
USING PIPELINE AND BINARY-TREE AS CPANS FOR SOLVING THE SORTING

PROBLEM. A COMPARATIVE STUDY

M. Rossainz-López
(a)

, Manuel I. Capel
(b)

, O. Carrasco-Limón
(a)

, B. Sánchez-Rinza
(a)

(a) Faculty of Computer Science, Autonomous University of Puebla, San Claudio Avenue and South 14th Street,

San Manuel, Puebla, Puebla, 72000, México
(b) Software Engineering Department, College of Informatics and Telecommunications ETSIIT,

University of Granada, Daniel Saucedo Aranda s/n, Granada 18071, Spain

(a)rossainz@cs.buap.mx, (b)manuelcapel@ugr.es, (a) odondavidcarrasco95@gmail.com, (a)brinza@hotmail.com

ABSTRACT

This paper proposes the model of the High Level

Parallel Compositions or CPANS (Acronym in Spanish)

to communication patterns/interaction Pipeline and

Binary Tree for implementing a sorting algorithm by

Structured Parallel Programming approach based on the
concept of Parallel Objects. The CPANS Pipeline and

TreeDV are displayed using the paradigm of object

orientation and sorting problem is solved using two

different algorithms; it is using a pipeline process to sort

a dataset in disordered (CPAN Pipe) and one that by

quick sort uses a binary tree for the ordering of the same

dataset disordered by divide and conquer technique

(CPAN TreeDVQS). Each proposal of CPAN contains

a predefined set of restrictions of synchronization

between processes (maximum parallelism, mutual

exclusion and synchronization of producer-consumer
type), and the use of synchronous, asynchronous and

asynchronous future communication modes. Sorting

algorithms, their design and implementation as CPANs

and comparative performance metrics on a parallel

machine 64 processors are shown.

Keywords: CPAN Pipeline, CPAN Binary Tree,

Structured Parallel Programming, Communication

Patterns.

1. INTRODUCTION
At moment the construction of concurrent and parallel

systems has less restraints than ever, since the existence

of parallel computation systems, more and more

affordable, of high performance, or HPC (High

Performance Computing) has brought to reality the

possibility of obtaining a great efficiency in data

processing without a great rise in prices. Even though,

open problems that motivate research in this area still

exist, efficient affordable parallel computing is a reality

today. We are interested, in particular, to do research

work that has to do with parallel applications that use

predetermined communication patterns, among other
component--software. At least, the following ones have

currently been identified as important open problems:

The lack of acceptance structured parallel programming

environments of use to develop applications (Bacci and

et-al 1999), The necessity to have patterns or High

Level Parallel Compositions, the Determination of a

complete set of patterns as well as of their semantics

(Corradi, and Zambonelli, 1995), the adoption of an

object-oriented approach (Corradi and Leonardi, 1991,

Darlington 1993). The High Level Parallel

Compositions or CPANs are parallel patterns defined

and logically structured that, once identified in terms of
their components and of their communication, can be

adopted in the practice and be available as high level

abstractions in user applications within an OO-

programming environment (Rossainz 2005, Rossainz

and Capel 2008). The process interconnection structures

of most common parallel execution patterns, such as

pipelines, farms and trees can be built using CPANs,

within the work environment of Parallel Objects that is

the one used to detail the structure of a CPAN

implementation and to solve the problem of sorting.

2. HIGH LEVEL PARALLEL COMPOSITIONS

(CPAN)

A CPAN comes from the composition of a set three

object types: An object manager (Figure 1) that

represents the CPAN itself and makes an encapsulated

abstraction out of it that hides the internal structure. The

object manager controls a set of objects references,

which address the object Collector and several Stage

objects and represent the CPAN components whose

parallel execution is coordinated by the object manager.

Figure 1: Component MANAGER of model CPAN

The objects Stage (Figure 2) are objects of a specific
purpose, in charge of encapsulating an client-server type

interface that settles down between the manager and the

slave-objects. These objects do not actively participate

in the composition of the CPAN, but are considered

external entities that contain the sequential algorithm

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

1

mailto:rossainz@cs.buap.mx
mailto:manuelcapel@ugr.es
mailto:ipineda@cs.buap.mx

that constitutes the solution of a given problem.

Additionally, they provide the necessary inter-

connection to implement the semantics of the

communication pattern which definition is sought. In

other words, each stage should act a node of the graph

representing the pattern that operates in parallel with the
other nodes. Depending on the particular pattern that the

implemented CPAN follows, any stage of it can be

directly connected to the manager and/or to the other

component stages.

Figure 2: Component Stage of model CPAN and its

associated slave object

The Collector object (Figure 3) we can see an object in
charge of storing the results received from the stage

objects to which is connected, in parallel with other

objects of CPAN composition. That is to say, during a

service request the control flow within the stages of a

CPAN depends on the implemented communication

pattern. When the composition finishes its execution,

the result does not return to the manager directly, but

rather to an instance of the Collector class that is in

charge of storing these results and sending them to the

manager, which will finally send the results to the

environment, which in its turn sends them to a collector
object as soon as they arrive, without being necessary to

wait for all the results that are being obtained.

Figure 3: Component Collector of model CPAN

In summary, a CPAN is composed of an object manager

that represents the CPAN itself, some stage objects and

an object of the class Collector, for each petition that

should be managed within the CPAN. Also, for each

stage, a slave object will be in charge of implementing

the necessary functionalities to solve the sequential

version of the problem being solved (Figure 4). For

details CPAN model, see (Rossainz and Capel 2014).

Figure 4: Internal structure of CPAN. Composition of

its components

The Figure 4 shows the pattern CPAN in general,

without defining any explicit parallel communication
pattern. The box that includes the components,

represents the encapsulated CPAN, internal boxes

represent compound objects (collector, manager and

objects stages), as long as the circles are the objects

slaves associated to the stages. The continuous lines

within the CPAN suppose that at least a connection

should exist between the manager and some of the

component stages. Same thing happens between the

stages and the collector. The dotted lines mean more

than one connection among components of the CPAN.

2.1. The CPAN seen as composition of parallel

objects

Manager, collector and stages are included in the

definition of a Parallel Object (PO), (Corradi 1991).

Parallel Objects are active objects, which is equivalent

to say that these objects have intrinsic execution

capability (Corradi 1991). Applications that deploy the

PO pattern can exploit the inter-object parallelism as

much as the internal or intra-object parallelism. A PO-

instance object has a similar structure to that of an

object in Smalltalk, and additionally defines a

scheduling politics, previously determined that specifies
the way in which one or more operations carried out by

the instance synchronize (Danelutto and Orlando 1995,

Corradi 1991). Synchronization policies are expressed

in terms of restrictions; for instance, mutual exclusion

in reader/writer processes or the maximum parallelism

allowed for writer processes. Thus, all the parallel

objects derive from the classic definition of a class plus

the synchronization restrictions (mutual exclusion and

maximum parallelism), which are now included in that

definition (Birrel 1989). Objects of the same class share

the specification contained in the class of which are

instances. The inheritance allows objects to derive a
new specification from the one that already exists in the

super-class. Parallel objects support multiple inheritance

in the CPAN model.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

2

2.2. Communication types in the parallel objects of

CPAN

Parallel objects define 3 communication modes:

synchronous, asynchronous communication and

synchronous future communication.

1. The synchronous communication mode stops the
client activity until it receives the answer of its

request from the active server object (Andrews

2000).

2. The asynchronous communication does not delay

the client activity. The client simply sends the

request to the active object server and its execution

continues afterwards. Its use in application

programming is also easy, because it is only

necessary to create a thread and start it to carry out

the communication independently from the client

(Andrews 2000).

3. The asynchronous future will delay client activity
when the method's result is reached in the client's

code to evaluate an expression. The asynchronous

futures also have a simple use, though its

implementation requires of a special care to get a

syntactical construct with the correct required

semantics. For details see (Lavander and Kafura

1995).

The asynchronous and asynchronous future

communication modes carry out the inter-objects

parallelism by executing the client and server objects at

the same time.

2.3. The base classes of any CPAN

As it has already been described, a CPAN comes from

the composition of a set of objects of three types. In

particular, each CPAN is made up of several objects: an

object manager, some stage objects and a collector

object for each request sent by client objects of the

CPAN. Also, for each stage of the CPAN, a slave object

will be in charge of implementing the sequential part of

the computation that is sought and carried out in the

application or in the distributed and parallel algorithm.

In PO the necessary base classes to define the manager,
collector, stages objects that compose a CPAN - the

implementation details are in (Rossainz, Pineda and

Domínguez 2014) - are the next ones:

1. Abstract class ComponentManager: It defines the

generic structure of the component manager of a

CPAN, from which will be derived all the manager

instances depending on the parallel behavior that is

assumed in the CPAN creation. All specific

instances of a manager accept a list of n-

associations as input. An association is a pair of

elements, that is, an object slave and the name of
the method that has to be executed by this object.

The objects slaves are external entities that contain

a sequential algorithm that have to be executed by

one of their methods. Once the manager has

obtained the list of n-associations, it will generate

the concrete stages, one for each association and

then each stage becomes responsible for an object

slave together with its execution method. In turn,

each stage is connected to each other, in accordance

with the parallel pattern that has been implemented

in the CPAN. Finally, the manager carries out a

computation by the execution of one of its methods.

To achieve the computation phase, it is necessary to

pass on the input data that it requires to start to the
method. The manager then generates a component

collector and sends its reference to the stages, as

well as the input data. The stages start processing

the data according to the connection configuration

that they keep to each other, results will be passed

on as they become available. At the end the

collector will gather the results sent by the stages to

return them to the manager, which finally will

transfer these results to the CPAN environment or

to the code that uses them.

2. Abstract class ComponentStage: It defines the

generic structure of the component stage of a
CPAN, as well as their interconnections, from

which will be derived all the concrete stages

depending on the parallel behavior that is assumed

in the creation of the CPAN. All specific instances

of a stage accepts a list of associations slave-

object/method as input to work with them, whether

they are connected or not with the following stage

of the list of associations and depending on the

parallel pattern they are willing to implement.

When the manager send in parallel a command to

the stages, each one of them makes the object-slave
to carry out the execution of its method, then the

stage captures the results and sends them to the

following stage or to the collector, depending on

the implemented structure.

3. Concrete class ComponentCollector: It defines the

concrete structure of the component collector of

any CPAN. This component fundamentally

implements a multi-item buffer, where it will store

the results of stages that have the reference of this

collector. This way one can obtain the result of the

calculation initiated by the manager.

2.4. The Synchronization restrictions of a CPAN

It is necessary to have synchronization mechanisms

available when parallel request of service take place in a

CPAN, so that the objects that conform it can negotiate

several execution flows concurrently and, at the same

time, guarantee the consistency in the data that being

processed. Within any CPAN the restrictions

MAXPAR, MUTEX and SYNC can be used for correct

programming of their methods.

1. MAXPAR: The maximum parallelism or MaxPar is

the maximum number of processes that can be
executed at the same time. That is to say the

MAXPAR applied to a function represents the

maximum number of processes that can execute

that function concurrently. In the case of CPAN,

the maximum parallelism is applied to the functions

of the ComponentManager class and to the

functions of the ComponentStage class.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

3

2. MUTEX: The restriction of synchronization mutex

carries out a mutual exclusion among processes that

want to access to a shared object. The mutex

preserves critical sections of code and obtains

exclusive access to the resources. In the case of the

CPANs, the restriction mutex applied to a function
represents the use of that function on the part of a

process every time. In other words, the mutex

allows that only one of the processes executes the

function, blocking all the other processes trying to

make use of the service until one of the ones that

execute it finishes. The mutex within the CPAN is

applied to the functions of an object collector.

3. SYNC: The restriction SYNC is not more than a

producer/consumer type of synchronization; it is of

use, for instance, for programming the methods of

the componentCollector class. SYNC helps to

synchronize these methods when accessing the
shared resource at the same time, which in this case

is a multi-item list.

The details of the algorithms and their implementation

can be seen in (Rossainz, Pineda and Domínguez 2014).

3. CONSTRUCTION OF A CPAN

With the base-classes of the PO model of programming,

it is now possible to build concrete CPANs. To build a

CPAN, first it should have made clear the parallel

behavior that the user application needs to implement,

so that the CPAN becomes this pattern itself. Several
parallel patterns of interaction have long been identified

in Parallel Programming, such as farms, pipes, trees,

cubes, meshes, a matrix of processes, etc. Once

identified the parallel behavior, the second step consists

of elaborating a graph of its representation, as an

informal design of the objective system. This practice is

also good for illustrating the general characteristics of

the desired system and will allow us to define its

representation with CPANs later on, by following the

pattern proposed in the previous section. When the

model of a CPAN has already been made clear, it

defines a specific parallel pattern; let's say, for example,
a tree, or some other mentioned pattern, and then the

following step will be to do its syntactic definition and

specify its semantics. Finally, the syntactic definition

prior to any programmed CPAN is transformed into the

most appropriate programming environment, with the

objective of producing its parallel implementation. It

must be verified that the resulting semantics is the

correct one. To attain this, we use several different

examples to demonstrate the generality and flexibility

of the application CPAN-based design and the expected

performance and quality as a software component.
Some support from an integrated development

environment (IDE) for Parallel Programming should be

provided in order to validate the component

satisfactorily. The parallel patterns worked in the

present investigation have been the pipeline and the

binary-tree to solve the sorting problem using two

different algorithms.

4. THE CPAN PIPELINE

It is presented the technique of the parallel processing

of the pipeline as a High Level Parallel Composition or

CPAN, applicable to a wide range of problems that

you/they are partially sequential in their nature. The

CPAN Pipe guarantees the parallelization of sequential
code using the pattern PipeLine.

4.1. The technique of the Pipeline

Using the technique of the Pipeline, the idea is to divide

the problem in a series of tasks that have to be

completed, one after another, see figure 5. In a pipeline

each task can be executed by a process, thread or

processor for separate (De Simone 1997, Robbins and

Robbins 1999).

Figure 5: Pipeline

The processes of the pipeline are sometimes called
stages of the pipeline (Roosta 1999). Each stage can

contribute to the solution of the total problem and it can

pass the information that is necessary to the following

stage of the pipeline. This type of parallelism is seen

many times as a form of functional decomposition. The

problem is divided in separate functions that can be

executed individually, but with this technique, the

functions are executed in succession.

The technique of parallel processing pipeline is then

presented as a High Level Parallel Composition

applicable to solving a range of problems that are
partially sequential in nature, so that the Pipe CPAN

guarantees code parallelization of sequential algorithm

using the pattern Pipeline.

4.2. Representation of the Pipeline as a CPAN

The Figure 6 represents the parallel pattern of

communication Pipeline as a CPAN.

Figure 6: The CPAN of a Pipeline

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

4

Once the objects are created and properly connected

according to the parallel pattern Pipeline, then you have

a CPAN for a specific type of parallel pattern, and can

be resolved after the allocation of objects associated

with slave stages.

5. PARALLEL ALGORITHM SORTING WITH

PIPELINE

Using a PipeLine is useful to introduce a scheme of

parallelization of a sorting algorithm, so that to solve

the problem have to perform a series of operations on a

data set. Each of these transactions is considered a stage

in the data processing and each is executed by a

separate process that synchronizes with the above

processes and form respective next stage. The complete

data processing ends when they have passed through

every stage (Wilkinson and Allen M., 1999).

Pipeline processing a serial data sequence they pass
through the pipeline stages. Each stage is associated

with a process that performs a specific operation when a

fact comes through its associated slave object.

Completed this operation, passes the result to the next

stage. In a parallel sorting algorithm with a pipeline 3

phases are distinguished (Barry and Allen 1999;

Blelloch 1996; Roosta 1999):

 The initial charge: data is allocated to all
processes associated with the stages of the
pipeline. In this phase the processes are running
the same code in the second phase, the
difference is that you must initialize properly to
receive the first data, they will come from the
previous stage or initial program load.

 The processing of the data stream with
maximum efficiency: Processes behave
cyclically in execution. Data support the
previous stage, process and send the result to
the next stage. Each process has to be
synchronized with that of the previous stage to
not send new data when it has not yet finished
processing the data streams; but also to the next
step, to not send the result to the process of this
stage is not ready to receive it. The final
process has a special behavior with respect to
the processes associated with the above steps as
you have to run a routine or exit code and
presentation of results of the program. Its
operation is to obtain the data sent by the
process of the last stage of the pipeline and
send them to an output device or send a
termination condition the main program. The
series of results it produces the last process
must match the expected result of the algorithm
has been parallelized, if the pipeline has been
successfully parallelized.

 Download: In this last stage the processes send
the result of the last processed data and
themselves detect termination situation, as they
will no longer receive more data from the input
stream and should not pose any global control
in the program tells them when they have
finished. Processes for transmitting the data
stored in its stages before completion, is usually

introduced a special value at the end of the
input sequence used to unload the pipeline.

To implement the parallel sorting algorithm, a pipeline

process is used, which receives an unordered set of

integers by a routine or entry code. It is obtained as a

result the ordered sequence of integers ascending. The

number of values in the input sequence cannot be

greater than the number of pipeline stages. Each

pipeline processes can store an integer, which will be
the largest that has been received so far from the

previous step. In each iteration, a process receives a

integer, compared to the one that had stored and sends

the smaller of the next stage of the pipeline, while the

highest is stored (Barry and Allen 1999; Blelloch 1996).

For more details see (Rossainz, Capel and Domínguez

2015).

6. THE CPAN TREEDV

The programming technique is presented it Divide and

Conquer as a CPAN, applicable to a wide range of
problems that can be parallelizable within this scheme,

in particular to solve sorting problems in parallel

(Rossainz and Capel 2012).

6.1. The technique of the Divide and Conquer

The technique of it Divide and Conquer it is

characterized by the division of a problem in sub-

problems that have the same form that the complete

problem (Brassard and Bartley 1997). The division of

the problem in smaller sub-problems is carried out

using the recursion. The method recursive continues

dividing the problem until the parts divided can no
longer follow dividing itself, and then they combine the

partial results of each sub-problem to obtain at the end

the solution to the initial problem (Brassard and Bartley

1997). In this technique the division of the problem is

always made in two parts, therefore a formulation

recursive of the method Divide and Conquer form a

binary tree whose nodes will be processors, processes or

threads.

Figure 7: Binary Tree

The node root of the tree receives as input a complete

problem that is divided in two parts. It is sent to the

node left son, while the other is sent to the node that

represents the right son (figure 7). This division process

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

5

is repeated of recursive form until the lowest levels in

the tree. Lapsed a certain time, all the nodes leaf

receives as input a problem given by its node father;

they solve it and the solutions (that are the exit of the

node leaf) are again correspondents to its progenitor.

Any node father in the tree will obtain his children's two
partial solutions and it will combine them to provide an

only solution that will be the node father's exit. Finally

the node root will give as exit the complete solution of

the problem, (Brinch Hansen 1993). This way, while in

a sequential implementation a single node of the tree

can be executed or visited at the same time, in a parallel

implementation, more than a node it can be executed at

the same time in the different levels, it is, when dividing

the problem in two sub-problems, both can be processed

in a simultaneous way.

6.2. Representation of the TreeDV as a CPAN
The representation of the patron tree that defines the

technique of it Divide and Conquer as CPAN has their

model represented in figure 8.

Figure 8: The Cpan of a TreeDV

Contrary to the previous model, where the objects

slaves were predetermined outside of the pattern CPAN,

in this model an object slave is only predefined

statically and associated to the first stage of the tree.

The following objects slaves will be created internally
by the own stages in a dynamic way, because the levels

of the tree depend from the problem to solve and a

priori the number of nodes that can have the tree is not

known, neither its level of depth.

6.3. Quicksort sorting algorithm using the CPAN

TreeDV

The Quicksort sorting was created by Hoare and is

based on the paradigm of divide and conquer. As a first

step the algorithm selects as a pivot one of the elements

of the data set you have to order. The array is then

partitioned on either side of the pivot: elements are

moved so that those greater than the pivot are to its

right, whereas the others are to its left. If now the

sections of the array on either side of the pivot are

sorted independently by recursive and parallel calls of
the algorithm (Brassard and Bratley 1997), in this case

through the stage TreeDV CPAN objects, the final

result is a completely sorted array, no subsequent merge

step being necessary.

Algorithm QuickSort(T[ï,..j])

{

 var l;

 if (j-i is sufficiently small then insert(T[i..j]))

 else {

 l= pivot(T[i..j]);

 QuickSort(T[i..l-1]);

 QuickSort(T[l+1..j]);
 }

 }

To balance the sizes of the two subinstances to be

sorted, we would like to use the median element as the

pivot. Unfortunately, finding the median takes more

time it is worth. For this reason we simply use an

arbitrary element of the array as the pivot, hoping for

the best.

Algorithm pivot(T[i..j])
 {

 var l;

 p=T[i]; k=i; l=j+1;

 repeat { k=k+1; } until ((T[k]>p) or (k>=j));

 repeat { l=l-1; } until (T[l]<=p);

 while (k<l)

 {

 swap(T[k],T[l]);

 repeat { k=k+1; } until (T[k]>p);

 repeat { l=l-1; } until (T[l]<=p);

 }

 swap(T[i],T[l]);
 return l;

 }

Suppose subarray T[i..j] is to be pivoted around p=T[i].

One good way of pivoting consists of scanning the

subarray just once, but starting at both ends. Pointers k

and l are initialized to i and j+1, respectively. Pointer k

is then incremented until T[k]>p, and pointer I is

decremented until T[l]<=p. Now T[k] and T[l] are

interchanged. This process continues as long as k<l.

Finally, T[i] and T[l] are interchanged to put the pivot
in its correct position (Brassard and Bratley 1997).

7. PERFORMANCE

Performance analysis of CPANS Pipeline and TreeDV

solving sorting problems are shown. The aim is to show

that, at least for these problems, the performances

obtained are "good" based on the model of the CPAN.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

6

CpanPipe and CpanTreeDV performance to implement

a parallel sorting algorithm was carried out on a parallel

computer with 64 processors, 8 GB of main memory,

high-speed buses and distributed shared memory

architecture. Performance measures obtained in

implementing the CpanPipe and CpanTreeDV that
solves the problem of sorting using an Pipeline and

Binary Tree respectively, is carried out with the

following restrictions execution:

 Parallel implementation of sequential sorting
algorithm based on a pipeline in the case of
CPAN Pipe and parallel-sequential
implementation is Quicksort sorting algorithm
based on a binary tree using the technique of
Divide and Conquer for the case of
CpanTreeDV.

 In both cases, both the CPAN Pipe as CPAN
TreeDV, it is implemented the same sequential
algorithm of comparing values in each of the
slave objects associated with the stages of
CPANs.

 50000 a set of whole numbers randomly
obtained in the range of 0-50000 ordered,
allowing make a sufficient charge for
processors and thereby observe the
performance improvement CpanPipe and
TreeDV,

 CpanPipe and CpanTreeDV execution for 2, 4,
8, 16 and 32 full-time processors.

The methodology that has been followed for the analysis
of performance CPANS is:
1. The CPANs Pipeline and TreeDV are compiled in

their sequential and parallel versions and run on the

corresponding cpuset,

2. The following parameters of the execution

performance of CPANs are measured. They show

their behavior.

2.1. Runtime of each CPAN, including its
sequential version and measurement of page

faults caused in the system during its

execution.

2.2. Cycles per instruction (CPI) for each CPAN,

including sequential versions.

2.3. Page faults caused during the execution of the

CPANs.

2.4. Magnitude speedup for each execution of the

CPANs in Cpuset about their sequential

versions.

2.5. Upper bound of the magnitude speedup for
each CPAN using Amdahl's law.

Tables 1, 2 and figures 9, 10, show the series of

measurements obtained including their corresponding

sequential versions for Cpans Pipe and TreeDV,

execution time in seconds, cycles per instruction

executed, magnitude speedup found and the upper
bound on the magnitude of speedup using for that

Amdahl's law.

Table 1: Cpan Perfomance Pipe Parallel to the

Management of 50000 Sorting integers

Figure 9: Scaling the magnitude of CpanPipe Speedup

for 2, 4, 8, 16 and 32 exclusive processors

Table 2: Cpan Perfomance Binary Tree Parallel to the

Management of 50000 Sorting integers

Figure 10: Scaling the magnitude of CpanTreeDV

Speedup for 2, 4, 8, 16 and 32 exclusive processors

The measurements obtained from page faults caused by

the implementation of Pipeline and TreeDV CPANs
shown in Table 3 and Figure 11.

A measure page fault is useful to see if the CPANS

cause excessive paging, especially if they use a lot of

memory for execution, which has not been.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

7

Table 3: Page faults in the execution of CPANs

Figure 11: Equivalence of page faults in the execution

of the CPANs

Parallel executions of CPANS have a time shorter than

the time used by their corresponding sequential

versions, as expected. The execution times of their

parallel versions CPANS improve as the number of

processors is increased, ie, as is increasing the number

of processors with which CPANS are executed, their

execution times are decreasing. A value of the
magnitude called speedup is appreciated ever upward

on improving execution times of parallel CPANS

respect to its sequential counterpart, but always below

the levels of Amdahl's Law calculated, obtaining "good"

yields. Improved CPI is obtained by increasing the

number of processors, that is, a larger number of

processors used in performing the CPANS, the lower

the value of the ratio of cycles per instruction. This

indicates that while the number of instructions in the

execution of the application within cpusetX remains

more or less constant, the number of cycles per
instruction decreases, resulting in a gain in the final

value of the CPI.

8. CONCLUSIONS

We have implemented communication patterns Pipeline

and Binary Tree as CPANS and with them has solved

the problem of sorting parallelizing two sequential

algorithms different, it is using a pipeline process to sort

a dataset in disordered and one that by quick sort uses a

binary tree for the ordering of the same dataset

disordered by divide and conquer technique.

The implemented CPANS can be exploited, thanks to

the adoption of the approach oriented to objects. Well-

known algorithms that solve sequential problems in

algorithms parallelizable have transformed and with
them the utility of CPANS has been proven.

It has become a sequential sorting algorithm on a

parallelizable algorithm using a Pipeline and a Binary

Tree as CPAN. It has been proven performance Cpan

Pipe and Cpan TreeDV by metrics Speedup, Amdahl's

Law and efficiency to demonstrate that parallel

behavior CpanPipe is better than its sequential

counterpart. Furthermore the speedup TreeDVQS

CPAN is much closer to the upper bound (Amdahl law)

that the speedup obtained in CPAN Pipe. The runtime in
seconds of CPAN TreeDV to solve the problem of

sorting is much less than the CPAN Pipe that solves the

same problem with the same input size, according

increase the number of processors. The same applies to

the CPU time in the execution of those CPANS (see

Table 1, 2 and Table 3).

REFERENCES

Andrews G.R., 2000. Foundations of Multithreaded,

Parallel, and Distributed Programming, Addison-

Wesley

Brassard G., Bratley P., 1997. Fundamentos de
Algoritmia, Prentice-Hall. 1997.

Bacci, Danelutto, Pelagatti, Vaneschi, 1999. SklE: A

Heterogeneous Environment for HPC

Applications. Parallel Computing 25.

Birrell, Andrew, 1989. An Introduction to programming

with threads. Digital Equipment Corporation,

Systems Research Center.

Blelloch, Guy E., 1996. Programming Parallel

Algorithms. Comunications of the ACM. Volume

39, Number 3.

Brinch Hansen, 1993. Model Programs for
Computational Science: A programming

methodology for multicomputers, Concurrency:

Practice and Experience, Volume 5, Number 5.

Barry W., Allen M., 1999. Parallel Programming.

Techniques and Applications Using Networked

Workstations and Parallel Computers. Prentice

Hall. ISBN 0-13-671710-1.

Corradi A., Leonardi L., 1991. PO Constraints as tools

to synchronize active objects. Journal Object

Oriented Programming 10, pp. 42-53.

Corradi A, Leonardo L, Zambonelli F., 1995.

Experiences toward an Object-Oriented Approach
to Structured Parallel Programming. DEIS

technical report no. DEIS-LIA-95-007.

Danelutto, M.; Orlando, S; et al., 1995. Parallel

Programming Models Based on Restricted

Computation Structure Approach. Technical

Report-Dpt. Informatica. Universitá de Pisa.

Darlington et al., 1993, Parallel Programming Using

Skeleton Functions. Proceedings PARLE’93,

Munich (D).

De Simone, et al. 1997. Designs Patterns for Parallel

Programming. PDPTA International Conference.
Lavander G.R., Kafura D.G. 1995. A Polimorphic

Future and First-class Function Type for

Concurrent Object-Oriented Programming.

Journal of Object-Oriented Systems.

http://citeseerx.ist.psu.edu/viewdoc/download?doi

=10.1.1.477.7088&rep=rep1&type=pdf

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

8

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.7088&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.7088&rep=rep1&type=pdf

Robbins, K. A., Robbins S. 1999. “UNIX Programación

Práctica. Guía para la concurrencia, la

comunicación y los multihilos”. Prentice Hall.

Roosta, Séller, 1999. Parallel Processing and Parallel

Algorithms. Theory and Computation. Springer.

Rossainz, M., 2005. Una Metodología de Programación
Basada en Composiciones Paralelas de Alto Nivel

(CPANs). Universidad de Granada, PhD

dissertation, 02/25/2005.

Rossainz, M., Capel M., 2008. A Parallel Programming

Methodology using Communication Patterns

named CPANS or Composition of Parallel Object.

20TH European Modeling & Simulation

Symposium.Campora S. Giovanni. Italy.

Rossainz, M., Capel M., 2012. Compositions of Parallel

Objects to Implement Communication Patterns.

XXIII Jornadas de Paralelismo. SARTECO 2012.

Septiembre de 2012. Elche, España.
Rossainz M., Capel M., 2014. Approach class library of

high level parallel compositions to implements

communication patterns using structured parallel

programming. 26TH European Modeling &

Simulation Symposium.Campora Bordeaux,

France.

Rossainz M., Pineda I., Dominguez P., Análisis y

Definición del Modelo de las Composiciones

Paralelas de Alto Nivel llamadas CPANs. Modelos

Matemáticos y TIC: Teoría y Aplicaciones 2014.

Dirección de Fomento Editorial. ISBN 987-607-
487-834-9. Pp. 1-19. México.

Rossainz M, Capel M., Domínguez P., 2015. Pipeline as

high level parallel composition for the

implementation of a sorting algorithm. 27TH

European Modeling & Simulation

Symposium.Campora Bergeggi, Italy.

Wilkinson B., Allen M., 1999. Parallel Programming

Techniques and Applications Using Networked

Workstations and Parallel Computers. Prentice-

Hall. USA.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

9

