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ABSTRACT 

This paper proposes the model of the High Level 

Parallel Compositions or CPANS (Acronym in Spanish) 

to communication patterns/interaction Pipeline and 

Binary Tree for implementing a sorting algorithm by 

Structured Parallel Programming approach based on the 
concept of Parallel Objects. The CPANS Pipeline and 

TreeDV are displayed using the paradigm of object 

orientation and sorting problem is solved using two 

different algorithms; it is using a pipeline process to sort 

a dataset in disordered (CPAN Pipe) and one that by 

quick sort uses a binary tree for the ordering of the same 

dataset disordered by divide and conquer technique 

(CPAN TreeDVQS).  Each proposal of CPAN contains 

a predefined set of restrictions of synchronization 

between processes (maximum parallelism, mutual 

exclusion and synchronization of producer-consumer 
type), and the use of synchronous, asynchronous and 

asynchronous future communication modes. Sorting 

algorithms, their design and implementation as CPANs 

and comparative performance metrics on a parallel 

machine 64 processors are shown. 

 

Keywords: CPAN Pipeline, CPAN Binary Tree, 

Structured Parallel Programming, Communication 

Patterns. 

 

1. INTRODUCTION 
At moment the construction of concurrent and parallel 

systems has less  restraints than ever, since the existence 

of parallel computation systems, more and more 

affordable, of high performance, or HPC (High 

Performance Computing) has brought to reality the 

possibility of obtaining a great efficiency in data 

processing without a great rise in prices. Even though, 

open problems that motivate research in this area still 

exist, efficient affordable parallel computing is a reality 

today. We are interested, in particular, to do research 

work that has to do with parallel applications that use 

predetermined communication patterns, among other 
component--software. At least, the following ones have 

currently been identified as important open problems: 

The lack of acceptance structured parallel programming 

environments of use to develop applications (Bacci and 

et-al 1999), The necessity to have patterns or High 

Level Parallel Compositions, the Determination of a 

complete set of patterns as well as of their semantics 

(Corradi, and Zambonelli, 1995), the adoption of an 

object-oriented approach (Corradi and Leonardi, 1991, 

Darlington 1993). The High Level Parallel 

Compositions or CPANs are parallel patterns defined 

and logically structured that,  once identified in terms of 
their components and of their communication, can be 

adopted in the practice  and be available as high level 

abstractions in user applications within an OO-

programming environment (Rossainz 2005, Rossainz 

and Capel 2008). The process interconnection structures 

of most common parallel execution patterns, such as 

pipelines, farms and trees can be built using CPANs, 

within the work environment of Parallel Objects that is 

the one used to detail the structure of a CPAN 

implementation and to solve the problem of sorting. 

 

2. HIGH LEVEL PARALLEL COMPOSITIONS 

(CPAN) 

A CPAN comes from the composition of a set three 

object types: An object manager (Figure 1) that 

represents the CPAN itself and makes an encapsulated 

abstraction out of it that hides the internal structure. The 

object manager controls a set of objects references, 

which address the object Collector and several Stage 

objects and represent the CPAN components whose 

parallel execution is coordinated by the object manager. 

 

 
Figure 1: Component MANAGER of model CPAN 

 

The objects Stage (Figure 2) are objects of a specific 
purpose, in charge of encapsulating an client-server type 

interface that settles down between the manager and the 

slave-objects. These objects do not actively participate 

in the composition of the CPAN, but are considered 

external entities that contain the sequential algorithm 
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that constitutes the solution of a given problem. 

Additionally, they provide the necessary inter-

connection to implement the semantics of the 

communication pattern which definition is sought. In 

other words, each stage should act a node of the graph 

representing the pattern that operates in parallel with the 
other nodes. Depending on the particular pattern that the 

implemented CPAN follows, any stage of it can be 

directly connected to the manager and/or to the other 

component stages. 

 

 
Figure 2: Component Stage of model CPAN and its 

associated slave object 

 

The Collector object (Figure 3) we can see an object in 
charge of storing the results received from the stage 

objects to which is connected, in parallel with other 

objects of CPAN composition. That is to say, during a 

service request the control flow within the stages of a 

CPAN depends on the implemented communication 

pattern. When the composition finishes its execution, 

the result does not return to the manager directly, but 

rather to an instance of the Collector class that is in 

charge of storing these results and sending them to the 

manager, which will finally send the results to the 

environment, which in its turn sends them to a collector 
object as soon as they arrive, without being necessary to 

wait for all the results that are being obtained. 

 

 
Figure 3: Component Collector of model CPAN 

 

In summary, a CPAN is composed of an object manager 

that represents the CPAN itself, some stage objects and 

an object of the class Collector, for each petition that 

should be managed within the CPAN. Also, for each 

stage, a slave object will be in charge of implementing 

the necessary functionalities to solve the sequential 

version of the problem being solved (Figure 4). For 

details CPAN model, see (Rossainz and Capel 2014). 

 

 
Figure 4: Internal structure of CPAN. Composition of 

its components 

 

The Figure 4 shows the pattern CPAN in general, 

without defining any explicit parallel communication 
pattern. The box that includes the components, 

represents the encapsulated CPAN, internal boxes 

represent compound objects (collector, manager and 

objects stages), as long as the circles are the objects 

slaves associated to the stages. The continuous lines 

within the CPAN suppose that at least a connection 

should exist between the manager and some of the 

component stages. Same thing happens between the 

stages and the collector. The dotted lines mean more 

than one connection among components of the CPAN. 

 

2.1. The CPAN seen as composition of parallel 

objects 

Manager, collector and stages are included in the 

definition of a Parallel Object (PO), (Corradi 1991). 

Parallel Objects are active objects, which is equivalent 

to say that these objects have intrinsic execution 

capability (Corradi 1991). Applications that deploy the 

PO pattern can exploit the inter-object parallelism as 

much as the internal or intra-object parallelism. A PO-

instance object has a similar structure to that of an 

object in Smalltalk, and additionally defines a 

scheduling politics, previously determined that specifies 
the way in which one or more operations carried out by 

the instance synchronize (Danelutto and Orlando 1995, 

Corradi 1991). Synchronization policies are expressed 

in terms of restrictions; for instance, mutual exclusion 

in reader/writer processes or the maximum parallelism 

allowed for writer processes. Thus, all the parallel 

objects derive from the classic definition of a class plus 

the synchronization restrictions (mutual exclusion and 

maximum parallelism), which are now included in that 

definition (Birrel 1989). Objects of the same class share 

the specification contained in the class of which are 

instances. The inheritance allows objects to derive a 
new specification from the one that already exists in the 

super-class. Parallel objects support multiple inheritance 

in the CPAN model. 
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2.2. Communication types in the parallel objects of 

CPAN 

Parallel objects define 3 communication modes: 

synchronous, asynchronous communication and 

synchronous future communication. 

1. The synchronous communication mode stops the 
client activity until it receives the answer of its 

request from the active server object (Andrews 

2000).  

2. The asynchronous communication does not delay 

the client activity. The client simply sends the 

request to the active object server and its execution 

continues afterwards. Its use in application 

programming is also easy, because it is only 

necessary to create a thread and start it to carry out 

the communication independently from the client 

(Andrews 2000). 

3. The asynchronous future will delay client activity 
when the method's result is reached in the client's 

code to evaluate an expression. The asynchronous 

futures also have a simple use, though its 

implementation requires of a special care to get a 

syntactical construct with the correct required 

semantics. For details see (Lavander and Kafura 

1995).  

The asynchronous and asynchronous future 

communication modes carry out the inter-objects 

parallelism by executing the client and server objects at 

the same time. 
 

2.3. The base classes of any CPAN 

As it has already been described, a CPAN comes from 

the composition of a set of objects of three types. In 

particular, each CPAN is made up of several objects: an 

object manager, some stage objects and a collector 

object for each request sent by client objects of the 

CPAN. Also, for each stage of the CPAN, a slave object 

will be in charge of implementing the sequential part of 

the computation that is sought and carried out in the 

application or in the distributed and parallel algorithm. 

In PO the necessary base classes to define the manager, 
collector, stages objects that compose a CPAN - the 

implementation details are in (Rossainz, Pineda and 

Domínguez 2014) - are the next ones: 

1. Abstract class ComponentManager: It defines the 

generic structure of the component manager of a 

CPAN, from which will be derived all the manager 

instances depending on the parallel behavior that is 

assumed in the CPAN creation. All specific 

instances of a manager accept a list of n-

associations as input. An association is a pair of 

elements, that is, an object slave and the name of 
the method that has to be executed by this object. 

The objects slaves are external entities that contain 

a sequential algorithm that have to be executed by 

one of their methods. Once the manager has 

obtained the list of n-associations, it will generate 

the concrete stages, one for each association and 

then each stage becomes responsible for an object 

slave together with its execution method. In turn, 

each stage is connected to each other, in accordance 

with the parallel pattern that has been implemented 

in the CPAN. Finally, the manager carries out a 

computation by the execution of one of its methods. 

To achieve the computation phase, it is necessary to 

pass on the input data that it requires to start to the 
method. The manager then generates a component 

collector and sends its reference to the stages, as 

well as the input data. The stages start processing 

the data according to the connection configuration 

that they keep to each other, results will be passed 

on as they become available. At the end the 

collector will gather the results sent by the stages to 

return them to the manager, which finally will 

transfer these results to the CPAN environment or 

to the code that uses them. 

2. Abstract class ComponentStage: It defines the 

generic structure of the component stage of a 
CPAN, as well as their interconnections, from 

which will be derived all the concrete stages 

depending on the parallel behavior that is assumed 

in the creation of the CPAN. All specific instances 

of a stage accepts a list of associations slave-

object/method as input to work with them, whether 

they are connected or not with the following stage 

of the list of associations and depending on the 

parallel pattern they are willing to implement. 

When the manager send in parallel a command to 

the stages, each one of them makes the object-slave 
to carry out the execution of its method, then the 

stage captures the results and sends them to the 

following stage or to the collector, depending on 

the implemented structure. 

3. Concrete class ComponentCollector: It defines the 

concrete structure of the component collector of 

any CPAN. This component fundamentally 

implements a multi-item buffer, where it will store 

the results of stages that have the reference of this 

collector. This way one can obtain the result of the 

calculation initiated by the manager. 

 

2.4. The Synchronization restrictions of a CPAN 

It is necessary to have synchronization mechanisms 

available when parallel request of service take place in a 

CPAN, so that the objects that conform it can negotiate 

several execution flows concurrently and, at the same 

time, guarantee the consistency in the data that being 

processed. Within any CPAN the restrictions 

MAXPAR, MUTEX and SYNC can be used for correct 

programming of their methods. 

1. MAXPAR: The maximum parallelism or MaxPar is 

the maximum number of processes that can be 
executed at the same time. That is to say the 

MAXPAR applied to a function represents the 

maximum number of processes that can execute 

that function concurrently. In the case of CPAN, 

the maximum parallelism is applied to the functions 

of the ComponentManager class and to the 

functions of the ComponentStage class. 
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2. MUTEX: The restriction of synchronization mutex 

carries out a mutual exclusion among processes that 

want to access to a shared object. The mutex 

preserves critical sections of code and obtains 

exclusive access to the resources. In the case of the 

CPANs, the restriction mutex applied to a function 
represents the use of that function on the part of a 

process every time. In other words, the mutex 

allows that only one of the processes executes the 

function, blocking all the other processes trying to 

make use of the service until one of the ones that 

execute it finishes. The mutex within the CPAN is 

applied to the functions of an object collector. 

3. SYNC: The restriction SYNC is not more than a 

producer/consumer type of synchronization; it is of 

use, for instance, for programming the methods of 

the componentCollector class. SYNC helps to 

synchronize these methods when accessing the 
shared resource at the same time, which in this case 

is a multi-item list. 

The details of the algorithms and their implementation 

can be seen in (Rossainz, Pineda and Domínguez 2014). 

 

3. CONSTRUCTION OF A CPAN 

With the base-classes of the PO model of programming, 

it is now possible to build concrete CPANs. To build a 

CPAN, first it should have made clear the parallel 

behavior that the user application needs to implement, 

so that the CPAN becomes this pattern itself. Several 
parallel patterns of interaction have long been identified 

in Parallel Programming, such as farms, pipes, trees, 

cubes, meshes, a matrix of processes, etc. Once 

identified the parallel behavior, the second step consists 

of elaborating a graph of its representation, as an 

informal design of the objective system. This practice is 

also good for illustrating the general characteristics of 

the desired system and will allow us to define its 

representation with CPANs later on, by following the 

pattern proposed in the previous section. When the 

model of a CPAN has already been made clear, it 

defines a specific parallel pattern; let's say, for example, 
a tree, or some other mentioned pattern, and then the 

following step will be to do its syntactic definition and 

specify its semantics. Finally, the syntactic definition 

prior to any programmed CPAN is transformed into the 

most appropriate programming environment, with the 

objective of producing its parallel implementation. It 

must be verified that the resulting semantics is the 

correct one. To attain this, we use several different 

examples to demonstrate the generality and flexibility 

of the application CPAN-based design and the expected 

performance and quality as a software component. 
Some support from an integrated development 

environment (IDE) for Parallel Programming should be 

provided in order to validate the component 

satisfactorily. The parallel patterns worked in the 

present investigation have been the pipeline and the 

binary-tree to solve the sorting problem using two 

different algorithms. 

 

4. THE CPAN PIPELINE 

It is presented the technique of the parallel processing 

of the pipeline as a High Level Parallel Composition or 

CPAN, applicable to a wide range of problems that 

you/they are partially sequential in their nature. The 

CPAN Pipe guarantees the parallelization of sequential 
code using the pattern PipeLine. 

 

4.1. The technique of the Pipeline 

Using the technique of the Pipeline, the idea is to divide 

the problem in a series of tasks that have to be 

completed, one after another, see figure 5. In a pipeline 

each task can be executed by a process, thread or 

processor for separate (De Simone 1997, Robbins and 

Robbins 1999). 

 

 
Figure 5: Pipeline 

 

The processes of the pipeline are sometimes called 
stages of the pipeline (Roosta 1999). Each stage can 

contribute to the solution of the total problem and it can 

pass the information that is necessary to the following 

stage of the pipeline. This type of parallelism is seen 

many times as a form of functional decomposition. The 

problem is divided in separate functions that can be 

executed individually, but with this technique, the 

functions are executed in succession. 

The technique of parallel processing pipeline is then 

presented as a High Level Parallel Composition 

applicable to solving a range of problems that are 
partially sequential in nature, so that the Pipe CPAN 

guarantees code parallelization of sequential algorithm 

using the pattern Pipeline. 

 

4.2. Representation of the Pipeline as a CPAN 

The Figure 6 represents the parallel pattern of 

communication Pipeline as a CPAN. 

 

 
Figure 6:  The CPAN of a Pipeline 
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Once the objects are created and properly connected 

according to the parallel pattern Pipeline, then you have 

a CPAN for a specific type of parallel pattern, and can 

be resolved after the allocation of objects associated 

with slave stages. 

 

5. PARALLEL ALGORITHM SORTING WITH 

PIPELINE 

Using a PipeLine is useful to introduce a scheme of 

parallelization of a sorting algorithm, so that to solve 

the problem have to perform a series of operations on a 

data set. Each of these transactions is considered a stage 

in the data processing and each is executed by a 

separate process that synchronizes with the above 

processes and form respective next stage. The complete 

data processing ends when they have passed through 

every stage (Wilkinson and Allen M., 1999). 

Pipeline processing a serial data sequence they pass 
through the pipeline stages. Each stage is associated 

with a process that performs a specific operation when a 

fact comes through its associated slave object. 

Completed this operation, passes the result to the next 

stage. In a parallel sorting algorithm with a pipeline 3 

phases are distinguished (Barry and Allen 1999; 

Blelloch 1996; Roosta 1999): 

 The initial charge: data is allocated to all 
processes associated with the stages of the 
pipeline. In this phase the processes are running 
the same code in the second phase, the 
difference is that you must initialize properly to 
receive the first data, they will come from the 
previous stage or initial program load. 

 The processing of the data stream with 
maximum efficiency: Processes behave 
cyclically in execution. Data support the 
previous stage, process and send the result to 
the next stage. Each process has to be 
synchronized with that of the previous stage to 
not send new data when it has not yet finished 
processing the data streams; but also to the next 
step, to not send the result to the process of this 
stage is not ready to receive it. The final 
process has a special behavior with respect to 
the processes associated with the above steps as 
you have to run a routine or exit code and 
presentation of results of the program. Its 
operation is to obtain the data sent by the 
process of the last stage of the pipeline and 
send them to an output device or send a 
termination condition the main program. The 
series of results it produces the last process 
must match the expected result of the algorithm 
has been parallelized, if the pipeline has been 
successfully parallelized. 

 Download: In this last stage the processes send 
the result of the last processed data and 
themselves detect termination situation, as they 
will no longer receive more data from the input 
stream and should not pose any global control 
in the program tells them when they have 
finished. Processes for transmitting the data 
stored in its stages before completion, is usually 

introduced a special value at the end of the 
input sequence used to unload the pipeline. 

To implement the parallel sorting algorithm, a pipeline 

process is used, which receives an unordered set of 

integers by a routine or entry code. It is obtained as a 

result the ordered sequence of integers ascending. The 

number of values in the input sequence cannot be 

greater than the number of pipeline stages. Each 

pipeline processes can store an integer, which will be 
the largest that has been received so far from the 

previous step. In each iteration, a process receives a 

integer, compared to the one that had stored and sends 

the smaller of the next stage of the pipeline, while the 

highest is stored (Barry and Allen 1999; Blelloch 1996). 

For more details see (Rossainz, Capel and Domínguez 

2015). 

 

6. THE CPAN TREEDV 

The programming technique is presented it Divide and 

Conquer as a CPAN, applicable to a wide range of 
problems that can be parallelizable within this scheme, 

in particular to solve sorting problems in parallel 

(Rossainz and Capel 2012). 

6.1. The technique of the Divide and Conquer 

The technique of it Divide and Conquer it is 

characterized by the division of a problem in sub-

problems that have the same form that the complete 

problem (Brassard and Bartley 1997). The division of 

the problem in smaller sub-problems is carried out 

using the recursion. The method recursive continues 

dividing the problem until the parts divided can no 
longer follow dividing itself, and then they combine the 

partial results of each sub-problem to obtain at the end 

the solution to the initial problem (Brassard and Bartley 

1997). In this technique the division of the problem is 

always made in two parts, therefore a formulation 

recursive of the method Divide and Conquer form a 

binary tree whose nodes will be processors, processes or 

threads. 

 

 

Figure 7: Binary Tree 

 

The node root of the tree receives as input a complete 

problem that is divided in two parts. It is sent to the 

node left son, while the other is sent to the node that 

represents the right son (figure 7). This division process 
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is repeated of recursive form until the lowest levels in 

the tree. Lapsed a certain time, all the nodes leaf 

receives as input a problem given by its node father; 

they solve it and the solutions (that are the exit of the 

node leaf) are again correspondents to its progenitor. 

Any node father in the tree will obtain his children's two 
partial solutions and it will combine them to provide an 

only solution that will be the node father's exit. Finally 

the node root will give as exit the complete solution of 

the problem, (Brinch Hansen 1993). This way, while in 

a sequential implementation a single node of the tree 

can be executed or visited at the same time, in a parallel 

implementation, more than a node it can be executed at 

the same time in the different levels, it is, when dividing 

the problem in two sub-problems, both can be processed 

in a simultaneous way. 

 

6.2. Representation of the TreeDV as a CPAN 
The representation of the patron tree that defines the 

technique of it Divide and Conquer as CPAN has their 

model represented in figure 8. 

 

Figure 8: The Cpan of a TreeDV 

 

Contrary to the previous model, where the objects 

slaves were predetermined outside of the pattern CPAN, 

in this model an object slave is only predefined 

statically and associated to the first stage of the tree. 

The following objects slaves will be created internally 
by the own stages in a dynamic way, because the levels 

of the tree depend from the problem to solve and a 

priori the number of nodes that can have the tree is not 

known, neither its level of depth. 

6.3. Quicksort sorting algorithm using the CPAN 

TreeDV 

The Quicksort sorting was created by Hoare and is 

based on the paradigm of divide and conquer. As a first 

step the algorithm selects as a pivot one of the elements 

of the data set you have to order. The array is then 

partitioned on either side of the pivot: elements are 

moved so that those greater than the pivot are to its 

right, whereas the others are to its left. If now the 

sections of the array on either side of the pivot are 

sorted independently by recursive and parallel calls of 
the algorithm (Brassard and Bratley 1997), in this case 

through the stage TreeDV CPAN objects, the final 

result is a completely sorted array, no subsequent merge 

step being necessary. 

Algorithm QuickSort(T[ï,..j]) 

{ 

  var l; 

   if ( j-i  is sufficiently small then  insert(T[i..j]) ) 

  else { 

            l= pivot(T[i..j]); 

           QuickSort(T[i..l-1]); 

           QuickSort(T[l+1..j]); 
          } 

  } 

 

To balance the sizes of the two subinstances to be 

sorted, we would like to use the median element as the 

pivot. Unfortunately, finding the median takes more 

time it is worth. For this reason we simply use an 

arbitrary element of the array as the pivot, hoping for 

the best.  

 

Algorithm pivot(T[i..j]) 
  { 

    var l; 

     p=T[i];  k=i;  l=j+1; 

     repeat {  k=k+1;  }  until (  (T[k]>p)   or  ( k>=j) ); 

      repeat {   l=l-1;   }  until ( T[l]<=p ); 

      while ( k<l ) 

         { 

           swap(T[k],T[l]); 

            repeat {  k=k+1; }  until (  T[k]>p ); 

            repeat {  l=l-1;  }  until ( T[l]<=p ); 

         } 

      swap(T[i],T[l]); 
     return l; 

  } 

 

Suppose subarray T[i..j] is to be pivoted around p=T[i]. 

One good way of pivoting consists of scanning the 

subarray just once, but starting at both ends. Pointers k 

and l are initialized to i and j+1, respectively. Pointer k 

is then incremented until T[k]>p, and pointer I is 

decremented until T[l]<=p. Now T[k] and T[l] are 

interchanged. This process continues as long as k<l. 

Finally, T[i] and T[l] are interchanged to put the pivot 
in its correct position (Brassard and Bratley 1997). 

 

7. PERFORMANCE 

Performance analysis of CPANS Pipeline and TreeDV 

solving sorting problems are shown. The aim is to show 

that, at least for these problems, the performances 

obtained are "good" based on the model of the CPAN.  
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CpanPipe and CpanTreeDV performance to implement 

a parallel sorting algorithm was carried out on a parallel 

computer with 64 processors, 8 GB of main memory, 

high-speed buses and distributed shared memory 

architecture. Performance measures obtained in 

implementing the CpanPipe and CpanTreeDV that 
solves the problem of sorting using an Pipeline and 

Binary Tree respectively, is carried out with the 

following restrictions execution: 

 Parallel implementation of sequential sorting 
algorithm based on a pipeline in the case of 
CPAN Pipe and parallel-sequential 
implementation is Quicksort sorting algorithm 
based on a binary tree using the technique of 
Divide and Conquer for the case of 
CpanTreeDV. 

 In both cases, both the CPAN Pipe as CPAN 
TreeDV, it is implemented the same sequential 
algorithm of comparing values in each of the 
slave objects associated with the stages of 
CPANs. 

 50000 a set of whole numbers randomly 
obtained in the range of 0-50000 ordered, 
allowing make a sufficient charge for 
processors and thereby observe the 
performance improvement CpanPipe and 
TreeDV, 

 CpanPipe and CpanTreeDV execution for 2, 4, 
8, 16 and 32 full-time processors. 

 
The methodology that has been followed for the analysis 
of performance CPANS is: 
1. The CPANs Pipeline and TreeDV are compiled in 

their sequential and parallel versions and run on the 

corresponding cpuset, 

2. The following parameters of the execution 

performance of CPANs are measured. They show 

their behavior. 

2.1. Runtime of each CPAN, including its 
sequential version and measurement of page 

faults caused in the system during its 

execution. 

2.2. Cycles per instruction (CPI) for each CPAN, 

including sequential versions. 

2.3. Page faults caused during the execution of the 

CPANs. 

2.4. Magnitude speedup for each execution of the 

CPANs in Cpuset about their sequential 

versions. 

2.5. Upper bound of the magnitude speedup for 
each CPAN using Amdahl's law. 

 

Tables 1, 2 and figures 9, 10, show the series of 

measurements obtained including their corresponding 

sequential versions for Cpans Pipe and TreeDV, 

execution time in seconds, cycles per instruction 

executed, magnitude speedup found and the upper 
bound on the magnitude of speedup using for that 

Amdahl's law. 

 

 

Table 1: Cpan Perfomance Pipe Parallel to the 

Management of 50000 Sorting integers 

 

 

 
Figure 9: Scaling the magnitude of CpanPipe Speedup 

for 2, 4, 8, 16 and 32 exclusive processors 

 

Table 2: Cpan Perfomance Binary Tree Parallel to the 

Management of 50000 Sorting integers 

 

 

 

Figure 10: Scaling the magnitude of CpanTreeDV 

Speedup for 2, 4, 8, 16 and 32 exclusive processors 

 

The measurements obtained from page faults caused by 

the implementation of Pipeline and TreeDV CPANs 
shown in Table 3 and Figure 11. 

A measure page fault is useful to see if the CPANS 

cause excessive paging, especially if they use a lot of 

memory for execution, which has not been. 
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Table 3: Page faults in the execution of CPANs 

 

 

Figure 11: Equivalence of page faults in the execution 

of the CPANs 

 

Parallel executions of CPANS have a time shorter than 

the time used by their corresponding sequential 

versions, as expected. The execution times of their 

parallel versions CPANS improve as the number of 

processors is increased, ie, as is increasing the number 

of processors with which CPANS are executed, their 

execution times are decreasing. A value of the 
magnitude called speedup is appreciated ever upward 

on improving execution times of parallel CPANS 

respect to its sequential counterpart, but always below 

the levels of Amdahl's Law calculated, obtaining "good" 

yields. Improved CPI is obtained by increasing the 

number of processors, that is, a larger number of 

processors used in performing the CPANS, the lower 

the value of the ratio of cycles per instruction. This 

indicates that while the number of instructions in the 

execution of the application within cpusetX remains 

more or less constant, the number of cycles per 
instruction decreases, resulting in a gain in the final 

value of the CPI. 
 

8. CONCLUSIONS 

We have implemented communication patterns Pipeline 

and Binary Tree as CPANS and with them has solved 

the problem of sorting parallelizing two sequential 

algorithms different, it is using a pipeline process to sort 

a dataset in disordered and one that by quick sort uses a 

binary tree for the ordering of the same dataset 

disordered by divide and conquer technique. 

The implemented CPANS can be exploited, thanks to 

the adoption of the approach oriented to objects. Well-

known algorithms that solve sequential problems in 

algorithms parallelizable have transformed and with 
them the utility of CPANS has been proven. 

It has become a sequential sorting algorithm on a 

parallelizable algorithm using a Pipeline and a Binary 

Tree as CPAN. It has been proven performance Cpan 

Pipe and Cpan TreeDV by metrics Speedup, Amdahl's 

Law and efficiency to demonstrate that parallel 

behavior CpanPipe is better than its sequential 

counterpart. Furthermore the speedup TreeDVQS 

CPAN is much closer to the upper bound (Amdahl law) 

that the speedup obtained in CPAN Pipe. The runtime in 
seconds of CPAN TreeDV to solve the problem of 

sorting is much less than the CPAN Pipe that solves the 

same problem  with the same input size, according 

increase the number of processors. The same applies to 

the CPU time in the execution of those CPANS (see 

Table 1, 2 and Table 3). 
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