for-shared-cache-

multi-core-systems [July 2015] 

Torrellas J., Lam H.S., Hennessy J.L., 1994. False 

sharing and spatial locality in multiprocessor 

caches. IEEE Trans. Comput. 43:651–663. 

Williams A., 2012. C++ Concurrency in Action: 

Practical Multithreading. Shelter Island:Manning. 

Yanyong Zhang Y., Franke H., Moreira J., 

Sivasubramaniam A., 2003. An integrated 

approach to parallel scheduling using gang-

scheduling, backfilling, and migration. IEEE 

Trans. Parallel Distrib. Syst. 14:236–247. 

 

 

 

Proceedings of the European Modeling and Simulation Symposium, 2016 
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

262


