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ABSTRACT 

Many models and artificial intelligence methods work 

with the inputs in the form of time series. Success of 

many of them strongly depends on ability to quickly and 

precisely compare two time series or search the mutual 

parts.  Such ability is especially crucial while recognizing 

characteristic patterns, indexing, prediction or 

compression. There are many algorithms able to handle 

that, however, many of them fail while processing 

distorted data. Unfortunately, the distortion is natural for 

many types of data collections, e.g. for measurements of 

natural phenomena such as precipitations, river discharge 

volume etc. This paper discusses the possibilities of 

searching such common subsequences in time series and 

presents a new approach for searching the longest 

common subsequences in distorted data. This approach 

is based on modified the dynamic time warping 

algorithm, which allows the effective processing 

distorted time series data. 

 

Keywords: time series, dynamic time warping, longest 

common subsequence, distorted data 

 

1. INTRODUCTION 

Processing and analyzing time series data is very 

important task in many domains, especially in modeling 

and simulations. In this domain, time series data is often 

used as one of the simulation inputs, or can be produced 

as one of the simulation outputs. For this purpose, it is 

appropriate to be able to manage this type of data, e.g. 

describe the data nature, search in data in reasonable 

time, or to recognize characteristic patterns in a 

collection. Algorithms providing such functionality 

usually need a robust mechanism for comparing two time 

series or identifying their common parts (Kocyan, 

Martinovič, and Podhorányi, 2014). However, many of 

such mechanisms fail while processing distorted data 

(Muller 2007). Unfortunately, the distortion is natural for 

many types of data collections, e.g. for measurements of 

natural phenomena such as precipitations, river discharge 

volume etc. Moreover, methods searching the common 

subsequences are mostly focused only on processing 

categorical data. For processing the real data, they have 

to be modified (Esling and Agon 2012) or some kind of 

categorization (Lin, Keogh, Wei, and Lonardi 2007) has 

to be performed. 

This paper discusses the possibilities of searching 

such mutual subsequences in time series and presents a 

new approach for searching the longest common 

subsequences in distorted data. It is organized as follows: 

First, basic approaches for searching the mutual 

subsequences of categorical data are introduced in 

Section 2. Second, the DTW algorithm for comparing 

two distorted sequences will be described. In the 

Proposed solution, a new approach for searching the 

mutual subsequences in distorted data will be suggested. 

At the end, both advantages and disadvantages of the 

approach will be summarized and the future work will be 

outlined. 

 

2. COMPARISON OF SEQUENCES 

Sequence comparison is widely used in information 

retrieval and in molecular biology for calculating 

sequence alignments of proteins (Gusfiel 2008) where 

several algorithms and their modifications are presented. 

However, we can use these methods in other areas as 

well. There are two main basic groups of algorithms 

known for the comparison of two or more categorical 

sequences. The first group divides the algorithms by the 

fact of whether or not the sequences consist of ordered or 

unordered elements. The second group of algorithms 

focuses on the comparison of the sequences with 

different lengths and with possible error or distortion.  

2.1. The longest common substring 

The basic approach to the comparison of two sequences, 

in which the order of elements is important, is The 

longest common substring method (LCS). This is used in 

exact matching problems (Gusfiel 2008). It is obvious 

from the name of the method that its main principle is to 

find the length of the common longest substring. Given 

the two sequences 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) of the length 𝑛 ∈
ℕ and 𝑦 = (𝑦1 , 𝑦2, … , 𝑦𝑚) of the length 𝑚 ∈ ℕ, we can 

find such substring 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑝), ∀𝑘 ∈
{1, … , 𝑝}(𝑧𝑘 = 𝑥𝑖+𝑘−1 = 𝑦𝑗+𝑘−1), where 1 ≤ 𝑖 ≤ 𝑛 −

𝑝 + 1 and 1 ≤ 𝑗 ≤ 𝑚 − 𝑝 + 1. 

The LCS method respects the order of elements 

within a sequence. However, the main disadvantage of 

this method is that it can only find the identical 
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subsequences, which meet the characteristics of 

substrings. Precisely speaking, this means that the 

elements in the subsequence must be contiguous. For 

some domains, in which a large amount of different 

sequences typically exists, this fact gives too strict 

limitation to solved the problems.   

  

2.2. The Longest Common Subsequence 

Unlike substrings, the objects in a subsequence might be 

intermingled with other the objects that are not in the 

sequence. The longest common subsequence method 

(LCSS) allows us to find the common subsequence 

(Hirschberg 1977). Given the two sequences 𝑥 =
(𝑥1, 𝑥2, … , 𝑥𝑛) of the length 𝑛 ∈ ℕ and 𝑦 =
(𝑦1, 𝑦2, … , 𝑦𝑚) of the length 𝑚 ∈ ℕ, we can find the 

subsequence 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑝), ∀𝑘 ∈ {1, … , 𝑝}(𝑧𝑘 =

𝑥𝑖𝑘 = 𝑦𝑗𝑘), where 𝑖𝑘 < 𝑖𝑘+1 and 𝑗𝑘 < 𝑗𝑘+1. Contrary to 

the LCS method, the LCSS method allows (or ignores) 

these extra elements in the sequence, and therefore, it is 

immune to slight distortions.  

 

2.3. The Time-Warped Longest Common 

Subsequence 

When the similarity between compared sequences is 

defined as a function using a length of common 

subsequence, one characteristic of this method can be 

found. The length of the common subsequence is not 

immune to the recurrence of the identical elements that 

may occur only in one of the compared sequences. We 

can find such situations as a result of inappropriate 

sampling or any kind of distortion. In some applications 

it is suitable (or sometimes even required) to eliminate 

such type of distortions and to work with them like with 

the equivalent elements. The solution is in another 

method, the time-warped longest common subsequence 

(TWLCS) Guo and Siegelmann (2004). This method 

emphasises the recurrence of elements in one of the 

compared sequences. Due to this fact, the length of the 

common subsequence can be, in some cases, longer than 

the shorter length of the compared sequences. 

 

2.4. Comparison of Real Time Series 

Our goal is to search continuous mutual subsequences in 

distorted real data. However, none of the previously 

mentioned methods can be directly applied, because they 

process only a categorical data. There are usually two 

ways how to adapt them for processing the real data as 

well: On the one hand, the data can be first categorized 

as in (Lin, Keogh, Wei, and Lonardi 2007), and then the 

known methods can be used. On the other hand, some 

kind of tolerance for equality between two values can be 

defined as in (Esling and Agon 2012). If such tolerance 

is not overcame, the values are considered as identical, 

i.e. belonging into the same category.  

Despite the fact there exists some ways how to adapt 

the methods, it usually brings an unnecessary 

inaccuracies. They are caused by the degradation real 

number fineness to an isolated category. We tried to 

avoid such loss of information while processing the real 

data, but maintain the main principles of searching   

subsequences. To deal with a possible distortion, we 

decided to modify the dynamic time warping algorithm 

introduced in the following section, and supplement it by 

useful steps from the previously mentioned methods. 

 

3. DYNAMIC TIME WARPING 

Nowadays, searching and comparing the time series 

databases generated by computers, which consists of 

accurate time cycles and which achieves a determined 

finite number of value levels, is a trivial problem. A main 

attention is focused more likely on the optimization of 

searching speed. A non-trivial task occurs while 

comparing or searching the signals, which are not strictly 

defined and which have various distortions in time and 

amplitude. As a typical example, we can mention 

measurement of functionality of human body (ECG, 

EEG) or the elements (precipitation, flow rates in 

riverbeds), in which does not exist an accurate timing for 

signal generation. Therefore, comparison of such 

sequences is significantly difficult, and almost excluded 

while using standard functions for similarity (distance) 

computation. Examples of such signals are presented in 

Figure 1. A problem of standard functions for similarity 

(distance) computation consists in sequential comparison 

of the opposite elements in the both sequences 

(comparison of elements with the identical indexes).  

DTW is a technique for finding the optimal 

matching of two warped sequences using pre-defined 

rules (Muller 2007). This approach was used for example 

for comparison of two voice patterns during an automatic 

recognition of voice commands (Rabiner 1993).  

Essentially, it is a non-linear mapping of particular 

elements to match them in the most appropriate way. The 

output of such DTW mapping of sequences from 

Figure 1 can be seen in Figure 2.  

 

 

Figure 1: Standard Metrics Comparison 

 

 

Figure 2: DTW Comparison 

 

The main goal of DTW method is a comparison of two 

time dependent sequences x and y, where 𝑥 =
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(𝑥1, 𝑥2, … , 𝑥𝑛) of length 𝑛 ∈ ℕ and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑚) 
of length 𝑚 ∈ ℕ, and to find an optimal mapping of their 

elements. To compare partial elements of sequences 

𝑥𝑖 , 𝑦𝑗  ∈ ℝ, it is necessary to define a local cost measure 

𝑐: ℝ × ℝ → ℝ≥0, where 𝑐 is small if 𝑥 and 𝑦 is similar to 

each other, and otherwise it is large.  

Computation of the local cost measure for each pair 

of elements of sequences 𝑥 and 𝑦 results in a construction 

of the cost matrix 𝐶 ∈ ℝ𝑛×𝑚 defined by 𝐶(𝑖, 𝑗) =
𝑐(𝑥𝑖 , 𝑦𝑗) (see Fig. 3). Then the goal is to find an 

alignment between 𝑥 and 𝑦 with a minimal overall cost. 

Such optimal alignment leads through the black valleys 

of the cost matrix 𝐶, trying to avoid the white areas with 

a high cost. Such alignment is demonstrated in Fig 4. 

 

 
Figure 3: Cost Matrix 

 

 
Figure 4: Cost Matrix with Found Warping 

 

Basically, the alignment (called warping path) 𝑝 =
(𝑝1, … , 𝑝𝑞) is a sequence of 𝑞 pairs (warping path points) 

𝑝𝑘 = (𝑝𝑘𝑥 , 𝑝𝑘𝑦) ∈ {1, … , 𝑛} × {1, … ,𝑚}. Each of such 

pairs (𝑖, 𝑗) indicates an alignment between the 𝑖th 

element of the sequence 𝑥 and 𝑗th element of the 

sequence 𝑦. Moreover, the found warping path has to 

satisfy the following three conditions: 

1. Boundary condition:   

𝑝1 = (1,1) and 𝑝𝑞 = (𝑛,𝑚).  

2. Monotonicity condition:  

𝑝1𝑥 ≤ 𝑝2𝑥 ≤ ⋯ ≤ 𝑝𝑞𝑥 and   

𝑝1𝑦 ≤ 𝑝2𝑦 ≤ ⋯ ≤ 𝑝𝑞𝑦.  

3. Step size condition:   

𝑝𝑘+1 − 𝑝𝑘 ∈ {(1,0), (0,1), (1,1)}  
for 𝑘 ∈ {1, … , 𝑞 − 1}. 

 

The total cost 𝑐𝑝(𝑥, 𝑦) of the found warping path 𝑝 

between sequences 𝑥 and 𝑦 is then defined as a sum of 

partial local costs 𝑐: 

𝑐𝑝(𝑥, 𝑦) = ∑𝑐(𝑥𝑝𝑘𝑥 , 𝑦𝑝𝑘𝑦)

𝑞

𝑘=1

 

 

As an optimal warping path 𝑝∗ between 𝑥 and 𝑦, the 

warping path having minimal total cost among the set 𝑃 

of all possible warping paths is selected: 

  

𝑝∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑝∈𝑃

{𝑐𝑝(𝑥, 𝑦)} 

 

The DTW “distance” 𝐷𝑇𝑊(𝑥, 𝑦) between 𝑥 and 𝑦 is then 

defined as:  

𝐷𝑇𝑊(𝑥, 𝑦) = 𝑐𝑝∗  (𝑥, 𝑦) 

 

Retrieval of optimal path 𝑝∗ by evaluating all possible 

warping paths between sequences 𝑥 and 𝑦 leads to an 

exponential computational complexity. Fortunately, 

there exists a better way with a  𝑂(𝑛 ∗ 𝑚) complexity 

based on dynamic programming.  

For this purpose, we have to define a function 

𝑠𝑢𝑏𝑆𝑒𝑞: ℱ𝑛 × ℕ × ℕ → ℱ𝑚, where ℱ is a feature space 

and 𝑚 ≤ 𝑛, that creates a new subsequence from a given 

sequence that is defined as 𝑠𝑢𝑏𝑆𝑒𝑞(𝑥, 𝑎, 𝑏) =
(𝑥𝑎, 𝑥𝑎+1, … , 𝑥𝑏), where 𝑎 ≤ 𝑏. In the rest of the paper, 

we will use a shortened notation of this function specified 

as 𝑥𝑎:𝑏 = 𝑠𝑢𝑏𝑆𝑒𝑞(𝑥, 𝑎, 𝑏). 
For searching the definite optimal warping path, an 

accumulated cost matrix 𝐷 ∈ ℝ𝑛×𝑚 can be utilized. The 

partial elements of this matrix are defined as: 

 

𝐷(𝑟, 𝑠) = 𝐷𝑇𝑊(𝑥1:𝑟 , 𝑦1:𝑠) 
 

This can be easily computed in following way: 

 

𝐷(𝑟, 1) = ∑ 𝑐(𝑥𝑘 ,
𝑟
𝑘=1 𝑦1) for 𝑟 ∈ {1, … , 𝑛}, 

𝐷(1, 𝑠) = ∑ 𝑐(𝑥1,
𝑠
𝑘=1 𝑦𝑘) for 𝑠 ∈ {1, … ,𝑚}, 

𝐷(𝑟, 𝑠) = 𝑚𝑖𝑛 {

𝐷(𝑛 − 1,𝑚 − 1),

𝐷(𝑛 − 1,𝑚),
𝐷(𝑛,𝑚 − 1)

} + 𝑐(𝑥𝑟 , 𝑦𝑠)  

for 𝑟 ∈ {2, … , 𝑛} and 𝑠 ∈ {2, … ,𝑚}. 
 

Computed accumulated cost matrix for a cost matrix 

from Fig. 3 can be seen in Fig. 5. It is evident that the 

accumulation highlights only a single black valley. 
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Figure 5: Accumulated Cost Matrix 

 
Figure 6: Accumulated Cost Matrix with a Found 

Warping Path 

 

The optimal path 𝑝∗ = (𝑝1, … , 𝑝𝑞) is then computed in a 

reverse order starting with 𝑝𝑞 = (𝑛,𝑚) and finishing in 

a 𝑝1 = (1,1). The rest of the points are defined 

recursively: 
𝑝𝑘−1

=

{
  
 

  
 

(1, 𝑝𝑘𝑦 − 1) if 𝑝𝑘𝑥 = 1

(𝑝𝑘𝑥 − 1, 1) if 𝑝𝑘𝑦 = 1

argmin
(𝑖,𝑗)

{
 
 

 
 

𝐷(𝑖, 𝑗) | (𝑖, 𝑗) ∈ {

(𝑝𝑘𝑥 − 1, 𝑝𝑘𝑦 − 1),

(𝑝𝑘𝑥 − 1, 𝑝𝑘𝑦),

(𝑝𝑘𝑥, 𝑝𝑘𝑦 − 1)

}

}
 
 

 
 

otherwise

 

 

3.1. Subsequence DTW 

In some cases, it is not necessary to compare or align the 

whole sequences. A usual goal is to find an optimal 

alignment of a sample (a relatively short time series) 

within the signal database (a very long time series). It is 

very usual in situations, in which one dispones with a 

signal database a wants to find the best occurrence(s) of 

a sample (query). Using the slight modification, the 

DTW disposes with an ability to search such queries in a 

much longer sequence. The basic idea is not to penalize 

the omission in the alignment between 𝑥 and 𝑦 that 

appears at the beginning and at the end of the sequence 

𝑦. Suppose we have two sequences 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) 
of the length 𝑛 ∈ ℕ and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑚) of the much 

larger length 𝑚 ∈ ℕ.  The goal is to find a subsequence 

𝑦𝑎:𝑏 = (𝑦𝑎 , 𝑦𝑎+1, … , 𝑦𝑏) where 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑚 that 

minimizes the DTW cost to 𝑥 over the all possible 

subsequences of 𝑦. The modification involves the 

changed approach in the computation of the first row and 

column of accumulated cost matrix. The not penalizing 

the omissions at the beginning and at the end of the 

sequence 𝑦 means not accumulating the values in the first 

column of the accumulated cost matrix, formally: 

 

𝐷(1, 𝑠) = 𝑐(𝑥1, 𝑦𝑠) for 𝑠 ∈ {1, … ,𝑚} 

instead of 

𝐷(1, 𝑠) = ∑ 𝑐(𝑥1,
𝑠
𝑘=1 𝑦𝑘) for 𝑠 ∈ {1, … ,𝑚}. 

The remaining values of this matrix are computed in a 

standard manner as it was described earlier. Then, the 

warping path connecting the right and left side of the 

matrix is searched. The searching of the subsequece 𝑦𝑎:𝑏 

begins in a point: 

 

(𝑛, 𝑏) = argmin
𝑖∈{1,2,…,𝑚}

{𝐷(𝑛, 𝑖) } 

and then it is computed in the same way as in classical 

DTW until the warping path touches the left side of a 

matrix in a point (1, 𝑎), where 𝑎 ∈ {1, … , 𝑏}. If the 

optimal subsequence warping path is defined as 

𝑝∗ = (𝑝1, … , 𝑝𝑞), the 𝑝1 = (1, 𝑎) and the 𝑝𝑞 = (𝑛, 𝑏). 

By selecting the next greatest value in the last column 

and searching the warping path from this point again, 

other paths can be found. An example of such searching 

the best subsequence alignment can be seen in Fig. 7. The 

both constructed matrices including the found warping 

path are then shown in Fig. 8. 

 

 
Figure 7: Cost Matrix and Accumulated Cost Matrix for 

Searching Subsequences 

 

3.2. Searching the mutual subsequences 

Despite the fact that the DTW has its own modification 

for searching subsequences, it works perfectly only in a 

case of searching an exact pattern in some signal 

database. However, in real situations, exact patterns are 

not available because they are surrounded by additional 

values (Figure 9a), or even repeated several times in the 

sequence (Figure 9b). Unfortunately, the basic DTW is 

not able to handle these situations and it fails or returns 

only a single occurrence of the pattern. To deal with this 
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type of situations, our own DTW modification was 

created.  

 
Figure 8: Cost Matrix and Accumulated Cost Matrix for 

Searching Subsequences 

 

 

 
Figure 9: Basic DTW inaccuracies  

 

4. PROPOSED SOLUTION 

Proposed solution tries to eliminate weaknesses of 

previously mentioned approach and allows searching 

mutual time-warped subsequences respecting predefined 

conditions. The goal is to find all mutual subsequences 

as long as possible respecting the following three 

constrains (numeric thresholds): 

 

 maximal total cost 𝑡𝑡, 
 maximal average cost 𝑡𝑎, 

 maximal single element cost 𝑡𝑒. 

 

Functionality of the algorithm will be demonstrated on 

two sequences in the Fig. 10. Illustratively, each of these 

sequences consists of three same subsequences, but in the 

different order. 

The biggest difference between the classical and 

subsequence DTW is in the philosophy of searching the 

warping path. In simple terms, the algorithm does not 

search the warping path from the upper right corner to 

the bottom left one (as in the case of classical DTW in 

Fig. 11a) and also it does not connect the opposite sides 

of a matrix (as in the case of subsequence DTW in 

Fig. 11b). The main idea is to find warping paths as long 

as possible from any element to another one, parallel to 

a diagonal, as it is outlined in Fig. 11c. Moreover, the 

constructed warping path have to respect an adjusted 

constraints. 

 

 

Figure 10: Sample Sequences 
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Figure 11: Philosophy of Searching the Warping Path 

 

Visualized cost matrix in Fig. 12 suggests the optimal 

way for searching the warping paths. There are two 

important tasks to solve: Where exactly is the best to start 

the searching of the warping paths and how to adapt the 

computation of accumulated cost matrix for searching 

mutual subsequences. 

 

 

Figure 12: Visualized Cost Matrix 

 

4.1. Determining the starting points 

Unlike the DTW or Subsequence DTW, there is no 

clearly defined point (or set of points) where to start 
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searching the warping path. In this case, it is necessary to 

pick one or more matrix elements that are interesting in 

some manner. Test showed that local minima can be 

utilized as potential path starts. As the local minima such 

elements of the matrix are considered, whose values are 

less or equal than the value of surrounding values (expect 

those in diagonal way). In another words, the element is 

considered as a local minimum if its value is lower or 

equal than the neighboring item above, below, right, left, 

below right and above left. Items below right and above 

left are ignored, because these elements are parallel to 

diagonal and lie on a potential same path. Formally, the 

set of minima 𝑀 is defined as: 

 

 𝑀 = {(𝑖, 𝑗) ∈  ℕ2| 𝑖 < 𝑚 ∧ 𝑗 < 𝑛 ∧
∧ 𝐶(𝑖, 𝑗) < 𝐶(𝑖 − 1, 𝑗 + 1)
∧ 𝐶(𝑖, 𝑗) < 𝐶(𝑖 − 1, 𝑗)
∧ 𝐶(𝑖, 𝑗) < 𝐶(𝑖, 𝑗 − 1)
∧ 𝐶(𝑖, 𝑗) < 𝐶(𝑖, 𝑗 + 1)
∧ 𝐶(𝑖, 𝑗) < 𝐶(𝑖 + 1, 𝑗 − 1)
∧ 𝐶(𝑖, 𝑗) < 𝐶(𝑖 + 1, 𝑗)} 

Fig. 13 shows that minima (red dots), found by this way 

for sequences from Fig. 10, exactly highlight the center 

of the dark areas and suggest the meaningful points. 

  

 

Figure 13: Visualized Cost Matrix Containing Minima 
 

4.2. Computation of accumulated matrix 

Once the potential paths’ beginnings are found, 

searching the mutual subsequences may start. However, 

a standard accumulated matrix cannot be used, because 

the values are accumulated from the bottom left corner. 

Because of that, also constructed warping paths are 

“attracted” to the bottom left corner. It is mostly evident 

on the left and bottom side of the matrix in Fig. 14, where 

the color goes light instead of getting dark. 

An original subsequence DTW allows searching the 

best alignment of a sample within the signal database by 

not penalizing omissions alignment at the beginning and 

end of the longer sequence by the following setting: 

 

𝐷(1, 𝑠) = 𝑐(𝑥1, 𝑦𝑠) for 𝑠 ∈ {1, … ,𝑚}. 

 

Figure 14: Accumulated Cost Matrix 

 

Our approach additionally does not penalize even 

omissions of the alignment at the beginning and at the 

end of the shorter sequence by setting: 

 

𝐷(𝑟, 1) = 𝑐(𝑥𝑟 , 𝑦1) for 𝑟 ∈ {1, … , 𝑛}.  

Accumulated cost matrix in Fig. 15 shows that 

subsequences located along borders are now clearly 

visible. However, subsequences located in the middle or 

at the ends of the sequences are still hidden. Moreover, 

the visualization suggests that warping will be 

“attracted” to the borders of a matrix, not diagonally as it 

is wanted.  

 

 

Figure 15: Modified Accumulated Cost Matrix 

 

To solve this situation, the set of minima can be utilized 

again. We supplemented the computation of the 

accumulated cost matrix by zeroing the items located in 

minima.  
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𝐷(𝑟, 𝑠)

=

{
 

 
0 𝑖𝑓 (𝑟, 𝑠) ∈ 𝑀

𝑚𝑖𝑛 {

𝐷(𝑛 − 1,𝑚 − 1),

𝐷(𝑛 − 1,𝑚),
𝐷(𝑛,𝑚 − 1)

} + 𝑐(𝑥𝑟 , 𝑦𝑠) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

for 𝑟 ∈ {2, … , 𝑛} and 𝑠 ∈ {2, … ,𝑚}. 
 

This zeroing causes resets of accumulation in minima 

points and changing the direction of warping path to the 

closest minimum. This effect is mostly evident in Fig. 16 

on the right middle side. 

 

 

Figure 16: Modified Accumulated Cost Matrix with 

Zeroed Minima 

 

4.3. Searching the subsequent warping path 

Searching the mutual subsequence warping path is 

performed in the same way as in classical DTW. The 

only difference is in selecting the local minima as starting 

points, as it was defined in paragraph 4.1.  

The local minima are taken one after another (from 

the top right corner of a matrix) and from the 

corresponding matrix element a new warping path is 

constructed. For a faster run of this algorithm, each of the 

minima does not have to be examined. A minimum 

contained in any of the already existing warping paths 

can be skipped. 

Each of such warping paths is constructed with no 

restrictions, i.e. it is constructed until it touches the 

bottom or the left side of the matrix, regardless the 

thresholds defined in Sec. 4. It is done because it is not 

possible to evaluate some of the thresholds while 

constructing the warping path, because the overall view 

onto it is missing. It is evident especially for the maximal 

average cost 𝑡𝑎, where evaluating the threshold during 

the construction of a warping path may cause its 

premature end. This will be demonstrated in the 

following simple example.  

Imagine the situation we want to find a subsequence 

with a maximal average cost 𝑡𝑎 = 0.2 and the found 

warping path points’ costs are: 

 

𝑐𝑠 = (𝑐 (𝑥𝑝5𝑥 , 𝑦𝑝5𝑦) , 𝑐 (𝑥𝑝4𝑥 , 𝑦𝑝4𝑦) , … , 𝑐 (𝑥𝑝1𝑥 , 𝑦𝑝1𝑦))

= (0,0,1,0,0) 
 

If the average cost will be computed and evaluated point 

by point, the construction of the path will end just after 

the third point, because: 

 

𝑐𝑠1:3 =
0 + 0 + 1

3
= 0. 3̅ > 𝑡𝑎 = 0.2 

However, this ending of the construction is 

unnecessarily, because the average costs of the whole 

warping points is: 

 

𝑐𝑠1:5 =
0 + 0 + 1 + 0 + 0

5
= 0.2 ≤ 𝑡𝑎 = 0.2, 

 

The interruption was caused by a single greater value, 

which does not have important meaning in the global 

view. To avoid this inaccuracies, the warping paths with 

no limitations are constructed first and then the final 

mutual subsequences exactly respecting the adjusted 

thresholds are extracted.  

 

4.4. Extraction of mutual subsequences 

In general, once the unlimited paths in 4.3 are found, the 

goal is to extract set of all subsequences 𝑆 = {𝑠|𝑠 =
𝑝𝑢:𝑣} for each warping path 𝑝 = (𝑝1, … , 𝑝𝑞), where 

following conditions are satisfied:  

 𝑐𝑡(𝑠) ≤ 𝑡𝑡,  
 𝑐𝑎(𝑠) ≤ 𝑡𝑎  

 𝑐𝑒(𝑠) ≤ 𝑡𝑒,  

 found sequence 𝑠 = 𝑝𝑎:𝑏 is not a subsequence 

of any other found sequence 𝑢 = 𝑝𝑐:𝑑 also 

satisfying defined conditions, where 1 ≤ 𝑐 ≤
𝑎 ≤ 𝑏 ≤ 𝑑 ≤ 𝑞. 

 

The 𝑡𝑡, 𝑡𝑎, 𝑡𝑒 are thresholds defined in Sec. 4 and the 

𝑐𝑡(𝑠), 𝑐𝑎(𝑠) and 𝑐𝑒(𝑠) for a subsequence 𝑠 are costs 

defined as follows: 

 Total cost 𝑐𝑡(𝑠) = ∑ 𝑐(𝑥𝑝𝑘𝑥 , 𝑦𝑝𝑘𝑦)
𝑣
𝑘=𝑢 , 

 average total cost 𝑐𝑎(𝑠) =
𝑐𝑡(𝑠)

𝑣−𝑢+1
, 

 maximal item cost 

𝑐𝑒(𝑠) = max
𝑘∈{𝑢,…,𝑣}

{𝑐(𝑥𝑝𝑘𝑥 , 𝑦𝑝𝑘𝑦)} 

To ensure extracting all the mutual subsequences and to 

avoid unnecessary shortening of them, the all 

combinations have to be examined. For this purpose, a 

two triangular matrices are constructed – matrix of total 

costs and a matrix of average costs. The partial elements 

of the matrices symbolize computed sums of costs 

(respectively averages of costs) between the 𝑖-th and 𝑗-th 

item of a warping path. Formally: 
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𝐶𝑡 ∈ ℝ
𝑛×𝑚  defined by 𝐶𝑡𝑖𝑗 = ∑ 𝑐(𝑥𝑝𝑘𝑥 , 𝑦𝑝𝑘𝑦)

𝑗
𝑘=𝑖 . 

𝐶𝑎 ∈ ℝ
𝑛×𝑚  defined by 𝐶𝑎𝑖𝑗 =

∑ 𝑐(𝑥𝑝𝑘𝑥 ,𝑦𝑝𝑘𝑦)
𝑗
𝑘=𝑖

𝑗−𝑖+1
. 

From these matrices, a sets of pairs describing the start 

and the end of mutual subsequences can be derived: 

 

𝐵𝑡 = {(𝑖, 𝑗) ∈  ℕ2| 𝐶𝑡(𝑖, 𝑗) ≤ 𝑡𝑡} 

𝐵𝑎 = {(𝑖, 𝑗) ∈  ℕ2| 𝐶𝑡(𝑖, 𝑗) ≤ 𝑡𝑎} 

To receive all mutual subsequences respecting both 

maximal cost threshold and maximal average cost 

threshold, the intersection of these sets have to be defined 

as: 

𝐵𝑠 = 𝐵𝑡 ∩ 𝐵𝑎 

Unfortunately, an appropriate matrix for maximal item 

cost cannot be built, so we used the set of forbidden 

indexes which cannot be included in any mutual 

subsequence. At these indexes, the costs in a warping 

path are larger than the threshold 𝑡𝑒:  

 

𝐼𝑓 = { 𝑖 ∈  ℕ | 𝑐 (𝑥𝑝𝑖𝑥 , 𝑦𝑝𝑖𝑦) > 𝑡𝑒} 

The final set of pairs respecting all the thresholds are: 

 

𝐵𝑓 = {(𝑖, 𝑗) ∈ 𝐵𝑠|¬∃𝑘 ∈ 𝐼𝑓 [𝑖 ≤ 𝑘 ≤ 𝑗]} 

However, this pairs include all the possible mutual 

subsequences including also the subsequences of 

subsequences. In another words, this set can contain a 

pair (0,10) as well as its subsequence (2,8). The (2,8) 
have to be ignored, because the goal is to find as long 

mutual subsequence as it is possible. 

Omissions of such subsequences of subsequences 

can be easily done by ignoring all pairs having their 

begins and ends inside of another pair: 

 

𝐵 = {(𝑖, 𝑗) ∈ 𝐵𝑓  | ¬∃(𝑘, 𝑙) ∈ 𝐵𝑓[𝑘 ≤ 𝑖 ∧ 𝑙 ≥ 𝑗]} 

The final pairs (𝑖, 𝑗) ∈ 𝐵 specify the indexes of the start 

and the end warping points 𝑝𝑖:𝑗 enclosing the warping 

points of a mutual common subsequence. The values of 

mutual subsequences are there defined as: 

 

𝑥𝑠 = (𝑥𝑝𝑖𝑥 , 𝑥𝑝(𝑖+1)𝑥, … , 𝑥𝑝𝑗𝑥) 

𝑦𝑠 = (𝑦𝑝𝑖𝑦 , 𝑦𝑝(𝑖+1)𝑦, … , 𝑦𝑝𝑗𝑦) 

 

An example of such found mutual subsequences for the 

sequences from Fig. 10 can be found in Fig. 17. The 

corresponding warping paths are also visualized in the 

cost matrix in Fig. 18.  

However, this example is presented only for a 

demonstration purposes, because the processed 

sequences are artificially constructed from the identical 

sequences and they are not a subject of the real distortion. 

Visualization of many sequences with corresponding 

combinations of algorithm’s parameters, unfortunately, 

exceeds the scope of this paper. 

 

 

 
Figure 17: Found Mutual Subsequences 

 

CONCLUSION 

Tests showed that the proposed algorithm is able to find 

mutual subsequences in distorted time series. Since the 

algorithm is mostly based on DTW and mutually 

independent parts, it is very easy to parallelize the 

computations and rapidly speed it up. Future work will 

be focused on such optimization and automatic 

adjustment of algorithm’s parameters. 
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Figure 18: Found Warping Paths 
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